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Abstract

Wnt signalling is a key pathway controlling bone formation in mice and humans. One of the regulators of this pathway is
Dkk1, which antagonizes Wnt signalling through the formation of a ternary complex with the transmembrane receptors
Krm1/2 and Lrp5/6, thereby blocking the induction of Wnt signalling by the latter ones. Here we show that Kremen-2 (Krm2)
is predominantly expressed in bone, and that its osteoblast-specific over-expression in transgenic mice (Col1a1-Krm2) results
in severe osteoporosis. Histomorphometric analysis revealed that osteoblast maturation and bone formation are disturbed
in Col1a1-Krm2 mice, whereas bone resorption is increased. In line with these findings, primary osteoblasts derived from
Col1a1-Krm2 mice display a cell-autonomous differentiation defect, impaired canonical Wnt signalling and decreased
production of the osteoclast inhibitory factor Opg. To determine whether the observed effects of Krm2 on bone remodeling
are physiologically relevant, we analyzed the skeletal phenotype of 24 weeks old Krm2-deficient mice and observed high
bone mass caused by a more than three-fold increase in bone formation. Taken together, these data identify Krm2 as a
regulator of bone remodeling and raise the possibility that antagonizing KRM2 might prove beneficial in patients with bone
loss disorders.
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Introduction

Bone is constantly remodelled through the activities of bone-

forming osteoblasts and bone-resorbing osteoclasts [1,2]. A relative

increase of bone resorption over bone formation can result in

osteoporosis, one of the most prevalent diseases in the aged

population [3,4]. It is therefore of hallmark clinical importance to

identify molecules specifically regulating the differentiation and

activity of osteoblasts, since these can potentially serve as targets

for osteoanabolic therapy. Moreover, as these molecules should be

accessible to drugs, they should ideally be located in the

extracellular space or at the cell surface, for instance as a receptor

for a given ligand. In this regard, the identification of the secreted

molecule SOST and the transmembrane protein LRP5 as

regulators of bone formation in humans was a major breakthrough

[5–9].

LRP5, together with LRP6, is the human orthologue of the

Drosophila protein arrow, which serves as a co-receptor for wingless,

the fly homologue of mammalian Wnt ligands [10]. Inactivating

mutations of the human LRP5 gene result in osteoporosis

pseudoglioma syndrome, and a similar phenotype has been

observed in mice with a targeted deletion of Lrp5 [5,11]. Likewise,

activating mutations of Lrp5 in mice and humans cause

osteosclerosis, a high bone mass disorder resulting from increased

osteoblast activity [6,7,12]. In addition, several investigators have

reported that specific single nucleotide polymorphisms within the

LRP5 gene are associated with decreased bone mineral density and

increased risk of osteoporotic fractures [13–15]. Based on this

cumulative evidence, but also due to its transmembrane

localization, LRP5 has been considered an excellent target

molecule for osteoanabolic therapy.

A second key regulator of bone formation in humans is the

secreted protein SOST, which is specifically produced by

osteocytes and acts as a negative regulator of osteblast activity

[16,17]. As it was the case for LRP5, the importance of the SOST

gene for bone mass was first uncovered by human genetics, where

it has been found that the loss of SOST expression or function

causes either van Buchem disease or sclerostosis, two related high
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bone mass conditions caused by excessive bone formation [8,9].

Likewise, while Sost-deficient mice displayed osteosclerosis, an

osteoblast-specific over-expression of Sost resulted in an opposite

phenotype [17,18]. Most importantly however, albeit the Sost

protein is structurally related to a family of Bmp antagonists, it has

been shown to bind to the extracellular domain of Lrp5, thereby

inhibiting the activation of Wnt signalling pathways [19–22].

Taken together, these results have suggested that Wnt-

dependent signalling pathways are of crucial importance for

osteoblast biology, which is further underscored by the fact that

many mouse models with altered expression of proteins influenc-

ing Wnt binding and signal transduction display bone remodeling

phenotypes [23,24]. Among the several known modulators of Lrp5

activity, Dkk1, a member of the Dickkopf family of Wnt

antagonists, appears to be particularly interesting for several

reasons. First, although Dkk1 is indispensable for embryonic head

induction and limb development in mice, the postnatal analysis of

Dkk1 expression has revealed near specificity for differentiated

osteoblasts [25,26]. Second, while the homozygous deletion of

Dkk1 in mice causes embryonic lethality, the deletion of only one

Dkk1 allele results in an osteosclerotic phenotype, and the opposite

is observed in transgenic mice over-expressing Dkk1 [26,27].

Third, although there is no report so far for an impact of DKK1

mutations on bone mass in humans, there is hallmark evidence for

an over-production of DKK1 in human cancer cells being

responsible for the development of osteolytic lesions associated

with metastatic bone disease [28–33].

Albeit Dkk1 can inhibit Wnt signalling through a direct

interaction with Lrp5 or Lrp6, its antagonistic function is

significantly enhanced by members of the Kremen (Krm) family,

which serve as high affinity receptors for Dkk proteins [34,35].

Whether Krm proteins solely act as antagonists of Wnt signalling is

however questionable, since a positive influence on Lrp6-

dependent Wnt signaling has been described for Krm2, which is

possibly mediated through an interaction with Wnt signaling

activators of the Rspo family [36,37]. Here we show, that Krm2,

unlike Krm1, is predominantly expressed in bone, which led us to

generate transgenic mice over-expressing Krm2 specifically in

osteoblasts. These mice progressively developed an osteoporotic

phenotype, which was not only caused by impaired bone

formation, but also by increased bone resorption. Most impor-

tantly however, we observed that 24 weeks old Krm2-deficient

mice, which do not display a phenotype at younger age [38], are

characterized by a marked increase in bone formation. Taken

together, these data identify Krm2 as a regulator of bone

remodeling, at least in mice.

Results

Krm2 Expression in Bone
To uncover the potential relevance of Krm proteins in the

regulation of bone remodeling, we first analyzed the expression

pattern of the two known murine Krm genes and their potential

ligands of the Dkk and Rspo family by RT-PCR using cDNA from

tissues of 6 weeks old mice. Here we observed that Krm2, like Dkk1,

but unlike Krm1, is predominantly expressed in bone, thereby

suggesting a function in the regulation of osteoblasts and/or

osteoclasts (Figure 1A). A similar result was obtained, when we

used tissues from newborn mice, albeit we only detected Krm2

expression in calvarial bone, but not in the femur (Figure 1B). To

analyze bone expression on the protein level, we took advantage of

an antibody against the human KRM2 protein. Using immuno-

histochemistry on human bone sections we found that KRM2 is

specifically present in osteoblasts, but not in cells of the bone

marrow, albeit we also observed a weak staining of bone-resorbing

osteoclasts (Figure 1C).

Taken together, these findings led us to analyze the influence of

Krm2 on Wnt signaling in osteoblasts, which was first done in vitro

using the cell line MC3T3-E1, where we did not observe

endogenous expression of Krm2 (Figure 1B) and Dkk1 (data not

shown). Using DNA-transfection we observed that Dkk1 and

Krm2 antagonize the activation of a Wnt-responsive Luciferase

reporter gene, only when Wnt1 or Wnt3 expression plasmids are

co-transfected, but that Luciferase expression is increased by Krm2,

when a Wnt2 expression plasmid is used instead (Figure 1C).

Based on these conflicting results, we reasoned that it is virtually

impossible to analyze the role of Krm2 in osteoblasts in vitro. Thus,

we generated transgenic mice over-expressing Krm2 under the

control of an osteoblast-specific Col1a1 promoter fragment [39,40]

to determine, whether Krm2 has an influence on bone remodeling

in vivo, and if so, whether it is promoting or inhibiting osteoblast-

specific activites.

Generation of Col1a1-Krm2 Transgenic Mice
Three transgenic founder animals were identified by Southern

Blot hybridization (Figure 2A). One of these animals died at the

age of 10 weeks for unknown reasons, but its skeletal analysis

demonstrated a severe reduction of bone mass, with a near

absence of trabecular bone (Figure 2B). The two remaining

founder animals were viable, which enabled us to establish

independent transgenic lines. Since transgenic offspring of both

founders also displayed a striking decrease of the trabecular bone

volume at 10 weeks of age, we concluded that this phenotype is

indeed the consequence of Krm2 over-expression and not caused

by an insertional inactivation of other genes. Based on these results

we decided to focus on a founder line with an intermediate

transgene copy number (#1), which is termed Col1a1-Krm2 for the

remainder of the manuscript (Figure 2B). Here we first performed

RT-PCR to confirm the bone-specific expression of the transgene

(Figure 2C), and using Northern Blot hybridization we found that

the expression of Krm2 was at least 20-fold increased in bones from

transgenic animals (Figure 2D).

In order to analyze to skeletal phenotype of the Col1a1-Krm2

mice we first stained skeletons of one day old animals with alizarin

red and alcian blue, but we did not observe major defects of

skeletal patterning and growth in transgenic mice compared to

wildtype littermates (Figure 3A). Likewise, non-decalcified sections

of the spine did not reveal a significant difference of the trabecular

bone volume between newborn wildtype and transgenic mice

(Figure 3B). We therefore continued our study with the skeletal

analysis of older mice and first performed contact radiography,

where we failed to detect significant differences of skeletal growth

at 2 weeks of age (Figure 3C) and thereafter (Figure 3D).

Severe Osteoporosis in Col1a1-Krm2 Transgenic Mice
When we performed non-decalcified histology of vertebral body

sections, we observed that female Col1a1-Krm2 transgenic mice

progressively develop severe osteoporosis (Figure 4A). Albeit the

length of the lumbar spine was not reduced in transgenic mice

(Figure 4B), our histomorphometric quantification revealed a

decreased trabecular bone volume and trabecular number in

Col1a1-Krm2 mice at all ages, and a decreased trabecular thickness

at 24 weeks and 52 week of age (Figure 4B). The same phenotype

was observed in male transgenic mice, where we also found a more

than 4-fold reduction of the trabecular bone volume compared to

wildtype littermates at 24 weeks of age (data not shown).

Following mCT scanning of the vertebral bodies L6 (Figure 5A),

where we observed decreased trabecular bone mass, but normal

Kremen-2 and Bone Formation
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cortical thickness in Col1a1-Krm2 mice (data not shown), we

performed microcompression testing and found that the biome-

chanical stability of the vertebral bodies is largely reduced in

Col1a1-Krm2 mice, when compared to wildtype littermates

(Figure 4B). Cross-sectional mCT scans of the femora (Figure 4C)

further revealed reduced cortical thickness and bone mineral

content in Col1a1-Krm2 mice (Figure 4D), again accompanied by

reduced biomechanical competence in three-point-bending assays

(Figure 4E). In line with these findings, 2 out of 8 transgenic mice

older than 24 weeks (one male and one female) had to be sacrificed

due to spontaneous fractures, thereby demonstrating increased

bone fragility also in vivo (Figure 4F). Taken together, these

analyses revealed that Krm2 expression in osteoblasts has a

negative impact on bone integrity, which led us to perform

histomorphometry to determine, whether the severe osteoporosis

in Col1a1-Krm2 mice is caused by impaired bone formation and/or

bone resorption.

Krm2 Over-expression in Osteoblasts Impairs Bone
Formation

Although the histomorphometric quantification did not reveal

a significant difference of osteoblast numbers between wildtype

and transgenic mice, there was a striking effect of Krm2 over-

expression on osteoblast maturation and bone matrix deposition

Figure 1. Krm2 expression in osteoblasts. (A) RT-PCR expression analysis of Dkk, Krm and Rspo genes in primary osteoblasts (Obl. d5, non-
mineralized, Obl. d25, mineralized) and various tissues of 6 weeks old mice. (B) RT-PCR expression analysis of Krm genes in non-differentiated MC3T3-
E1 cells and tissues of newborn mice. (C) Immunohistochemistry on human bone sections reveals that KRM2 is present on osteoblasts lining the
trabecular bone surface (arrows, scale bars, 100 mm). The bottom panel shows staining of osteoclasts (scale bars, 20 mm). (D) DNA transfection in
MC3T3-E1 cells using expression plasmids for Wnt1, Wnt2 or Wnt3, Dkk1 and/or Krm2 at the indicated combinations. Bars represent mean 6 SD of
three independent experiments (n = 9). Asterisks indicate statistically significant changes.
doi:10.1371/journal.pone.0010309.g001
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(Figure 6A,B). In fact, none of the osteoblasts observed in sections

from transgenic mice displayed the regular morphology, and there

was a non-homogenous staining of mineralized bone compared to

sections from wildtype littermates. Likewise, when we looked at the

sections by fluorescence microscopy we observed that the number

of calcein-labelled surfaces, as well as the distance between calcein

labelling fronts was dramatically reduced in Col1a1-Krm2 mice

(Figure 6C). The quantification of these findings revealed that the

bone formation rate was nearly undetectable in Col1a1-Krm2 mice

at 6 and 24 weeks of age (Figure 6D). Interestingly, this near

abolishment of bone formation was not accompanied by changes

in the expression of well-established osteoblast differentiation

markers, such as Col1a1, Bglap or Ibsp (Figure 6E), which is further

underscored by the finding that serum osteocalcin levels and

alkaline phosphatase activities were not significantly decreased in 6

weeks old female Col1a1-Krm2 mice (Figure 6F).

Impaired Differentiation and Decreased Opg Production
in Primary Osteoblasts from Col1a1-Krm2 Transgenic
Mice

Taken together, these findings led us to analyze the

molecular differences between wildtype and transgenic osteo-

blasts, which were isolated from calvariae and differentiated ex

vivo. Here we observed that, although their proliferation rate

was significantly increased (Figure 7A), cultures from transgenic

mice displayed the expected decrease of extracellular matrix

mineralization after 10 days of differentiation (Figure 7B).

Moreover, when we stimulated primary osteoblasts with Wnt3a

we observed that the phosphorylation of Lrp6 was blunted in

cultures from transgenic mice (Figure 7C). Likewise, the

Wnt3a-dependent activation of canonical Wnt signaling,

assessed by decreased phosphorylation of ß-catenin, was

markedly reduced in transgenic cultures, as were the levels of

total ß-catenin. Since the expression of Tnfrsf11b, the gene

encoding the osteoclast-inhibitory factor Opg, is known to be

induced by canonical Wnt signaling in osteoblasts [41], we next

determined Opg production in osteoblasts from Col1a1-Krm2

mice and observed that it was reduced compared to wildtype

cultures, both by Western Blotting using cellular extracts and

by ELISA using conditioned medium (Figure 7D). Similar

results were obtained in vivo, where we found decreased

expression of Tnfrsf11b by quantitative RT-PCR, as well as

lower Opg serum concentrations in 6 weeks old female Col1a1-

Krm2 mice (Figure 7E).

Figure 2. Generation of Col1a1-Krm2 transgenic mice. (A) Schematic presentation of the construct used for osteoblast-specific over-expression of
Krm2 (top) and identification of three transgenic founder animals (arrows) by Southern Blotting (bottom), one of them dying at the age of 10 weeks. (B)
Von Kossa/van Gieson staining of non-decalcified vertebral body sections from 10 weeks old female wildtype mice (n = 3), the dead founder animal (#2)
and age-matched female transgenic offspring from the two other founders (n = 3, scale bars, 1 mm). The transgene copy numbers, as well as the
trabecular bone volume (BV/TV, bone volume per tissue volume) is given below. (C) Transgene-specific RT-PCR expression analysis revealing expression
in bone and weak expression in the eye. (D) Northern Blotting comparing Krm2 expression in transgenic mice compared to wildtype littermates.
doi:10.1371/journal.pone.0010309.g002
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Increased Bone Resorption and Osteolytic Lesions in
Col1a1-Krm2 Mice

Based on these findings, we next analyzed the influence of Krm2

over-expression on bone resorption. Using TRAP activity staining

we found increased numbers of osteoclasts in spine sections from

transgenic mice (Figure 8A), which was subsequently confirmed by

histomorphometry (Figure 8B). Another important observation

was made, when we analyzed the Col1a1-Krm2 mice at the age of

52 weeks, where we found osteolytic lesions, that were especially

pronounced in the lower extremities (Figure 8C) and histologically

confirmed to be caused by a local activation of bone resorption

(Figure 8D). In addition, our histological analysis revealed several

sites of inappropriate de novo bone formation within the marrow

cavity of Col1a1-Krm2 mice (Figure 8E). Taken together, these

results demonstrated that Krm2, at least in mice, is a potent

inhibitor of bone formation, with an additional influence on bone

resorption, thereby underscoring the importance of Wnt signaling

in osteoblasts for both arms of bone remodeling.

Identification of differentially expressed genes in
Col1a1-Krm2 transgenic osteoblasts

To identify genes with a possible involvement in the cell-

autonomous defect of bone formation caused by the Krm2 over-

expression, we next performed Affymetrix Gene Chip hybridiza-

tion, where we applied samples from three independently isolated

wildtype and transgenic osteoblast cultures at day 10 of

differentiation (Figure 9A). While we did not observe altered

expression of several well-established osteoblast differentiation

Figure 3. Normal skeletal patterning and growth in Col1a1-Krm2 transgenic mice. (A) Staining of skeletons from one day old wildtype and
Col1a1-Krm2 transgenic littermates by alcian blue and alizarin red (scale bars, 5 mm). (B) Von Kossa/van Gieson staining of non-decalcified vertebral
body sections from one day old wildtype and Col1a1-Krm2 transgenic littermates (n = 4, scale bars, 500 mm). The histomorphometric quantification of
the trabecular bone volume is given below. (C) Contact Xrays of 2 weeks old female wildtype and Col1a1-Krm2 transgenic littermates (scale bars,
1 cm). (D) Determination of the femur and tibia length of female wildtype and Col1a1-Krm2 transgenic littermates at the indicated ages. Bars
represent mean 6 SD (n = 6).
doi:10.1371/journal.pone.0010309.g003
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markers, such as Runx2, Sp7, Alpl, Col1a1, Bglap, Ibsp and Spp1 in

transgenic cultures, our analysis revealed significantly reduced

expression of specific genes, albeit only few of them can potentially

explain the severe impairment of bone formation caused by Krm2

over-expression. These included Dmp1 [42], Phex [43], the three

genes encoding type-IX-collagen [44], Smpd3 [45], and Pcolce2, the

latter one encoding an enhancer of procollagen processing [46]. In

addition, the expression of Tnfsf11, encoding the osteoclast

differentiation factor Rankl, was higher in transgenic osteoblasts,

whereas the expression of Tnfrsf11b was decreased.

To address the question, whether these genes are direct targets

of Dkk1, we compared these results to another Affymetrix Gene

Chip hybridization experiment, where we treated wildtype

osteoblasts with Dkk1 for 6 hours. In line with the findings in

Col1a1-Krm2 osteoblasts we did not observe an effect of Dkk1 on

the expression of Runx2, Sp7, Alpl, Col1a1, Bglap, Ibsp and Spp1

(data not shown), but we did observe a reduced expression of

Smpd3 and Tnfrsf11b following Dkk1 treatment (Figure 9B).

Moreover, nearly all of the 25 genes showing the strongest

down-regulation by Dkk1 were also expressed at lower levels in

Col1a1-Krm2 osteoblasts. In contrast however, Dkk1 administration

did not have an immediate effect on the expression of Dmp1, Phex,

Col9a1-3 and Pcolce2 (data not shown) thereby suggesting that some

of the molecular differences between wildtype and Col1a1-Krm2

osteoblasts may be caused either indirectly or independent of

Dkk1.

High Bone Mass in Mice Lacking Krm2
Given the potential importance of these findings for the

treatment of bone loss disorders, we finally addressed the

question, whether the observed effects of Krm2 are physiolog-

ically relevant. To achieve this goal, we analyzed vertebral bodies

of 24 weeks old Krm2-deficient mice, since the previous analysis of

tibia sections at the age of 12 weeks did not reveal a significant

Figure 4. Decreased trabecular bone mass in Col1a1-Krm2 transgenic mice. (A) Von Kossa/van Gieson staining of non-decalcified vertebral
body sections from female wildtype and Col1a1-Krm2 transgenic littermates at the indicated ages (scale bars, 1 mm). (B) Determination of the lumbar
spine length. (C) Histomorphometric quantification of the trabecular bone volume, trabecular number (Tb.N.) and trabecular thickness (Tb.Th.). All
bars represent mean 6 SD (n = 6). Asterisks indicate statistically significant differences.
doi:10.1371/journal.pone.0010309.g004
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increase of bone mass compared to wildtype littermates [38].

Here we found that 24 weeks old Krm2-deficient mice displayed a

significantly increased trabecular bone mass (Figure 10A),

together with an increased number of single- and double-labeled

bone surfaces following dual calcein injection (Figure 10B). Using

histomorphometry we were able to confirm the increase of the

trabecular bone volume, but we failed to detect a defect of

osteoclast formation in Krm2-deficient mice at 24 weeks of age

(Figure 10C). In contrast, the osteoblast surface was significantly

higher in Krm2-deficient mice, and most importantly, the bone

formation rate was more than three-fold increased compared to

wildtype littermates (Figure 10D). Moreover, unlike it was the

case at the age of 12 weeks, 24 weeks old animals Krm2-deficient

mice also displayed an increased trabecular bone volume in the

tibia (Figure 10E,F). Taken together, these results demonstrate

that Krm2, at least in mice, is an endogenous inhibitor of bone

formation.

Discussion
Although osteoporosis is one of the most prevalent diseases in

the aged population, the options for its treatment are still limited

[47]. This is especially true for agents stimulating the activity of

osteoblasts, which explains why the discovery of LRP5 and SOST

as regulators of bone formation in humans was considered to be of

hallmark clinical importance [5–9]. Here we show, that the

transmembrane protein Krm2, which serves as a receptor for Wnt

antagonists of the Dkk family [34], is another physiological

regulator of bone formation, at least in mice. In fact, Col1a1-Krm2

transgenic mice display a severe osteoporotic phenotype, resulting

in reduced biomechanical stability of both, vertebral bodies and

long bones. This can be primarily explained by a decreased

trabecular bone mass, whereas cortical thickness was only found

affected in femora, but not in the spine, which might be explained

by different strain distributions between the two skeletal elements.

Most importantly however, Krm2-deficient mice also display a high

Figure 5. Decreased biomechanical stability of bones from Col1a1-Krm2 transgenic mice. (A) mCT scanning of the vertebral bodies L6 from
24 weeks old female wildtype and Col1a1-Krm2 transgenic littermates (scale bars, 1 mm). (B) Microcompression testing revealed reduced
biomechanical stability (Fmax, maximal force until bone failure). Bars represent mean 6 SD (n = 6). Asterisks indicate statistically significant
differences. (C) mCT scanning of the femora showing reduced cortical thickness and impaired mineralization (scale bars, 500 mm). (D) Cortical
thickness (C.Th.) and bone mineral density (vBMD) are decreased in Col1a1-Krm2 transgenic mice compared to wildtype littermates. Bars represent
mean 6 SD (n = 6). Asterisks indicate statistically significant differences. (E) Three-point bending assays reveal reduced biomechanical competence of
transgenic femora. Bars represent mean 6 SD (n = 12). Asterisks indicate statistically significant differences. (F) Xray analysis of a 30 weeks old male
Col1a1-Krm2 transgenic mouse with a spontaneous tibia fracture (arrow) compared to a non-transgenic littermate (scale bars, 2 mm).
doi:10.1371/journal.pone.0010309.g005
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trabecular bone mass phenotype at 24 weeks of age, which is

especially relevant given the absence of obvious abnormalities

outside the skeleton. Based on these arguments, it appears that

Krm2 has a specific function in bone remodeling, thereby raising

the possibility that KRM2 might serve as an ideal target for

osteoanabolic therapy, if it exerts a similar function in humans. In

this regard, it is important to state that an over-expression of Krm2

in osteoblasts also causes an activation of bone resorption, which

implies that a putative KRM2 antagonist might have a possible

influence on both arms of bone remodeling.

Albeit our results obtained in two genetically modified mouse

models confirm that an antagonism of Wnt signaling in osteoblasts

has a negative effect on bone formation, they were not necessarily

expected, based on several findings published by others. First,

while mice lacking one allele of Dkk1 display the expected high

bone mass phenotype, Dkk2-deficient mice are characterized by

reduced bone formation and osteopenia, thereby demonstrating

that these two Krm2 ligands do not mediate the same effects on

osteoblasts in vivo [48]. Second, while bone mass is unaffected in

mice lacking Lrp5 specifically in osteoblasts, a gut-specific deletion

Figure 6. Impaired bone formation in Col1a1-Krm2 transgenic mice. (A) Toluidine blue staining of non-decalcified vertebral body sections
from 6 weeks old female wildtype and Col1a1-Krm2 transgenic littermates revealing that the normal appearance of cuboidal osteoblasts (arrows)
covering trabecular bone surfaces is only observed in wildtype controls (scale bars, 50 mm). (B) Histomorphometric quantification showing that the
number of osteoblasts (ObN/BPm, osteoblast number per bone perimeter) is not significantly decreased in sections from transgenic mice. (C)
Fluorescent micrographs showing that overall calcein labeling is reduced in vertebral bodies of 6 weeks old female Col1a1-Krm2 transgenic mice (top,
scale bars, 1 mm), as is the distance between the labeled surfaces at endosteal bone surfaces of the tibia (bottom, scale bars, 20 mm). (D)
Histomorphometric quantification of the bone formation rate (BFR/BS, bone formation rate per bone surface) in female wildtype and Col1a1-Krm2
transgenic littermates. (E) Northern Blot expression analysis for Col1a1, Bglap and Ibsp using femur RNA of 6 weeks old female wildtype and
transgenic mice. (F) Serum levels of osteocalcin and activities of alkaline phosphatase in 6 weeks old female wildtype and transgenic mice. All bars
represent mean 6 SD (n = 6). Asterisks indicate statistically significant differences.
doi:10.1371/journal.pone.0010309.g006
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of the Lrp5 gene resulted in decreased bone formation as a

consequence of increased serotonin production, thus implying that

Lrp5 does not control bone formation in a cell-autonomous

manner [49]. Third, mice harbouring an osteoblast-specific

inactivation of ß-catenin, the major intracellular mediator of

Wnt signalling, displayed normal bone formation, but increased

bone resorption, which was molecularly explained by reduced

production of the osteoclast-inhibitory factor Opg [41]. Taken

together, these two latter findings have challenged the concept that

Wnt signalling in osteoblasts is a key pathway for the regulation of

bone formation, which was further underscored by the finding that

the osteopenia of rs/rs mice, carrying a hypomorphic mutation of

the Wnt co-receptor Lrp6, is caused by increased bone resorption

[50].

In this regard, it was not only an important, but also an

unexpected observation, that the osteoblast-specific antagonism of

Wnt signalling achieved through transgenic over-expression of

Krm2 has such a tremendous impact on bone formation, thereby

causing an osteoporotic phenotype, whose severity exceeds the one

observed in Lrp5-deficient mice [11]. In fact, our finding that bone

formation was nearly abolished in the Col1a1-Krm2 transgenic mice

underscores the importance of intact Wnt signalling for the

endogenous regulation of osteoblast differentation and function.

Another interesting and unexpected observation was that the

severe impairment of bone formation in Col1a1-Krm2 mice

occurred despite nearly normal expression levels of several well-

established osteoblast differentiation markers, which was con-

firmed by a genome-wide comparative expression analysis using

three independently isolated osteoblast cultures from wildtype and

Col1a1-Krm2 transgenic mice. Since we did observe a cell-

autonomous defect of matrix mineralization in primary osteoblasts

from Col1a1-Krm2 mice however, we were further able to identify

specific genes, whose reduced expression can possibly explain the

severe impairment of bone formation in Col1a1-Krm2 mice. These

included Dmp1 and Phex, two genes required for bone matrix

mineralization and phosphate homeostasis (41,42), but also the

three genes encoding type IX collagen, which is potentially

important, since Col9a1-deficient mice have recently been

described to display an osteoporotic phenotype [44]. However,

since we only observed a moderate increase in the volume of non-

mineralized osteoid in Col1a1-Krm2 mice, together with normal

serum phosphate levels (data not shown), and since the

osteoporotic phenotype of Col9a1+/2 mice is rather caused by

increased bone resorption [44], we believe that the reduced

expression of other genes is more likely to explain the near absence

of bone formation in Col1a1-Krm2 mice.

Of particular interest in this regard is Smpd3, encoding one

member of the sphingomyelin phosphodiesterase family, cleaving

sphingomyelin into ceramide [51]. Although the precise mecha-

nism of its action in osteoblasts remains to be established, a

deletion within the Smpd3 gene has been found in a chemically

induced mutant mouse model termed fragilis ossium (fro) [45]. The

Figure 7. Cell-autonomous defect of Col1a1-Krm2 transgenic osteoblasts. (A) BrdU incorporation assays revealed a higher proliferation rate
in primary calvarial osteoblast cultures from transgenic mice after 2 days of differentiation. (B) Von Kossa staining performed at 10 days of
differentiation reveals reduced mineralization of osteoblasts from Col1a1-Krm2 mice (scale bars, 1 cm), despite higher protein content (given below).
Values represent mean 6 SD (n = 3). Asterisks indicate statistically significant differences. (C) Western Blot analysis of canonical Wnt signaling using
primary osteoblasts from wildtype and transgenic mice following stimulation with Wnt3a for 30 minutes. (D) Western Blot analysis (left) and ELISA
(right) showing decreased Opg levels in cellular extracts and conditioned medium of osteoblasts from Col1a1-Krm2 mice. (E) Quantitative RT-PCR
(left) and ELISA (right) demonstrating that the reduced expression of Tnfrsf11b in bones of 6 weeks old Col1a1-Krm2 mice results in decreased Opg
serum levels. All bars represent mean 6 SD (n = 4). Asterisks indicate statistically significant differences.
doi:10.1371/journal.pone.0010309.g007
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fro/fro mice have been described as a model of osteogenesis

imperfecta (OI), a genetic disease of impaired bone matrix

deposition and increased fracture risk [52]. However, unlike what

is the case in the vast majority of OI cases, fro/fro mice do not

display any detectable collagen synthesis defect, thereby suggesting

that sphingomyelin degradation may be a key factor regulating

formation and mineralization of the bone matrix, independent of

collagen production [53,54]. In this regard it is also interesting that

another gene with significantly reduced expression in osteoblasts

from Col1a1-Krm2 mice, namely Pcolce2, has been described to

serve a function as an enhancer of C-terminal procollagen

processing [46]. Whether this function is also relevant for the

posttranslational modification of type I collagen in osteoblasts

remains to be established, since mice lacking Pcolce2 have not been

analyzed for their skeletal phenotype so far [55].

Given the fact, that the phenotype of Col1a1-Krm2 mice is

apparently more severe than the phenotype of Col1a1-Dkk1

transgenic mice reported in the literature [26], it was also

important to compare the genome-wide expression analysis of

wildtype and Col1a1-Krm2 transgenic osteoblasts to another Gene

Chip hybridization experiment, where we have treated wildtype

osteoblasts with Dkk1 for 6 hours. Interestingly, the data

obtained here confirmed that the majority of genes being

repressed following Dkk1 administration were also expressed at

lower levels in osteoblasts from Col1a1-Krm2 mice. In contrast

however, we did not find an influence of Dkk1 on the expression

Figure 8. Increased bone resorption in Col1a1-Krm2 transgenic mice. (A) TRAP activity staining for osteoclasts (arrows) in decalcified vertebral
body sections from 6 weeks old female wildtype and Col1a1-Krm2 transgenic mice (scale bars, 50 mm). (B) Histomorphometric quantification
confirmed the increased number of osteoclasts (OcN/BPm, osteoclast number per bone perimeter) in transgenic mice. Bars represent mean 6 SD
(n = 6). Asterisks indicate statistically significant differences. (C) Xray analysis (top, scale bars, 1 mm) and mCT scanning (bottom, scale bars, 2 mm)
demonstrating the presence of osteolytic lesions in 52 weeks old female Col1a1-Krm2 mice. (D) Goldner staining of the tibia showing osteoclasts at
sites of cortical bone erosion (arrowheads), but also inappropriate bone formation in the marrow cavity of 52 weeks old female transgenic mice
(arrows, scale bars, 100 mm). (E) Von Kossa/van Gieson staining reveals that the inappropriate bone formation in 52 weeks old female Col1a1-Krm2
mice is associated with an accumulation of non-mineralized osteoid (stained in red, scale bars, 100 mm).
doi:10.1371/journal.pone.0010309.g008
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of Dmp1, Phex, Pcolce2 and the genes encoding type IX collagen.

This suggests that Krm2 might also exert Dkk1-independent

functions, and that future experiments should aim at the

identification of other signaling pathways that might be affected

by Krm2. In addition, it might be worthwhile to analyze the

expression of Smpd3 and Tnfrsf11b in osteoblasts from Col1a1-

Dkk1 mice. In this regard, it is especially surprising that the

Col1a1-Dkk1 mice do not display increased bone resorption, since

a negative influence of Dkk1 on Opg production has also been

reported by others [56,57].

Regardless of the precise mechanism underlying the effects of

Krm2 on bone remodeling however, we believe that the most

important question is whether the deduced functions of Krm2 are

also physiologically relevant. The potential role of the two known

Krm genes in bone remodeling has recently been addressed

through the analysis of the respective mouse deficiency models

[38]. Not necessarily expected, both mouse models were viable

and fertile and neither displayed obvious abnormalities, nor

premature mortality. The same was the case for mice lacking both

Krm genes, thereby demonstrating that Krm-dependent signalling

Figure 9. Differentially expressed genes in Col1a1-Krm2 transgenic osteoblasts. (A) Affymetrix Gene Chip hybridization demonstrates that
several well-established osteoblast differentiation markers are expressed at similar levels in osteoblasts from wildtype (mean values indicated by the
dotted red line) and transgenic mice, while other genes are expressed at lower levels in the latter ones. Bars represent mean 6 SD (n = 3). Asterisks
indicate statistically significant differences between the relative signal intensities in wildtype and transgenic samples. (B) Affymetrix Gene Chip
hybridization of wildtype osteoblasts following treatment with Dkk1 for 6 hours at day 10 of differentiation (n = 1). Shown are the Affymetrix signal
intensities and the signal log ratios (SLR) for the 25 genes displaying the strongest negative regulation by Dkk1. The mean signal ratios of the Gene
Chip comparison between wildtype and Col1a1-Krm2 transgenic osteoblasts are given on the right.
doi:10.1371/journal.pone.0010309.g009
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pathways are dispensable for most developmental and physiolog-

ical processes. A histomorphometric analysis of bone remodeling,

performed in tibia sections of 12 weeks old Krm1- and Krm2-

deficient mice, revealed no significant difference compared to

wildtype littermates. However, the combined deficiency of both

Krm genes resulted in increased bone formation and osteosclerosis,

thereby suggesting a physiological influence of Krm1 and Krm2

on bone formation with functional redundancy.

Based on our findings obtained in the Col1a1-Krm2 transgenic

mice we have now expanded the analysis of Krm2-deficient mice to

24 weeks of age and observed a marked increase of the trabecular

bone volume compared to wildtype littermates, which is caused by a

more than three-fold increase of bone formation. In contrast to the

results obtained in the transgenic animals however, we did not

observe a difference in osteoclast number, eroded surface or in the

serum concentrations of carboxyterminal collagen crosslinks (data

not shown) between wildtype and Krm2-deficient littermates. It is

possible that these changes would appear with time, since our own

experience, not only with the Col1a1-Krm2 mice, but also with Calca-

or Cckbr-deficient mice for instance, raises the possibility, that severe

bone resorption phenotypes, such as osteolyses, rather develop in

aged mice [58,59]. In this regard it will be interesting to study the

skeletal phenotype of Krm2-deficient mice being older than one year,

and it may be worthwhile to analyze the possibility that these mice

are protected from tumor-induced osteolytic lesions. Another

possibility explaining the absence of a bone resorption phenotype

in 24 weeks old Krm2-deficient mice would be that the regulation of

osteoclastogenesis is compensated by Krm1. To address this

question it will be important to analyze 24 weeks old mice lacking

either Krm1 alone, or both murine Krm genes in future experiments.

Regardless of the outcome from this analysis however, the results

presented in this manuscript provide important and novel in vivo

evidence for a specific role of Krm2 in the regulation of osteoblast

differentiation and activity, at least in mice.

Figure 10. Increased bone formation in Krm2-deficient mice. (A) Von Kossa/van Gieson staining of non-decalcified vertebral body sections
from 24 weeks old female wildtype (Krm2+/+) and Krm2-deficient (Krm22/2) mice (scale bars, 1 mm). (B) Fluorescent micrographs showing a higher
number of calcein-labelled surfaces in Krm2-deficient vertebral bodies (scale bars, 200 mm). (C) Histomorphometric quantification of the trabecular
bone volume and osteoclast surface per bone surface (OcS/BS). (D) Histomorphometric quantification of the osteoblast surface per bone surface
(ObS/BS) and the bone formation rate. (E) Von Kossa/van Gieson staining of non-decalcified tibia sections from 24 weeks old female wildtype and
Krm2-deficient mice (scale bars, 1 mm). (F) Histomorphometric quantification of the trabecular bone volume and the trabecular number. All bars
represent mean 6 SD (n = 6). Asterisks indicate statistically significant differences.
doi:10.1371/journal.pone.0010309.g010
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Materials and Methods

Expression Analysis
RNA from mouse tissues, primary osteoblasts and MC3T3-E1

cells was isolated using the Trizol reagent (Invitrogen) and reverse

transcribed using the Cloned AMV First-Strand cDNA synthesis

kit (Invitrogen). PCR was performed with gene-specific primers for

Dkk1 (59-CCA CAC CTG CCA GAG ACA CTA AAC-39and 59-

GGG GAG TTC CAT CAA GAA ACA AAG-39), Dkk2 (59-CCT

ACT CTT CCA AAG CCA GAC TCC-39and 59-TGA CAA

TCT GAA GGA AAT GCC-39), Dkk3 (59-TAG GCG GAG AGG

AGG AGA TTT AGG-39 and 59-GGT TAC ATT TTG CCA

AGT CCA CG-39), Krm1 (59-AAC GAG ACT TTC CAG CAT

CCG-39and 59-TCC ATC CCA GCA AAC TTG AAT C-39),

Krm2 (59-TGG GTT CCT ACA GAA GTT ATG CG-39and 59-

CGT CCA AGG CAC CAT CTC TTT G-39), Rspo1 (59-ACC

TGG ATA CTT TGA TGC CCG-39and 59-CGC TCA TTT

CAC ATT GTG CAG9), Rspo2 (59-GAA GTT GGT CAT TGG

AGC GAA-39and 59-TGC CTT TGG TGT TCT CTT TCC

T9), Rspo3 (59-AAA GTG CCT TGA CAG TTG CGC-39 and 59-

TCC TCG CTC TCC CTT TGA ACA C-3)and Gapdh (59-GAC

ATC AAG AAG GTG GTG AAG CAG-39 and 59-CTC CTG

TTA TTA TGG GGG TCT GG-39), and the identity of amplified

fragments was verified by automatic sequencing. Northern Blot

analysis was carried out according to standard protocols [60]. For

the genome-wide expression analysis, RNA was subjected to

hybridization of Affymetrix Gene Chips (MG 430 2.0) according

to the manufacturer’s protocol. Absolute and comparison analyses

were performed with Affymetrix MAS algorithm using default

parameters. Quantitative RT-PCR analysis was performed using a

StepOnePlus system, predesigned TaqMan gene expression

assays, and TaqMan gene expression mastermix (Applied

Biosystems). Gapdh and B2m expression was used as internal

controls. Relative quantification was performed according to the

DDCT method, and results were expressed in the linear form using

the formula 22DDCT.

Human Bone Biopsies
A collection of biopsies from healthy individuals and from

patients with various bone disorders has been established at the

Hamburg University over the last decades [61]. Immunohisto-

chemistry was performed on decalcified sections from skeletal-

intact donors using a polyclonal antibody against human KRM2

(Sigma, #HPA003223) following standard protocols.

DNA Transfection
The three different Wnt expression plasmids were kindly

provided by Dr. J. Kitajewski (New York, USA), the Krm2

expression plasmid has been described previously [34], and the

Dkk1 expression plasmid was constructed by placing the full-length

cDNA into the vector pCMV-Tag4 (Stratagene). In all exper-

iments the Wnt-responsive reporter plasmid TOPflash (Upstate,

#21-170) was co-transfected with a CMV-driven ß-Galactosidase

reporter plasmid (kindly provided by Dr. P. Ducy, New York,

USA) to normalize for transfection efficiency. DNA-cotransfection

was performed in MC3T3-E1 cells (ATCC, #CRL-2593) using

calcium phosphate transfection, and the activities of Luciferase

and ß-Galactosidase were measured two days later as described

[62].

Mice
For the generation of Col1a1-Krm2 transgenic mice the ORF

encoding Krm2 was placed under the control of an osteoblast-

specific 2.3kb Col1a1 promoter fragment (kindly provided by Dr.

B. de Crombrugghe, Houston, USA). Pronucleus injection into

fertilized oocytes was performed according to standard protocols.

Genotyping of the offspring was performed by Southern Blotting

following digestion with Kpn I using the 39-UTR of the hGH gene

as a probe, or by PCR using primers located within the ß-globin

intron and the Krm2 cDNA. To determine the transgene copy

number genomic DNA was digested with Kpn I and probed with a

Kpn I-fragment of the Krm2 cDNA, which detected a transgenic

fragment of 888 bp and an endogenous fragment of 3.5 kb.

Transgene expression was monitored by RT-PCR using primers

within the Krm2 cDNA and the 39-UTR of the hGH gene. The

generation of Krm2-deficient mice has been described previously

[38]. All animal experiments were approved by the animal facility

of the University Medical Center Hamburg-Eppendorf and by the

‘‘Amt für Gesundheit und Verbraucherschutz’’ (35/04, Org139).

Skeletal Analysis
Before their skeletal analysis all mice received two injections of

calcein (9 and 2 days before sacrifice). After their initial analysis by

contact Xray (Faxitron Xray Corp.), the vertebral bodies L2 to L5

and one tibia from each animal were dehydrated and embedded

non-decalcified into methylmetacrylate for sectioning. Sections

were either stained with toluidine blue, by the von Kossa/van

Gieson procedure, or by Goldner staining as described [58]. mCT

scanning was performed with vertebral bodies L6 and with femora

using a mCT 40 device (Scanco Medical, Switzerland). Biome-

chanical stability was assessed by microcompression testing for

vertebral bodies and by three-point bending assays for femora

using a Z2.5/TN1S-device (Zwick) [59]. Staining of skeletons from

newborn mice with alcian blue and alizarin red was performed as

described [60].

Quantification of Bone Remodeling
Static and cellular histomorphometry was carried out on

toluidine blue-stained sections using the OsteoMeasure system

(Osteometrics, Decatur, USA) following the guidelines of the

American Society of Bone and Mineral Research [63]. Dynamic

histomorphometry for determination of the bone formation rate

was performed on two consecutive non-stained 12mm-sections.

TRAP activity staining was performed on decalcified sections

using napthol AS-MX phosphate (Sigma, #N-5000) and Fast Red

Violet LB salt (Sigma, #F-3881) in 40 mM acetate buffer (pH5).

Serum levels of Osteocalcin and Opg were determined by RIA

(Immutopics, #50-1300) and ELISA (R&D Systems, #MOP00),

respectively. Serum alkaline phosphatase activities were measured

using p-nitrophenylphosphate as a substrate (Pointe Scientific,

#A7516).

Cell culture
Primary osteoblasts were isolated from the calvariae of 5 days

old mice and differentiated ex vivo by the addition of ascorbic acid

(50 mg/ml) and ß-glycerophosphate (10 mM). BrdU incorporation

assays were performed at day 2 of differentiation using the Cell

Proliferation Biotrak ELISA (GE Healthcare, #RON250), while

extracellular matrix mineralization was assessed at day 10 of

differentiation using von Kossa-staining [60]. To demonstrate

impaired Wnt signaling serum-starved cells were treated for

30 minutes with 100 ng/ml recombinant Wnt3a (R&D systems,

#1224-WN-002), and whole cell lysates were subsequently used

for Western Blotting using antibodies against phospho-Lrp6 (Cell

Signaling, #2568), phospho-ß-catenin (Cell Signaling, #9561),

total ß-catenin (Santa Cruz, #E2808), Opg (R&D Systems,

#AF459) and ß-actin (Sigma, #A2228). To identify Dkk1-

regulated genes, primary osteoblasts were serum-starved over
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night and treated with 250 ng/ml recombinant Dkk1 (R&D

Systems, #5897-DK-1010) for 6 hours before the RNA was

isolated as described above.

Statistical Analysis
Results are presented as means 6 standard deviations.

Statistical analysis was performed using unpaired, two-tailed

Student’s t test, and p-values below 0.05 were considered

statistically significant.
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