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Abstract

Background: Estimating the historical and demographic parameters that characterize modern human populations is a
fundamental part of reconstructing the recent history of our species. In addition, the development of a model of human
evolution that can best explain neutral genetic diversity is required to identify confidently regions of the human genome
that have been targeted by natural selection.

Methodology/Principal Findings: We have resequenced 20 independent noncoding autosomal regions dispersed
throughout the genome in 213 individuals from different continental populations, corresponding to a total of ,6 Mb of
diploid resequencing data. We used these data to explore and co-estimate an extensive range of historical and
demographic parameters with a statistical framework that combines the evaluation of multiple models of human evolution
via a best-fit approach, followed by an Approximate Bayesian Computation (ABC) analysis. From a methodological
standpoint, evaluating the accuracy of the parameter co-estimation allowed us to identify the most accurate set of statistics
to be used for the estimation of each of the different historical and demographic parameters characterizing recent human
evolution.

Conclusions/Significance: Our results support a model in which modern humans left Africa through a single major dispersal
event occurring ,60,000 years ago, corresponding to a drastic reduction of ,5 times the effective population size of the
ancestral African population of ,13,800 individuals. Subsequently, the ancestors of modern Europeans and East Asians
diverged much later, ,22,500 years ago, from the population of ancestral migrants. This late diversification of Eurasians
after the African exodus points to the occurrence of a long maturation phase in which the ancestral Eurasian population was
not yet diversified.
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Introduction

The evolution, origins and geographic dispersals of modern

humans remain among the most hotly debated issues in many

disciplines, including paleoanthropology, archeology, linguistics

and genetics. Roughly 100,000 years ago, the Old World was

occupied by a morphologically diverse group of hominids: Homo

sapiens in Africa and possibly the Middle East, Neanderthals in

Europe and Homo erectus in Asia. However, by 25,000 years ago

humans were present everywhere in the anatomically and

behaviorally modern form. For the moment, the majority of

anatomical, archaeological and genetic evidence support the view

that modern humans are a recent species that originated in Africa

and that subsequently replaced (mostly) existing hominid species in

Europe and Asia [1–8]. Estimating the historical and demographic

parameters that characterize modern human populations is a

fundamental part of reconstructing human evolution [2–4].

Because past demographic events, such as changes in population

sizes, geographic range expansions, and varying levels of gene

flow, have produced specific patterns of genetic diversity, the study

of genetic variation in present-day human populations allows

inference of the general demographic models best explaining

neutral genetic variability [9]. Furthermore, evaluation of these

demographic scenarios is needed to disentangle the mimicking

effects of population demography and natural selection on genome

diversity [10–14]. In this context, the assessment of an appropriate

neutral model of human evolution is required to identify

confidently regions of the human genome that have been targeted

by natural selection. This can in turn provide insights into human

adaptive history, the mechanisms of evolutionary change, and
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potentially the identification of complex disease genes [9].

Understanding population variability under neutral conditions

has therefore important implications in searching for genetic

variants that might contribute to disease susceptibility [3,13–15].

Efforts to reconstruct human origins and migration patterns

have often focused on phylogeographic studies of the paternally

inherited Y-chromosome and the maternally inherited mitochon-

drial DNA [16–18]. These studies have helped (i) clarifying the

rough picture of human evolution (i.e., African origin of modern

humans) [16,19–23], (ii) unraveling the way modern humans

spread around the world [17,18], and (iii) unmasking sex-specific

differences in migration rates and cultural practices [24–29].

However, due to the inherent properties of these two markers (e.g.,

single locus, low effective population size, uniparentally inherited),

they provide a relatively partial model of human evolution.

Multilocus autosomal studies based on single nucleotide polymor-

phisms (SNPs) [9,30–32], short tandem repeats [33–37] or

resequencing data [10,38–44] have also provided new insights

into recent human evolution. The advantage of resequencing

studies, with respect to SNP data, is that they are free of

ascertainment bias, allowing exploration of all aspects of genetic

variation (e.g., low-frequency variants), and can be used in the

context of statistical frameworks that make efficient use of most

information contained in the data. Some of these resequencing

studies have focused on gene regions and provided new insights

into the effects of natural selection and human demography on

genome diversity [10,41,42].

Few studies, however, have focused on resequencing regions of

the genome specifically designed for demographic inference;

segments that neither contain nor are tightly linked to coding

regions [38,40,43,44]. For example, one of these studies made use

of the approximate likelihood approach for parameter estimation,

based on summary statistics computed from 118 kb of sequence

per individual from 45 individuals belonging to three different

populations [40]. Another study used a Bayesian setting to analyze

sequence diversity at 25 kb per individual in 30 individuals of

African, Asian, and Native American origins [38]. Both studies

estimated a number of demographic and historical parameters of

recent human evolution. Because of the importance of jointly

considering multiple parameters for reliable estimations [40,45],

we performed joint estimations (co-estimations) of all key historical

and demographic parameters. For example, inter-continental

migration, even if weak, has probably occurred, and neglecting

this parameter in demographic inference may bias the estimation

of other parameters (e.g. migration can diminish the signal of a

bottleneck, see discussion of this point in the Results section).

Here we co-estimate multiple historical and demographic

parameters of recent human evolution to provide an evolutionary

model best explaining neutral genetic variability. We resequenced

20 independent noncoding autosomal regions dispersed through-

out the genome, accounting for a total of 27 kb per individual, in a

large population panel of 213 individuals from different continen-

tal populations, which may help to obtain a more general picture

of human demographic history. To analyze this resequencing

dataset (,6 Mb of diploid noncoding resequencing data), we

adopted an Bayesian setting, which is a convenient way to jointly

estimate several parameters and therefore deal with the potential

problem of inter-dependence among parameters [45]. We thus

analyzed our data with simulation-based approaches [38,46–49],

which allowed us to jointly estimate multiple fundamental

parameters of human evolution in a suitable computational time.

Co-estimated parameters included historical parameters such as

the time of both the out-of-Africa exodus and the split of the

ancestral Eurasian population into current Europeans and East-

Asians, as well as demographic parameters such as the effective

population size of humans before the out-of-Africa exodus and of

Eurasians after the bottleneck, the intensity of such a bottleneck,

the onset and range of the African expansion(s), the effective

population sizes of continental populations as well as the migration

rates among them. All these co-estimations were jointly performed

according to the most parsimonious set of historical and

demographic assumptions in the best-fit model. In addition, we

used a statistical framework that allowed us to formally test the

accuracy of the parameter estimation and, most importantly, the

sensitivity of these estimations to (i) the prior distribution of the

estimated parameters, and (ii) the choice of the model of modern

human dispersals out of Africa.

Results

Summary Statistics of Within- and Inter-Population
Sequence Variation

We resequenced 20 independent, noncoding, autosomal regions

in 213 individuals belonging to different continental groups,

including 118 sub-Saharan African agriculturalists, 47 Europeans

and 48 East-Asians individuals. The total length of sequence

surveyed was ,27 kb of diploid sequence per individual, with a

mean length of ,1.3 kb per genomic region (Table S1). The levels

of nucleotide diversity observed are in good agreement with

previous studies based on multi-locus re-sequencing [40] (Table 1),

with average values of nucleotide diversity, p, of 1.261023 per

nucleotide, with a between-region standard deviation of

0.6361023. The number of haplotypes and the levels of nucleotide

diversity were the highest in the African sample, an observation

that is expected under the out-of-Africa model (Table 1).

Table 1. Summary statistics for the 20 unlinked, noncoding autosomal regions.

Population K S p D Fs F* H

Sub-Saharan Africans 15.15*** (5.04) 14.2*** (5.35) 1.261023 (0.661023) 20.85*** (0.63*) 25.75*** (3.94) 21.75 (1.3) 20.25 (0.76)

Europeans 6.1 (1.59**) 6.7 (2.52**) 1.061023 (0.761023) 0.1 (1.14) 0.25 (2.4) 20.07 (1.26) 20.24 (0.83)

East-Asians 5.3 (1.59**) 5.75 (2.61**) 0.961023 (0.661023) 0.1 (1.08) 0.24 (2.47) 0.06 (1.25) 20.66** (1.19)

NOTE.– K denotes the number of haplotypes, S denotes the number of polymorphic sites, p denotes the nucleotide diversity, D denotes the Tajima’s D statistics, Fs
denotes the Fu’s Fs statistics, F* denotes the Fu and Li’s F* statistics, and H denotes the Fay and Wu’s H statistics. The summary statistics were averaged over the 20
unlinked autosomal regions and the standard deviations are given in parentheses. Significant deviations (Material and Methods) from a model with constant population
size are indicated in bold when values are significantly increased, and underlined when values are significantly reduced.
*P,0.05, **P,0.01 and ***P,0.001, using the most conservative P-value (the highest P-value) among the several recombination rates used in the simulations (Materials
and Methods, Table S2).

doi:10.1371/journal.pone.0010284.t001
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To test for deviation from the ‘‘null model’’ (i.e., a model

involving a constant-sized population), we computed a number of

statistics summarizing several aspects of the data. First, we

computed the minor allele frequency (MAF) spectrum and the

derived allele frequency (DAF) spectrum (Figure 1). In the sub-

Saharan African sample, both the MAF and the DAF spectra

showed a highly significant increase in the proportion of

singletons with respect to the proportion expected under a

constant population size model (x2 P = 361028 and x2

P = 961025, respectively). In addition, eight of the twenty

genomic regions studied showed significantly negative values of

Tajima’s D or Fu and Li’s F* (Figure 2A), leading to a

significantly negative mean of Tajima’s D value across the 20

regions. The mean of Fu’s Fs across the twenty regions was also

negative and highly significant (Tables 1 and S2). In addition, six

regions exhibited a significant increase in the number of

haplotypes (Figure 2D), and when averaging the values across

regions, both a significant increase in the number of haplotypes

and polymorphic sites were observed, with respect to expectations

under a model of constant-population size (see Materials and

Methods, and Tables 1 and S2). Altogether, these patterns

strongly support the occurrence of at least one phase of

population expansion among sub-Saharan Africans. With respect

to Eurasian samples, we observed an excess of derived allele

frequencies that reached fixation in European and East-Asian

samples (x2 P = 461023 and x2 P = 261023, respectively)

(Figure 1B). These results support the hypothesis that European

and East-Asian populations may have experienced one or several

bottlenecks. Although most sequence-based neutrality statistics

did not significantly deviate from neutral expectations (except for

the negative value of Fay and Wu’s H in East-Asians and a few

single statistics when analyzing the genomic regions separately,

see Tables 1 and S2, Figures 2B, C, E and F), the between-region

standard deviations of the number of haplotypes and polymor-

phic sites were significantly reduced (Tables 1 and S2). These

features are also expected after a bottleneck (Figure S1).

With respect to inter-population diversity, our multi-ethnic

panel showed levels of population differentiation similar to those

previously observed [50], with a significant global FST (merging all

samples) averaged over the 20 genomic regions equal to 0.12.

Pairwise FST among the five sub-Saharan African populations

were not significantly different from 0, and pairwise FST between

Figure 1. Minor allele and derived allele frequency spectra. (A) Minor allele frequency (MAF) and (B) derived allele frequency (DAF) spectra
computed by merging the 20 non coding autosomal DNA sequences. The expected MAF and DAF spectra (grey bars) were obtained assuming
constant population sizes (Material and Methods). To focus on low frequency bins, the MAF spectrum display values lower than 35 counts in each
continental population. To show the derived alleles that are fixed in each continental population, we arbitrarily removed intermediate bins in the DAF
spectrum.
doi:10.1371/journal.pone.0010284.g001
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Danes and Chuvash and between Han Chinese and Japanese were

weak (FST = 0.01 and FST = 0.03, respectively) (Table S3).

Best-Fit of Human Demography
To identify a relevant historical and demographic model

characterizing modern human populations, we first sought to

reduce the space of models and parameters to explore by using a

model-fitting approach, and then co-estimate parameters within

the best-fit model using an Approximate Bayesian Computation

(ABC) framework. We divided the first step (i.e. the definition of a

general best-fit model of modern human history) into two parts: we

first tested different models defined by fluctuating levels of

structure and gene flow in the ancestral population, prior to the

appearance of modern humans. We then tested different models

defined by fluctuations of the effective size of each continental

population of modern humans. For all the best-fit procedure, we

simulated each alternative scenario 105 times and compared the

simulated statistics to the observed statistics computed from our

empirical dataset (20 re-sequenced regions). All parameters used to

simulate the different scenarios were randomly drawn from

distributions presented in Table S4.

First, we determined the evolutionary scenario that took place in

the ancestral lineage that culminated in the emergence of modern

humans (for a complete list of parameter symbols used along the

manuscript, see Tables 2 and S4). We tested different evolutionary

models [2,5,19,22,51–56] that allow different levels of introgres-

sion of archaic hominids to modern human populations. We

assumed an early diffusion of archaic hominids (Homo erectus) out of

Africa ,1.25 and ,2.25 million years ago [57], various ancestral

migration rate intensities (m0, ancestral migration rate is the

proportion of migrants before the Out-of-Africa exodus) and an

African exodus of modern humans between ,40,000–100,000

years ago [38]. By tuning the replacement rate d, we then

simulated scenarios that consider different levels of replacement of

archaic hominids by modern humans (i.e. different levels of

introgression of archaic material into the modern gene pool),

including the most extreme cases of complete (d = 1) and no

replacement (d = 0) as well as several scenarios with varying

Figure 2. Sequenced-based summary statistics in Africans, Europeans and East-Asians. Biplots of Tajima’s D and Fu and Li’s F* computed
for each genomic region separately, in Africans (A), Europeans (B) and East-Asians (C). Significant Tajima’s D values (P,0.05) are indicated in blue, in
green for Fu and Li’s F* only, and in red for both. Biplots of the number of haplotypes (K) and polymorphisms (S) computed for each genomic region
separately in Africans (D), Europeans (E) and East-Asians (F). Significant K values (P,0.05) are indicated in blue, in green for S, and in red for both. The
grey dots indicate the expected values of each genomic region simulated assuming a constant population size model (simulation procedure and
significance of each region are described in the Materials and Methods section).
doi:10.1371/journal.pone.0010284.g002
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intermediate levels of replacement (Figures 3A and S2, Table S4).

The summary statistics were calculated by merging all population

samples (except for global FST) in order to minimize the effects of

recent demographic events related to the continental populations.

We thus considered in all models a constant size for the three

modern human populations. The model with residual ancestral

migration rate (m0,10210) and full replacement (d = 1) clearly

better fitted our data than any other model (Figure 3A, highest y1,

the y1 of this model is significantly higher after correction for

multiple testing when compared with the other y1 values,

P,0.01). However, we could not discern between a complete

(d = 1) and an almost-complete (d$0.99) replacement of archaic

hominids (difference between y1 is not significant for this pairwise

comparison), indicating that a small contribution of archaic

humans to our present-day genome cannot be completely ruled

out [58–61].

We tested the extent to which the choice of this evolutionary

model is robust to potential differences among models tested (e. g.

different numbers of parameters, etc.) and to the high variability of

datasets that can be generated by a given evolutionary scenario. To

this effect, we simulated 100 pseudodatasets under the best-fit model

(highest yj obtained using our actual empirical dataset) and the

other alternative models. We first performed pairwise comparisons

between the best-fit model (residual ancestral migration and nearly

full replacement, d$0.99) and the minor replacement (d#0.5)

models (Figure 3A). Independently of the values of replacement rate

(d) and ancestral migration rate (m0) considered, we found that our

approach identifies the ‘‘correct’’ model in more than 98% of the

cases (out of the 200 pseudodatasets simulated for each pairwise

comparison, see Materials and Methods for a full explanation). We

next compared this best-fit model (residual ancestral migration and

nearly full replacement, d$0.99) with other models involving major

Table 2. Prior distributions of the parameters for the best-fit (RAOEB) model.

Parameters mean min Max Shapea

Exit of archaic humans from Africa TE
b 1.96106 1.26106 2.56106 ,U

Modern humans African expansion

Onset of African expansion tA
b 17750 5000 50000 ,Uc

Rate of African expansion aA
d 0.009 0.002 0.02 ,Uc

Ancestral African effective population size N’e 10000 500 40000 ,G

African effective population size NA
e 3.36107 1500 109 ND

Non African bottleneck

Exit of modern humans from Africa TOoA
b 66260 45020 87500 ,U

Population size after out-of-Africa exodus NOoA
e 850 51 24000 ND

Intensity of out-of-Africa bottleneck bOoA
f 15 1 30 ,U

Onset of Neolithic expansion in Europe tE
b 8750 5000 12500 ,U

Rate of Neolithic expansion in Europe aE
d 0.00255 0.0001 0.005 ,U

European effective population size NE
e 5000 50 150000 ND

Onset of Neolithic expansion in East-Asia tEA
b 8750 5000 12500 ,U

Rate of Neolithic expansion in East-Asia aEA
d 0.00255 0.0001 0.005 ,U

East-Asian effective population size NEA
e 5000 50 150000 ND

Migration among populations

Modern human migration rate between continents mg 261024 1026 461023 ND

Ancestral migration rate m0
g 1.7610210 10211 461029 ND

Non-African historical parameters

Replacement rate dh 0.995 0.99 1 ,U

Time of European/East-Asian split TE-EA
b 25010 12520 37500 ,U

DNA features

Mutation rate m i 2.561028 1.361028 561028 ,G

Recombination rate rj 1028 0.161028 1.561028 ,G

a,U and ,G denote Uniformly and Gamma distribution shapes. ND (for not drawn) indicates composite parameters resulting from the combination of other
parameters (e.g. the Sub-Saharan African population size results from the combination of N’, tA and aA);

bTimes T and onsets t are expressed in number of years (generation times of 25 years);
cPrior distributions of the onset and the rate of African expansion were set to prior uniform distributions (unrealistic outcomes of sub-Saharan African populations, i.e.
larger than 1 billion of individuals were eliminated);

dThe rates of expansion a are the per generation increase of population sizes expressed in percent of individuals (i.e. aA = 0.01 means the population exponentially
increased by 1% of the individuals per year);

eEffective population sizes N are given in numbers of individuals;
fThe intensity of the out-of-Africa bottleneck is the ratio between population sizes before and after the out-of-Africa exodus;
gancestral and modern migration rates are the proportion of migrants before and after the Out-of-Africa exodus;
hThe replacement rate gives the proportion of current gene lineages brought by modern humans during the out-of-Africa exodus;
iThe mutation rate is expressed in per generation per site; and
jthe recombination rate is expressed in per generation per pair of adjacent bases.
NOTE: Underlined parameters were estimated following the ABC procedure.
doi:10.1371/journal.pone.0010284.t002
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replacement (d$0.5, Figure 3A), and we found that, independently

of the values of ancestral migration rate (m0), our approach still

identifies the ‘‘correct’’ model in more than 95% of cases (200

simulated pseudodatasets for each pairwise comparisons). The only

exception found concerns the comparison between the best-fit

model (d$0.99) and the model with residual ancestral migration

and a strong replacement (d$0.9, Figure 3A). In this case, we

obtained 65% of correct model assignation over the 200

pseudodatasets used, confirming the difficulty in discriminating

between values of d that reflect high levels of replacement of archaic

humans in Eurasia.

We next refined this best-fit model (i.e. m0,10210, d$0.99) by

testing for the demographic history of each continental group

(Figures 3B–C). Specifically, we investigated the local demograph-

ic history (population growth, bottleneck events), by using a set of

summary statistics averaged over the 20 genomic regions, for the

three continental groups separately (Table 1). We simulated a

scenario that included various demographic events (i.e. African

expansion and non-African bottleneck models, Table S4), that

may have generated the significant deviations from the constant-

sized model observed in the summary statistics (Table 1). With

respect to African populations, we tested for the occurrence of

varying onsets (tA) and intensities (aA) of population expansion

including the constant size model (aA = 0) (Figure 3B). Models

involving an expansion at 25,000–50,000 years were those best

supported by the data (Figure 3B, highest y1, the only significant

Figure 3. Model and parameter best-fitted estimations. (A) Simulations considering different levels of replacement of archaic hominids by
modern humans. We performed 8 sets of 105 simulations: one set for a replacement rate d = 0, one for d = 1, 3 sets for 0#d#0.01, 0#d#0.1 and
0#d#0.5, and 3 sets for d$0.5, d$0.9 and d$0.99. For each of the 8 sets, we considered three models of ancestral migration (represented by black
arrows): a residual ancestral migration rate (m0,10210), an ancestral migration rate with the same range (1026 to 461023) as m the current migration
rate (represented by gray arrows), and an ancestral migration twice higher than m. Among the 24 models tested, the model assuming a complete
replacement rate of archaic hominids (d= 1) and a residual ancestral migration (m0,10210) exhibited the significantly highest y1 except when
compared with the model assuming an almost complete replacement rate of archaic hominids (d$0.99). This best-fitted range of parameters (d$0.99
and m0,10210), indicated by the yellow/orange/white area (A), was therefore used to simulate the African expansion (B) and the non African
bottleneck (C). We performed three sets of 105 simulations for the onset tA: 0#tA#25 Kyears, 25#tA#50 Kyears and 50#tA#75 Kyears. For each of
the three sets, we considered 5 models of growth rate aA parameters; aA = 0, 0#aA#0.005, 0.005#aA#0.01, 0.01#aA#0.015 and 0.015#aA#0.02.
Among the 15 models tested, the best-fitted ranges of parameters (y1 significantly higher than y1 of the constant size model aA = 0, P,0.01) are
indicated by the yellow/orange/white area (B). Likewise, we performed 5 sets of 105 simulations assuming bottlenecks intensities bOoA, starting at the
time of the out-of-Africa exodus (TOoA) and ending at the independent Neolithic expansions in Europe and east-Asia: bOoA = 1, 1#bOoA#2,
2#bOoA#20, 20#bOoA#40 and 40#bOoA#60. The best-fitted range of parameter (y1 significant higher than y1 of the constant size model bOoA = 1,
P,0.01), indicated by the yellow/orange/white area (C), was obtained with the set of priors 2#bOoA#20. The distributions used are specified in Table
S4.
doi:10.1371/journal.pone.0010284.g003
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comparison after correction for multiple testing when all values of

y1 are compared with the y1 of the constant size model, P,0.01).

This result confirms the classical neutrality tests, which already

supported population growth in Africa by rejecting the constant

size model (e.g. significantly negative Tajima’s D in Figure 2A,

Tables 1 and S2). With respect to non-African populations, we

tested for the occurrence of bottlenecks of varying intensities

(bOoA, being the ratio between the population sizes before and

after the bottleneck event), including the constant size model

(bOoA = 1) (Figure 3C). The model that best fitted our data involves

a substantial bottleneck among non-Africans (Figure 3C,

2#bOoA#20 giving the highest y1 and the only significant

comparison after correction for multiple testing when all values of

y1 are compared with the y1 of the constant size model, P,0.01),

rejecting significantly a constant population size model for these

populations. Taken together, this best-fitted model (Figure 4A) is

consistent with the family of proposed out-of-Africa models

[9,35,38] and supports the occurrence of population growth

among sub-Saharan Africans and a bottleneck among non-

Africans [39,40]. In what follows, we will refer to this model as

to the ‘‘RAOEB’’ model (i.e. Recent African Origin with

Expansion and Bottleneck’’).

By comparing this best-fitted continental demographic scenario

with other alternative models with varying parameters of the

African expansion (Figure 3B) and the non-African bottleneck

(Figure 3C), we found that our approach identifies the ‘‘correct’’

Figure 4. Models of recent African origin involving different dispersal scenarios. (A) General RAOEB model best fitting the data, with
parameter ranges given in Table 2. This model assumes a single out-of-Africa dispersal followed by the European and East-Asian split. (B) RAOEB
model involving two independent, concomitant dispersals out of Africa, each giving rise to Europeans and East-Asians. (C) RAOEB model involving
two independent dispersals out of Africa occurring at different times, the earlier giving rise to Europeans. (D) RAOEB model involving two
independent dispersals out of Africa occurring at different times, the earlier giving rise to East Asians. For models B–D, the ranges of parameters are
the same as those given in Table 2. The alternative dispersal model B (two independent dispersals at the same time) was performed using a split of
the two non Africans populations concomitant with the time of out-of-Africa exodus (TOoA) simulated with the same prior reported in Table 2. The
two alternative dispersal models C and D (two independent dispersals at different times) were simulated using times for the first out-of-Africa exodus
drawn from the first half of the prior distribution of TOoA (Table 2), while times for the second out-of-Africa exodus were drawn from the second half
of the prior distribution of TOoA. (E) Posterior probability estimated for the 4 possible dispersal models represented in A, B, C, and D.
doi:10.1371/journal.pone.0010284.g004
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model in (i) more than 90% of the cases between the best-fitted

African expansion and other expansion alternatives (200 simulated

pseudodatasets for each pairwise comparison), and (ii) more than

99% of the cases between the best-fitted non-African bottleneck

and other bottleneck alternatives (200 simulated pseudodatasets

for each pairwise comparison).

Co-Estimating Historical and Demographic Parameters
under the RAOEB Model

The parameters ranges obtained using the best-fit approach (1st

step, Figure 3B–C) were obtained under non-optimal conditions,

that is, considering independently the African expansion and the

non-African bottleneck. Indeed, the co-estimation of the different

demographic parameters is necessary to provide consistent

estimations. For example, different rates of migration (i.e., gene

flow) can mimic different degrees of population expansion (Figure

S3), and this can affect the accuracy of the estimations (e.g.

underestimation of the intensity of a bottleneck). Furthermore,

little is known about the historical degree of inter-continental

migration, for example, highlighting the need of methods able to

estimate jointly all parameters (e.g. migration, bottleneck,

expansion) because they are evolutionarily inter-dependent. We

therefore co-estimated the historical and demographic parameters

by using the ABC statistical framework (2nd step) [45–47,49]. Note

that the 1st step approach (definition of a best-fit model) allowed us

to avoid the exploration of a wide range of unlikely parameter

values in the 2nd step approach (ABC co-estimation). Specifically,

we considered residual ancestral migration (i.e. m0,10210) and

an almost-complete replacement of archaic hominids by excluding

values of the replacement rate (d) lower than 0.99. With respect to

African populations, we excluded expansion rates values near to

the constant size assumption (aA,0.002) since both classical

neutrality tests (Table 1) and the best-fit approach (1st step)

confirmed that African populations have experienced an expan-

sion. We also excluded values of rates (aA) and onsets (tA) of the

African expansion found to be unrealistic, i. e. aA higher than 0.02

and tA older than 50,000. With respect to non-African

populations, we excluded bottlenecks intensities (bOoA) higher

than 30. In order to be cautious, the prior distributions used in the

ABC estimation were slightly enlarged with respect to those

obtained in the best-fit approach (i.e. calibrated under non-

optimal conditions). Furthermore, we tested the influence of the

calibrated prior distributions (Table 2) on ABC estimations by

further extending them, mainly for parameters such as the onset

and rate of African expansion, the ancestral African effective

population size and the time of the out-of-Africa exodus (see

below, section entitled ‘‘Investigating the accuracy of parameter

co-estimation’’).

We performed 106 simulations of the 20 genomic regions, using

first the prior distributions given in Table 2, to estimate (i)

historical parameters such as the time of the out-of-Africa exodus,

TOoA, the replacement rate, d, and the time of the subsequent

European/East-Asian split, TE-EA, and (ii) demographic parame-

ters such as the effective population size of humans before the out-

of-Africa exodus, N’, the effective population size of Eurasians

after the out-of-Africa exodus, NOoA, the effective population sizes

of Africans (NA), Europeans (NE), and East-Asians (NEA), the

onset, tA, and the rate, aA, of the African expansion, the intensity

of the out-of-Africa bottleneck, bOoA, and the migration rate

among continental groups, m (Table 2). The co-estimations of all

these parameters are shown in Table 3 and the corresponding

posterior distributions in Figure 5. Our estimations (95% Bayesian

confidence interval [CI] given in Table 3) indicated that modern

human populations left Africa between 47,500 and 85,000 years

ago, more probably 60,000 years ago. The exodus from an

ancestral African population of ,13,800 individuals left a

signature in the genome of Eurasians equivalent to an exit out-

of-Africa of 2,100 to 3,800 individuals. This bottleneck corre-

sponds to a reduction of 2.6 to 8.8 times the effective population

size, more probably 5.1. Following the early colonization of

Eurasia, the ancestors of modern Europeans and East-Asians

diverged from the population of ancestral migrants ,22,500 years

ago (95% CI 17,500–35,000 years ago), leading to effective

population sizes estimated at ,31,200 and ,14,500 individuals in

Europe and East Asia, respectively. Concomitantly, African

populations experienced an expansion that left a signature in

their current genome compatible with an exponential demograph-

ic growth starting ,27,500 years ago (95% CI 20,000 to 40,000

years ago) with a rate of 0.007 (95% CI 0.002 to 0.016) individuals

per generation. In addition, inter-continental symmetric migra-

tions occurred for an estimated 1.361025 (95% CI 3.561026 to

2.661025) individuals per generation.

Investigating the Accuracy of Parameter Co-estimation
We next investigated the degree of accuracy of ABC parameter

estimations. To this end, we simulated 100 pseudodatasets under

the favored RAOEB model. For each of them, we re-estimated the

underlying parameters using the same ABC procedure used for

our empirical dataset. This approach allows comparison of

parameter estimates with the known parameter values and

provides several indexes of estimation accuracy (i.e. the bias, B,

the standard error, SE, the root of mean square error, RMSE, and

the percent of known values falling within the range of the 95% CI

of the estimation, CIhits, see Material and Methods for details). We

calculated these accuracy indexes for different sets of summary

statistics (Table S5). Among these different sets of summary

Table 3. Historical and demographic parameters estimated
under the favored RAOEB model.

Estimationa Accuracy tests

Estimate 95% CI b Bc SEd RMSEe CIhits
f

tA 27500 20000–40000 0.03 0.42 0.42 0.96

aA 0.007 0.002–0.016 0.34 0.49 0.59 0.96

N’ 13800 9000–19800 20.04 0.31 0.31 0.96

NA 2.36107 66105–1.96109 22.8 7.7 8.2 0.98

TOoA 60000 47500–85000 20.01 0.17 0.17 0.98

NOoA 2800 2100–3800 0.00 0.20 0.20 0.98

bOoA 5.1 2.6–8.8 20.14 0.40 0.42 0.97

NE 31200 19600–52100 20.06 0.38 0.39 0.98

NEA 14500 7100–37900 20.05 0.56 0.57 0.96

m 1.361025 3.561026–2.661025 20.05 0.31 0.32 0.97

d 0.9949 0.9900–0.9997 21 1025 0.027 0.027 0.98

TE-EA 22500 17500–35000 0.00 0.24 0.24 0.97

aFor each parameter estimate, we report the values obtained using the set of
summary statistics (Table S10) giving the best accuracy (parameters in bold in
Table S5);

b95% Bayesian confidence interval estimated from posterior distributions;
cB is the average relative bias (standardized by the known parameter value);
dSE is the relative standard error (standardized by the known parameter value);
eRMSE is the relative root of mean square error (standardized by the known
parameter value);

fCIhits is the percent of known values falling within the range of the 95% CI of
the estimation.

doi:10.1371/journal.pone.0010284.t003
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statistics, we selected for each parameter (Table 3) the set giving

the best accuracy, i. e. lowest RMSE, (values in bold in Table S5,

all parameter estimations using the different sets of statistics in

Table S6). Generally, the average relative biases of parameter

estimations were small (,5% of the known parameter value, with

RMSE close to SE, which is a property of unbiased estimators)

(Table 3). The relative standard errors were lower than 1 and

generally close to 0.5 (SE,0.5 means ,80% of the estimated

values have a relative bias ,50% of the known value). A marked

exception to the generally good accuracy of our parameter

estimations was the sub-Saharan African effective population size,

NA, which exhibited higher values of B, SE, and RMSE (Table 3).

It is also worth mentioning that the replacement rate parameter, d,

showed low RMSE, which could attest to a good estimation of this

parameter. However, the range of variation of d (prior

distribution) is, in contrast to the others parameters, smaller than

the simulated values (0.99,d,1, range ,1% of the value of d).

We next investigated the extent to which changing the shape of

the priors and extending the range of their distributions could alter

our parameter estimations (Table 3). The re-estimated parameter

values as well as the shape of their posterior distributions (Figure

S4, Table S7) were found to be robust to prior modulations. In

addition, altering the prior shape for key parameters – such as the

ancestral effective population size of humans (before the out-of-

Africa exodus) N’ – did not alter co-estimations of the remaining

historical and demographic parameters (Table S8). The only

parameter found not to be robust to prior modification was the

replacement rate, d, preventing us to obtain reliable estimates for

Figure 5. Approximate posterior distributions of historical and demographic parameters. This figure gives the estimated ABC posterior
distributions of the historical and demographic parameters (Table 3) using the RAOEB model (Figure 4A) with best-fitted priors (Table 2). Black lines
represent the prior distributions and grey bars the posterior distributions. The times were translated into years using a generation time equal to 25
years. The posterior distributions of the parameters where the estimations were not validated by means of the accuracy evaluation procedure are not
presented (i.e. NA and d).
doi:10.1371/journal.pone.0010284.g005
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this parameter. However, and interestingly, this prior modification

of d did not alter the estimation of the remaining parameters

(Table S8).

Investigating the out of Africa Models of Dispersal(s)
We finally investigated the mode in which the different population

dispersals out of Africa occurred to colonize Eurasia, by relaxing the

assumption of single major dispersal event followed by the Eurasian

split (Figure 4A). To this end, we simulated three additional models

constituting different variants of the more general RAOEB model,

involving (i) two independent and concomitant dispersals out of

Africa, each giving rise to Europeans and East-Asians (Figure 4B), (ii)

two independent dispersals out of Africa occurring at different times,

the earlier giving rise to Europeans (Figure 4C), and (iii) two

independent dispersals out of Africa occurring at different times, the

earlier giving rise to East-Asians (Figure 4D). We merged the

simulations made for each of the four alternative RAOEB models

(Figure 4A–D) with the same probability each and using the prior

distributions reported in Table 2. We used this composite simulated

dataset of 105 simulations to evaluate the posterior probability of

each of the four alternative models within the general RAOEB

model (Figure 4A–D). This was performed by using an additional

parameter with 4 possible issues, each of them corresponding to a

given model. We estimated the posterior probabilities of each of

these 4 possible models by using the proportion of the simulations

that best fit the data (5,000 smallest distances between simulated and

empirical summary statistics, W parameter before regression as

defined in [46]). Among these smallest distances, ,50% of them

(Figure 4E) corresponded to simulations of the model involving a

single, major dispersal out of Africa followed by the Eurasian split

(Figure 4A). In addition, we jointly re-estimated the posterior

distributions of the historical and demographic parameters of the

composite simulated dataset using the ABC approach. Importantly,

the estimates (Table S9) and the related posterior distributions

(Figure S5) obtained when merging these four alternative models

(Figure 4A–D) are consistent with those previously obtained

assuming a single dispersal event (Figures 4A and 5, Table 3).

Therefore, the parameter estimates reported when assuming a single

dispersal only are robust and not sensitive to the choice of the model

of human dispersals out of Africa.

Discussion

The study of the mode in which modern humans originated and

colonized the world has important implications in questions of

paleoanthropological interest but also in medical, epidemiological

and population genetics. Here, we focused on the demographic

processes that accompanied the global diaspora of modern

humans after their origin in Africa. These processes include,

among others, the time at which the African exodus of modern

humans occurred, the intensity of the corresponding bottleneck,

the sizes of the ancestral populations and how they expanded

demographically, the extent to which modern humans replace

archaic forms, and the way the different modern continental

populations diverged from each other. To this end, we explored an

extensive range of historical and demographic parameters

characterizing recent human evolution using a statistical frame-

work that combines multiple facets of the genetic data. Our

approach combines the evaluation of different demographic

models using a best-fit approach, followed by an ABC analysis

of the data that conveniently deals with the co-estimation of

multiple inter-dependent parameters [45,46].

For those historical and demographic parameters that have

been previously studied, our co-estimations are in agreement with

previous reports, highlighting the general accuracy of our

estimates. For example, our estimation of the replacement rate

of archaic hominids by modern humans, although indicating that

the introgression of archaic material into the gene pool of modern

humans has been minimal, did not rule out the presence of minor

archaic admixture of other hominids in modern humans in

agreement with previous observations [58–61]. However, it is

important to emphasize that our inferences are based on non-

coding neutral regions of the genome and that adaptive

introgression from archaic to modern humans may have occurred

to a greater extent [62]. Indeed, in contrast to neutral alleles,

adaptive variants may attain high frequencies by natural selection

after minimal genetic introgression. Future studies comparing

coding-sequence variation in modern humans and extinct

hominids (e.g. Neanderthals) should help to answer this question.

With respect to the time of the exit of modern humans out of

Africa, our estimates (,60,000 years ago) well match archeological

records as well as molecular data [7,8,21,23,34,38,63–65]. The

estimation of effective population sizes before (,13,800) and after

(,2,800) the out of Africa exodus indicates a massive reduction

(,80%) of the effective population size during the bottleneck

event, in agreement with the parameter ranges estimated from

non-coding resequencing data [40]. In addition, our data is

compatible with stronger genetic drift among East Asians than

Europeans (NE.NEA) [30]. Most importantly, our analytical

approach improved the inferences about past human demography

for certain critical aspects of human demographic history. Our

analyses support strong population growth among African

populations 20,000–40,000 years ago, involving 0.002–0.016

individuals per generation. Our sub-Saharan African data – based

on 118 individuals from 5 different agriculturalist populations

spread over the African continent (Nigeria, Cameroon, Gabon,

Tanzania and Mozambique) – extend previous claims of

population growth based on single African populations to most

of the African continent. Whether this signature of population

growth testifies for independent events of expansion in the

different populations here analyzed or a common and major

event of drastic, recent population growth (e.g. the Bantu

expansion) should be the object of future studies.

Our data also support the notion that both Europeans and East-

Asians descended from the same diffusion event expanding out of

Africa. Indeed, we show that the most probable model involved an

out-of-Africa event occurring ,60,000 (47,000–85,000) years ago,

followed by a much later diversification of non-African popula-

tions ,23,000 (17,000–35,000) years ago. Such a late diversifica-

tion of Eurasian populations after the out-of-Africa exodus

suggests the existence of an ancestral population (stationary or

expanding) located somewhere central in the Eurasian continent at

the basis of the present-day Europeans and East Asians. Several

studies, mostly based on uniparentally inherited markers, have

shown that Central Asian populations harbor genetic features that

are intermediate between Europeans and East-Asians [66–68]. In

addition, our estimated time of the split of Eurasian populations of

,23,000 years ago appears to be slightly more recent than the

archaeological and fossil records of Aurignacian technologies and

skeletal remains of diagnostically modern humans in Europe (Cro-

Magnon) dating to around 30,000–40,000 years ago [69–71]. This

points to a further layer of complexity of the mode and rhythm of

the old-world colonization, which may have involved multiple

migration waves associated with several bottlenecks of different

intensities starting at different ages from the ancestral Eurasian

population pool. Resequencing studies of unlinked, noncoding,

multiple loci in ethnologically well-defined populations from

Central Asia are needed to address this question in the context
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of Eurasian prehistory. Finally, this study, together with a recent

analysis focused on Central African populations [72], allowed us to

co-estimate levels of divergence and gene flow in humans, by using

an ABC framework. Our analyses have estimated a non-negligible

gene flow between continental populations, which is equivalent to

a symmetric constant migration rate of ,1025 per generation.

Theoretical simulation studies should help to discern whether this

observation corresponds to a genuine average between-continent

migration rate over time or reflects instead varying temporal

intensities of migration rates (symmetric or asymmetric).

An additional improvement of our analytical approach is

determining the accuracy of parameter co-estimation under ABC.

Our analyses allowed us to identify the most accurate set of

statistics to be used for the estimation of a given parameter and

indicated that no general rule can be proposed to select a specific

combination of summary statistics – the set of summary statistics

providing the best accuracy varies depending on the parameter to

be estimated. We also showed that our parameter estimations are

robust both to the shape of the prior distributions used and to the

choice of the model of human dispersals out of Africa. More

importantly, our accuracy testing procedure identified two

parameters that are probably unreliable: the present-day African

effective population size, NA, which exhibited high bias (B),

standard error (SE) and root of mean square error (RMSE)

(Table 3), and the replacement rate, d, which was sensitive to the

shape of the prior distributions. It is worth noting that, despite the

accuracy statistics pointed to low biases in the estimation of the

growth rate, aA, of the African expansion, this parameter

presented a posterior distribution that largely overlapped its prior

distribution.

In conclusion, our study provides a refined model of the

historical and demographic parameters occurring in the last

100,000 years. Formulating a model of human demography based

on neutral, or quasi-neutral, polymorphisms has implications that

go beyond understanding human evolution. It provides back-

ground expectations about population genetic variation, increasing

our understanding about the population frequency of disease-

causing alleles, facilitating the estimation of recombination rates

from patterns of linkage disequilibrium, and allowing robust

identification of regions of the genome targeted by natural

selection [2,13,14]. By providing the posterior distributions of

the demographic parameters, rather than point estimates, our

work gives access to genetic variability from non-standard

population genetic models and estimates of uncertainty. Indeed,

neglecting this latter aspect of variability by performing simula-

tions with point estimates (such as maximum likelihood) used as

true parameter values could also bias the detection of natural

selection. Our data, together with other studies based on

noncoding resequencing data from other human populations

[38,40,43,44], contribute to a common consensual model of recent

human evolution that can be used in the context of disease-

mapping studies and inferences of natural selection. However, this

general picture may still be overly simple because current genetic

data are still limited and do not permit differentiation of simple

models from more complex realistic models involving, for

example, varying intensities of migration rates between popula-

tions over time, long-range expansions, or sexually-asymmetric

mating patterns. Additional sequence-based data from large,

ethnologically well-defined populations are clearly needed to

obtain a more refined and unbiased picture of the demographic

history of human populations. In this context, the 1000 Genomes

Project, which involves the sequencing of entire genomes of at least

a thousand people from around the world, will contribute with

massive amounts of data and will provide a more precise idea of

different demographic events of recent human history. In parallel,

theoretical work on more sophisticated models of human

demography and improved methods of data analyses are

undoubtedly required.

Materials and Methods

DNA Samples
Sequence variation was surveyed in DNA samples from 213

healthy donors. The panel included 118 sub-Saharan African

individuals represented by 5 agriculturalist populations, including

Yoruba from Nigeria (N = 31), Ngumba from Cameroon (N = 16),

Akele from Gabon (N = 16), Chagga from Tanzania (N = 32), and

Mozambicans (N = 23), 47 European individuals represented by

Danes (N = 23) and Chuvash from Russia (N = 24), and 48 East-

Asian individuals represented by Han Chinese (N = 24) and

Japanese (N = 24). Informed consent (written) was obtained from

each anonymous, voluntary participant. In specific cases where

participants were not literate enough to read and sign a form, oral

consent was obtained for this ethnographic study. All these

procedures and study materials were specifically approved by the

Institut Pasteur Institutional Review Board (nu RBM 2008.06).

Resequencing Data
We selected 20 autosomal regions (Table S1) that met criteria

determined by the need for genetic variation evolving under

selective neutrality and therefore influenced by demography alone.

Regions were thus selected (i) to be independent from each other,

(ii) to reside at least 200 kb apart from any known or predicted

gene or spliced expressed sequence tag (EST) (mean distance of

760 kb and 390 kb from genes and spliced ESTs, respectively, as

determined by inspection of the hg18 UCSC genome assembly),

(iii) not to be in LD with any known or predicted gene or spliced

EST (as determined by inspection of LD levels observed in the four

HapMap populations, release 16), and (iv) to have a region of

homology in the chimpanzee genome (November, 2003, release).

All 20 autosomal regions were sequenced with two different

primers, for a total sequence length of ,27 kb per individual

(mean sequence length per region of ,1.33 kb). PCR and

sequencing primers and protocols are available upon request. All

sequencing reactions were run on automated capillary sequencers

(ABI3130 and ABI3730). Sequence alignment and SNP detection

were performed using Genalys v.3.3b [73]. In addition, all ABI

base-calling sequences were visually inspected by two independent

investigators. All singletons were confirmed by re-amplification

and resequencing. No false singleton was observed. Less than

0.1% of genotypes were considered as missing data. All the 20

genomic regions were found to be polymorphic over the 213

resequenced individuals, as expected given the number of

polymorphic sites (S) under the neutral mutation model [74];

E(S) = a14Nem = 7.9, where a1 is the sum of 1/i, with i varying from

1 to n-1 (n being the sample size of 213 individuals), Ne is the

effective population size of the population (Ne = 10,000 in humans)

and m the mutation rate per generation per DNA sequence under

investigation (i.e. the product of the mutation rate per generation

per site, which equals to 2.561028 [39,40], and the length of DNA

sequence, which equals to 1330 bp in average).

Summary Statistics
Haplotype reconstruction was performed using the Bayesian

method implemented in PHASE v2.1 [75,76]. All samples were

merged to take advantage of the large sample size (213

individuals). Indeed, the geographical structure of populations

does not affect the average accuracy of the PHASE algorithm [76].
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The number of iterations, the thinning interval, and the burn-in

length were set to 1000, 100, and 1000 respectively. Each iteration

consists of performing ‘‘thinning interval’’ steps through the

Markov chain, and each step updates each individual once. Five

independent Markov chains were run, each with a different seed,

and we systematically chose the phase reconstruction with the

highest posterior probability.

We computed the observed and expected minor allele frequency

(MAF) spectra using DnaSP software [77]. The expected MAF

spectra were computed assuming continental human populations

of constant sizes and using individual h (h = 4Nm) estimated from

the sub-Saharan African, the European, and the East-Asian

samples. The deviations between observed and expected propor-

tions of singletons were tested using a x2 test, with 1 degree of

freedom, after summarizing MAF into two classes (singletons and

non-singletons). To compute the observed derived allele frequency

(DAF) spectra, we retrieved for each identified SNP the ancestral

allelic state. To this end, we aligned the human sequence

containing a given SNP with genomes of other primates (Pan

troglodytes, Pongo pygmaeus, Macacca mullata; UCSC database) and

deduced by parsimony the ancestral state of the SNP. The

expected DAF spectra were obtained by simulating continental

samples assuming populations of constant size and following the

simulation procedure detailed below. The deviations between

observed and expected proportions of fixed derived alleles were

tested using a x2 test, with 1 degree of freedom, after summarizing

DAF into two classes (fixed derived alleles and non-fixed derived

alleles).

We computed summary statistics using a modified version of

ARLEQUIN v3 [78]. For each genomic region, we computed

population differentiation indices, including global and pairwise

FST [79] based on haplotype frequencies. To accommodate

different aspects of the resequencing dataset, we also computed for

each genomic region the number of haplotypes, K, the number of

polymorphisms, S, the nucleotide diversity, p, Tajima’s D [74],

Fu’s Fs [80], Fu and Li’s F* [81], and Fay and Wu’s H [82]

statistics. We computed these summary statistics for each

continental sample separately and also merging all samples

together. Means and standard deviations of these statistics over

the 20 autosomal regions were also computed to combine

information from multiple loci.

Simulations of Genetic Data
Simulations were performed using a generation per generation

coalescent-based algorithm, implemented in SIMCOAL v2 [83].

Simulated summary statistics were computed using a modified

version of ARLEQUIN v3 [78]. The general algorithm to perform

simulations is: 1) draw parameters from specified random

distributions, 2) call SIMCOAL v2 to simulate datasets according

to specified parameters, 3) call modified ARLEQUIN v3 to

compute all required summary statistics for the simulated dataset,

and 4) go back to 1) for the next simulation. This procedure was

computationally intensive, and was performed using a cluster of 10

bi-processor (64 bits, 1.8 GHz, 2 GB RAM) computers running on

the Linux operating system. Using this algorithm, we simulated

DNA sequences of 1,400 bp each. The mutation and the

recombination rates of each region were drawn from gamma

distributions in accordance with previous studies [39,40]. As to the

mutation rate, we used a finite site mutation model with a per

generation per site mutation rate, gamma distributed with a mean

of ,2.561028 and a 95% confidence interval of 1.4761028 to

4.0361028. As to the recombination rate, we considered between

two adjacent base pairs, a per generation recombination rate,

gamma distributed with a mean ,1028 and a 95% confidence

interval of 0.4861028 to 1.4361028.

Simulations of the Constant Population Size Model
To test for deviations of the observed derived allele frequency

(DAF) spectra and summary statistics (global and pairwise FST, K,

S, p, Tajima’s D, Fu’s Fs, Fu and Li’s F* and Fay and Wu’s H)

from the null assumption of constant population size, we

performed 105 simulations of 20 independent regions drawing

for each simulation the mutation rate and effective population

sizes from gamma distributions described above. Because it is

difficult to accurately estimate the recombination rate, we tested

three different procedures to model it. First, we neglected intra-

region recombination; this option is justified because we only

observed ,0.5% of recombinant haplotypes in the 20 autosomal

genomic regions using the four-gamete test (data not shown).

Second, we assumed a per generation intra-region recombination

rate between adjacent base pairs that was gamma-distributed with

a mean of ,1028 (95% confidence interval of 0.4861028 to

1.4361028) [39,40]. Third, we assumed a per generation intra-

region recombination rate fixed 10 times higher than expected in

humans (i.e., equal to 1027 between adjacent base pairs). For each

configuration, 105 simulations of three independent populations

were performed, with sample sizes corresponding to sub-Saharan

African, European, and East-Asian samples (118, 47, and 48

individuals, respectively). P-values for deviations from the constant

population size model were computed by counting the number of

simulated summary statistics with values higher or lower than the

observed summary statistics.

Simulations of Demographic Histories
To explore the space of demographic parameters we aimed to

investigate, we treated them as continuous random variables with

prior distributions, rather than performing simulations over grids

of discrete parameter values [9,40]. All demographic events were

chosen to be uniformly distributed (i.e. flat prior distributions)

except the effective size of populations. Under equilibrium

assumptions, the human effective population size has been

estimated at ,10,000 individuals on the basis of human-chimp

divergence and intra-species LD levels [4,84]. To both give

population size a degree of freedom and to match with a consensus

estimate of human populations, we defined a gamma prior

distribution with a mean of ,10,000 individuals and a 95%

confidence interval of 3,000 to 21,000 individuals [39,40]. Note

that when simulating population expansions, we excluded

simulations with values of expansion parameters resulting

in present-day effective population sizes exceeding 1 billion

individuals.

General Statistical Procedures to Co-estimate Historical
and Demographic Parameters

To explore and co-estimate a range of historical and

demographic parameters, we adopted a two-step procedure as

previously described [72]. In the first step, we evaluated multiple

models of human evolution using a best-fit approach performed in

order to decrease the number of models and the parameter space

to be efficiently explored in the second step. In this second step, we

co-estimated parameters of interest using a Bayesian approach,

which made use of model and parameter priors best fitted in the

first step. We finally systematically checked for the accuracy of the

parameter co-estimations.

First step: the best-fit approach. We adopted the same

flexible statistical framework implemented in [72] and inspired by
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previous methods [47,49]. For both the adjustment of the global

evolutionary scenario and the demographic regimes of each

continental group, we generated for each model 105 simulated

datasets of 20 unlinked DNA sequences (,1,400 bp each) in 118

sub-Saharan African, 47 European, and 48 East-Asian individuals.

The simulated model that best fitted our autosomal data was

defined as that giving the highest proportion of small distances (yj)

between the simulated and observed summary statistics, S’ and S.

These distances were measured by calculating the normalized

metric D(S’,S) [38], and D(S’,S) was considered to be small when

lower than a j value, e.g. yj = 0.1 means that 10% of all distances

are smaller that j. To include multi-locus information in

calculating these metrics, we used the mean, for each summary

statistics, computed over the 20 autosomal non-coding regions. To

assess whether a given model fitted the empirical data significantly

better than another model, we resampled 100 times 10,000

simulations of each model. We next calculated the yj for each

resampling set. For each model, we computed the mean yj over

the 100 resampling sets. We tested for significant differences

between the mean yj of the different models, using a Student’s t-

test followed by a Bonferroni correction for multiple testing

(multiple pairwise comparisons). Finally, classes of models

exhibiting the highest mean yj, and that were statistically

indistinguishable, were all retained to construct the best-fit

model. We also tested the extent to which the choice of the

model based on the highest yj can provide a false model (e. g. over

fitting due to high number of parameters, etc.). To this effect, we

simulated 100 datasets under each tested model and used them as

if they were empirical data. For example, let us consider 1

simulated pseudodataset generated under model M1, and an

alternative model M2 to be tested. We calculated, for this

simulated pseudodataset, yj for M1 and yj for M2. If yj for

M1.yj for M2, then the best-fit model (highest yj) corresponds to

the ‘‘correct’’ model (M1), or else (yj for M1,yj for M2), the

highest yj corresponds to a ‘‘wrong’’ alternative model (here M2).

Therefore among the 200 simulated pseudodatasets (100 simulated

under M1 and 100 simulated under M2), we counted the number

of times where the highest yj was obtained for the correct

simulated model (M1 or M2 depending on the pseudodataset used).

This count divided by 200 (the total number of simulated

pseudodatasets) was used as a proxy of the probability to obtain

the ‘‘true model’’ taking into account the high variability of

datasets that can be obtained under a given demographic scenario.

We used this approach to perform pairwise comparisons between

the best-fit model (highest yj obtained using our true empirical

dataset) against many other alternative models.

Second step: Co-estimation of parameters by Approximate

Bayesian Computation. The first step was used to decrease the

model and parameter space to be subsequently explored in the

Approximate Bayesian Computation (ABC) [46,85] co-estimation of

historical and demographic parameters. Given the complexity of the

historical and demographic models we aimed to explore, we sought

to overcome the problem of unknown likelihood functions [38,72] by

using the ABC setting. ABC approaches bypass the computational

difficulties of using explicit likelihood functions by simulating data

from a coalescent model, and thus provide high degree of freedom in

the choice of demographic models to be tested. These methods rely

on the simulation of large numbers of datasets using parameter

values sampled from prior distributions, i. e. the parameter ranges of

variation determined by means of the best-fit approach used in the

first step of this study. A set of summary statistics is then calculated

for each simulated sample, and each set of simulated statistics is then

compared with the values observed in the empirical data using the

normalized metrics D(S’,S), with S’ the simulated and S the empirical

summary statistics [38]. Similarly to the first step, we used the mean

of summary statistics over the 20 autosomal non-coding regions.

Parameter values generating summary statistics similar enough to

those of the empirical data were retained, i.e. the 5,000 simulations

with the smallest D(S’,S). Posterior distributions of the parameters

were obtained with a locally weighted multivariate regression

[38,46]. We generated 106 simulated datasets of 20 unlinked DNA

sequences (,1,400 bp each) in 118 sub-Saharan African, 47

European, and 48 East-Asian individuals using the model that best

fit our data, i. e. the combination of ranges of parameters determined

in the first step of this study.

Tests for the accuracy and validation of parameter

estimations. There is no general rule in the ABC procedure to

choose which combination of summary statistics (Table S10)

outperforms the others, because no combination would be

sufficient to account for all aspects of the data. For example, the

use of summary statistics that are not correlated with the unknown

parameter could potentially introduce noise and alter the estimation

accuracy. Furthermore, different point estimators (i.e. the mean, the

median and the mode of distribution) can be computed from

posterior distributions, and there is no satisfactory rule to determine

which estimator outperforms the others. We therefore systematically

tested for different combinations of summary statistics and different

point estimators, by simulating 100 datasets under the best-fit

model. These datasets were considered as ‘‘pseudo-empirical’’

datasets. Indeed, we re-estimated the underlying known parameters

for each of these 100 ‘‘pseudo-empirical’’ datasets with exactly the

same approach used for the ABC estimation performed with the

empirical dataset (i. e. the 106 simulations of the best-fit model). We

then compared the re-estimated values of parameters with their

known values. We used different accuracy indices: the relative bias

(difference between expected and estimated values expressed as a

percent of the known value), the relative standard error (the

standard error expressed as a percent of the known value), and the

relative root mean square error (RMSE) (the mean square error

expressed as a percent of the known value). The RMSE statistic is

commonly used to determine which estimation is the most accurate,

because the method with the smallest RMSE should provide

estimates with the lowest combination of bias and variance. For

each parameter, we therefore retained the point estimate and the

combination of summary statistics yielding the lowest root of mean

square error, RMSE, to provide the most reliable estimation.

Finally, we evaluated the sensitivity of our co-estimations (2nd

step) to the prior distributions calibrated using our best-fit

approach (1st step). Indeed, in Bayesian settings, the choice of

priors is a crucial but difficult question to address. In principle,

changes in the prior definition of parameters should not alter the

posterior estimations. We therefore performed simulations using

modified prior distributions of the selected parameter, keeping

other prior distributions unchanged to avoid strong inflation of the

global parameter space. Indeed, this inflation could disturb

estimation when using limited numbers of simulated datasets.

We modified priors by simulating extended ranges and/or

modified shapes of prior distributions (determined in 1st step, see

above), and we used our empirical data to re-estimate each

parameter with the newly defined prior distributions. Because

performing all these tests is computationally costly, we decreased

the number of simulations (105 rather than the 106 simulations

initially performed to estimate parameters).

Web Resources
Arlequin v.3.11, http://cmpg.unibe.ch/software/arlequin3/

Chimpanzee Genome Resources, http://www.ncbi.nlm.nih.

gov/genome/guide/chimp/
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DnaSP v. 4.1, http://www.ub.es/dnasp/

GenBank, http://www.ncbi.nlm.nih.gov/Genbank/ [accession

numbers GU462347 – GU470440])

HapMap database, http://www.hapmap.org/index.html.en

PHASE v2.1.1, http://www.stat.washington.edu/stephens/

software.html

SIMCOAL v. 2.0, http://cmpg.unibe.ch/software/simcoal2/

UCSC database, http://genome.ucsc.edu/
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