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Abstract

Functional magnetic resonance data acquired in a task-absent condition (‘‘resting state’’) require new data analysis
techniques that do not depend on an activation model. In this work, we introduce an alternative assumption- and
parameter-free method based on a particular form of node centrality called eigenvector centrality. Eigenvector centrality
attributes a value to each voxel in the brain such that a voxel receives a large value if it is strongly correlated with many
other nodes that are themselves central within the network. Google’s PageRank algorithm is a variant of eigenvector
centrality. Thus far, other centrality measures - in particular ‘‘betweenness centrality’’ - have been applied to fMRI data using
a pre-selected set of nodes consisting of several hundred elements. Eigenvector centrality is computationally much more
efficient than betweenness centrality and does not require thresholding of similarity values so that it can be applied to
thousands of voxels in a region of interest covering the entire cerebrum which would have been infeasible using
betweenness centrality. Eigenvector centrality can be used on a variety of different similarity metrics. Here, we present
applications based on linear correlations and on spectral coherences between fMRI times series. This latter approach allows
us to draw conclusions of connectivity patterns in different spectral bands. We apply this method to fMRI data in task-
absent conditions where subjects were in states of hunger or satiety. We show that eigenvector centrality is modulated by
the state that the subjects were in. Our analyses demonstrate that eigenvector centrality is a computationally efficient tool
for capturing intrinsic neural architecture on a voxel-wise level.
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Introduction

Functional magnetic resonance data (fMRI) of the human brain

acquired in a task-absent (‘‘resting state’’) condition has attracted

increasing interest in recent years. Due to the absence of an

experimental paradigm, analysis procedures based on an activa-

tion model are not applicable. New types of techniques have been

developed focusing on functional connectivity rather than task

activation. For instance, correlation of time series between a pre-

specified seed region and all other voxels of the brain is robust and

conceptually clear. However, it can only be successfully applied if

some prior knowledge exists for identifying seed regions. Another

widely used technique is based on independent component

analysis (ICA) whose primary advantage is its freedom from

hypotheses preceding the analysis and the need for selecting seed

regions [1]. However, the number of independent components is

difficult to specify and assumptions must be made about what

constitutes a valid network. For comprehensive reviews of the

above and related methods see [2,3].

More recently however, graph-based methods have been proposed

for the analysis of functional and structural magnetic resonance data

of the human brain. Their main feature is that they take brain regions

as nodes in a graph. Some of these methods have also been applied to

the analysis of resting state fMRI data [4–6]. Given the small world

properties of the human brain [7,8], graph-based methods provide a

valuable tool for elucidating network structures.

In the present study, we focus on a particular type of graph-

based method that identifies nodes which play central roles within

the network structure. Such nodes are characterized by a measure

called ‘‘node centrality’’. Node centrality is a key concept in social

network analysis of which several competing definitions exist and

some of which have been applied to fMRI data analysis in the past

[5,9]. Here we discuss several of these approaches - in particular

‘‘betweenness centrality’’, ‘‘degree centrality’’ and ‘‘eigenvector

centrality’’. Sporns et al. [9] for instance advocate a combination

of various graph measures including degree, betweenness

centrality and closeness centrality.

Thus far, centrality measures have been applied to a pre-

selected set of nodes consisting of at most several hundred elements

(e.g. [6,8,9]). Here, we propose to apply this measure to all voxels

in a region of interest covering the entire cerebrum thereby

avoiding any selection bias [10].

However, due to computational complexity, closeness and

betweenness centrality measures are not suited for compiling brain

maps with thousands of voxels. Therefore in this study, we will

focus primarily on ‘eigenvector centrality’ [11,12]. To our

knowledge, eigenvector centrality has not yet been used in the

context of fMRI data analysis. Eigenvector centrality specifically
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weights nodes based on their degree of connection within the

network. It does so by counting both the number and the quality of

connections so that a node with few connections to some high-

ranking other nodes may outrank one with a larger number of

mediocre contacts [13]. Google’s ‘‘PageRank’’ algorithm is a

variant of eigenvector centrality [14]. Both the human brain and

the world wide web exhibit small world properties suggesting that

an algorithm that is effective as part of a search engine may also be

effective in analyzing network properties of the human brain.

Eigenvector centrality can be used on a variety of different

similarity metrics. Here, we present applications based on linear

correlations and on spectral coherences between times series. This

latter approach allows us to draw conclusions about connectivity

patterns in different spectral bands. The motivation for choosing

spectral measures came from Salvador et al. [15] who have

emphasized the importance of investigating interregional depen-

dencies in the frequency domain rather than in the time domain.

We propose to use eigenvector centrality as a mapping tool for

the entire brain or parts of it. Such maps can be subjected to

statistical tests to detect groupwise differences in centrality between

experimental states. For abbreviation, we will call this method

ECM (Eigenvector Centrality Mapping).

Materials and Methods

Several definitions of node centrality exist - each having a

slightly different interpretation. Common to all of these definitions

is that they are based on a symmetric matrix containing pairwise

similarity measures. Let A be such an n|n similarity matrix where

entries aij ,i, j~1,:::n contain a pairwise similarity measure

between time series in voxels i and j. The number of voxels n is

determined by user-specified regions of interest (ROI) to which all

subsequent analysis steps are restricted. In the experiments

reported in this study, the ROI covered the entire brain excluding

the cerebellum and consisted of n&40,000 voxels.

The matrix A is symmetric so that each voxel can be viewed as a

node in an undirected weighted graph in which similarity values

correspond to weights along the edges of the graph. In graph-

based applications, these weights represent distances between

nodes and are therefore non-negative. As a result, centrality

measures are generally also defined to be non-negative. See

Bonacich [16] for a discussion of this point.

Degree centrality
The simplest centrality measure is called ‘‘degree centrality’’.

The degree xi of a node i is defined as

xi ~
X

j

aij :

Thus, a node has a high degree if it has strong connections to

many other nodes in the graph.

Eigenvector centrality
Eigenvector centrality was first introduced by Bonacich [11,12]

and a later variant of it is a central part of Google’s PageRank

algorithm [14]. Much like degree centrality, it favours nodes that

have high correlations with many other nodes. However, in

contrast to degree centrality it specifically favours nodes that are

connected to nodes that are themselves central within the network.

Thus it takes into account the entire pattern of the network.

As before let A denote an n|n similarity matrix. Then the

eigenvector centrality xi of node i is defined as the i-th entry in the

normalized eigenvector belonging to the largest eigenvalue of A.

Note that with this definition xi fulfils the characteristics described

above. To see why let l be the largest eigenvalue and x the

corresponding eigenvector, then

Ax~lx or equivalently, x~
1

l
Ax, and xi~m

Xn

j~1

aijxj

with proportionality factor m~1=l so that xi is proportional to the

sum of similarity scores of all nodes connected to it.

Uniqueness of this definition is ensured by the Perron-Frobenius

theorem which states that any square matrix with strictly positive

entries has a unique largest real eigenvalue with strictly positive

components. This is also true for irreducible square matrices with

non-negative entries. An irreducible matrix has at least one non-

zero off-diagonal element in each row and column.

Since we assume that A represents distances between nodes we

have aij§0,Vi, j. In the present context, we may assume that A is

irreducible because fMRI time series are almost never entirely

dissimilar so that a sufficient number of non-zero entries in A exist.

Thus, an eigenvector belonging to the normalized largest

eigenvalue exists and its entries xi provide a centrality measure

for each node i which is uniquely defined and non-negative. Note

that symmetric matrices with negative entries may have several

largest eigenvalues that are not distinct so that the requirement of

non-negativity is essential for ensuring the uniqueness of this

definition (see Appendix S1 for an example).

Eigenvector centrality is related to principal components

analysis (PCA) in that both methods are based on eigenvector

decompositions of similarity matrices. However, PCA differs from

eigenvector centrality in that it only allows linear correlations as a

similarity metric. But linear correlations may be negative so that

the first principal component is not uniquely defined because of

possible multiplicities of eigenvalues.

In our experiments we used linear correlations which were re-

scaled to be non-negative and also a spectral coherence metric

which is non-negative by definition (see below). Other similarity

metrics such as mutual information or wavelet transform

coherence (WTC) [17] might be used for eigenvector centrality

mapping (ECM) as well.

Many algorithms for computing eigenvectors of symmetric

matrices are known. In the present context, it suffices to find the

eigenvector belonging to the largest eigenvalue. For this special

case, the power iteration method [18, 405ff] is one of the most

efficient, and was used in our experiments.

Betweenness centrality
The betweenness centrality xi of some node i is defined as:

xi~
X

i=j,i=k
j=k

sjk(i)

sjk

where sjk is the number of shortest geodesic paths from j to k, and

sjk(i) is the number of shortest geodesic paths from j to k that pass

through node i. This is normalized by dividing through the

number of pairs of nodes not including i, which is (n{1)(n{2)=2.

Betweennnesss centrality is computationally expensive. For

weighted graphs, its complexity is O(n3) which can be reduced

for unweighted graphs to O(nm) where m is the number of edges

(non-zero correlations) [19] making it computationally impracti-

cable for large values of n or m. Note that generally, correlations

are thresholded at some user-defined level prior to applying

betweenness centrality. It was used e.g. by He et al. [6] for

Eigenvector Centrality Maps
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analyzing spontaneous fluctuations in a network consisting of 90

regions of interest. We tested betweenness centrality on a region of

interest containing 17,398 voxels that covered parts of the left

hemisphere of one subject. The computation took 26 hours using

4 parallel 2.6 GHz processors for a single data set. Application to a

region of interest with full brain coverage was not feasible.

Linear correlation
Linear correlation has been proposed as a metric for analysing

functional connectivity [20]. A high positive correlation between

two fMRI time series indicates a strong similarity, a high negative

a strong dissimilarity. Note that this measure is quite agnostic

about any form of causal influence between brain regions. It is

defined as follows.

Let xi, i~1,:::,N and yi, i~1,:::,N be time series of length N in

two voxels x and y. Their correlation is defined as

r~

PN
i~1 (xi{x)(yi{y)

(N{1)sxsy

where x,y denote the sample mean and sx,sy the standard

deviations.

Because the similarity matrix A should be positive, linear

correlations between time series must be re-scaled accordingly. We

propose to use

~rr ~ rz1

where r denotes the correlation between two time series and ~rr the

corresponding scaled version. Note however that strong negative

correlations may indicate some form of inverse coupling.

Therefore, an alternative way to handle negative correlations

might be to take absolute values instead of the approach proposed

here.

Spectral coherence
Salvador et al. [15] have noted that interregional dependencies

can be more readily observed in the frequency domain than in the

time domain. Therefore, we have also used frequency based

similarity metrics for ECM. Specifically, we employ spectral

coherence for this purpose. It has been previously applied to fMRI

data analysis [15,21,22]. In the following, we give a brief overview.

For more information see for instance [23,24].

Let Xt,Yt denote real-valued stationary time series in two

voxels, and let v be some frequency of interest. We assume that

they are normalized to zero mean. Their cross-correlation function

evaluated at lag k is defined as

CSXY (k) ~ E(XtzkYt)

and the corresponding cross-spectral density is:

fXY (v) ~
X

k

W (k)CXY (k) exp ({2pivk)

Analogously, the auto-spectral density of a single time course X is

fX (v) ~
X

k

W (k)CXX (k) exp ({2pivk)

Several choices for the weighting factors W (k) exist. Among the

most common ones are Parzen or Tukey windows. Here, we used

the Tukey window which is defined as:

W kð Þ~
1

2
1zcos

pk

m

� �� �
for DkDƒm

0 otherwise

8<
:

where m is the number of lags to compute the autocorrelation for.

As a rule of thumb, m should be chosen to be in the range

N=20vmvN=3 where N is the length of the time series [25,

p.141]. In the data presented below the time series length was

N~168, and we used m~10 throughout.

Since CSxy(v) is not necessarily symmetric the cross-spectrum

is generally a complex function. The real part of fXY (v) is known

as the cospectrum denoted as csXY (v) and the imaginary part as

the quadrature spectrum qsXY (v). The spectral coherence

yXY (v) between X ,Y at frequency v is defined as:

yXY (v) ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qsXY (v)2 z csXY (v)2

fX (v)fY (v)

s
[ ½0,1�

Note that information about phase lags is not included in the

above measure. Frequency-dependent phase coherence can be

computed using the above definitions as follows

phaseXY (v) ~ arctan
csXY (v)

qsXY (v)

� �
:

Experiment 1
Functional MRI/EPI data were acquired of 35 normal

volunteers on a 3T MRI scanner (Siemens Tim Trio) using

TR = 2.3 sec, TE = 30ms, 363 mm2 in-plane resolution, 3 mm

slice thickness, 1 mm gap between slices. Each scanning session

began with a task-absent (‘‘resting state’’) scan lasting 7.6 minutes

during which subjects were asked to fixate a fixation cross. A

second resting state scan with the same acquisition parameters

followed about 10 minutes later within the same scanning session.

In between these two scans, subjects were scanned in another task

absent condition using sagittal instead of axial slices. Data from

this scan were not used for the present study.

All data sets were initially fieldmap corrected using the software

system Lipsia [26]. Data preprocessing then continued using FSL

[27], and consisted of motion correction, bandpass filtering

(SPECS), and spatial smoothing (SPECS). Finally, preprocessed

data sets were registered into standard MNI152 (Montreal

Neurological Institute) brain space using FSL’s nonlinear registra-

tion software FNIRT, and resampled to an isotropic voxel grid with

a resolution of 36363 mm3. We manually defined a region of

interest containing about 52,000 voxels covering the entire

cerebrum to which subsequent ECM analysis was applied (Figure 1).

Experiment 2
Functional MRI/EPI data were acquired of 22 normal

volunteers on a 3T MRI scanner (Siemens Tim Trio) using

TR = 2.3 sec, TE = 30ms, 363 mm2 in-plane resolution, 3 mm

slice thickness, 1 mm gap between slices. The study was approved

by the ethics committee of the University of Leipzig. All subjects

have written informed consent. The subjects were asked to attend

two scanning sessions, in one of which they were asked to refrain

from eating after 6 pm of the previous day. During both sessions,

Eigenvector Centrality Maps
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we first acquired resting state data for 6.5 minutes during which

subjects were asked to fixate a fixation cross. During the following

34 minutes they were shown pictures of food and tools that they

were asked to respond to by button presses. Finally, another

6.5 minutes of resting state data were acquired. In the present

study, we only analyzed the initial resting state data acquired

before visual stimulation began, and ignored the rest of the

experiment.

Data processing was done using the software system Lipsia [26].

All data sets were initially corrected for motion and slicetime

offsets. A baseline correction was applied using a highpass filter

with a cutoff frequency of 1/90 Hz, and a spatial smoothing with a

Gaussian filter of fwhm = 8 mm was used. All data sets were

initially registered to an AC/PC coordinate system where the data

were resampled to an isotropic voxel grid with a resolution of

36363 mm3. We manually defined a mask containing & 40,000

voxels covering the entire brain while excluding the cerebellum

and parts of CSF (Figure 2).

Data processing
For both experiments, we computed pairwise similarity matrices

between time series of any two voxels inside the mask using scaled

linear correlation and for experiment 2 also spectral coherence,

and applied the ECM algorithm to these matrices. The resulting

centrality maps were then transformed as described by van Albada

et al. [28] in order to ensure that they obey a Gaussian normal

distribution as required for subsequent statistical tests. The results

were corrected for multiple comparisons using cluster-size and

cluster-value thresholds obtained by Monte-Carlo simulations

[29,30] using a significance level of pv0:05. Clusters in the

resulting maps were obtained using an initial z-value threshold of

2.33. The Monte Carlo simulation determines the size and peak

value a cluster must have in order to be considered statistically

significant. Thus, a cluster with only a moderately high peak value

might be considered significant if it is large enough. On the other

hand, a cluster with a very high peak value might be significant

even if it is rather small. Computation times for ECM were about

20 minutes per dataset on a 2.6 GHz Opteron processor. About 6

GByte of computer memory are needed to store an n|n matrix

with n~40,000 voxels to cover the cerebrum at 3|3|3mm3

resolution.

Results

Experiment 1
Figure 3 shows group averages of eigenvector centrality in the

two scans. A network of hubs including sensorimotor areas of the

marginal ramus of the cingulate and mid-cingulate, thalamus,

primary visual cortex, insula and operculum are common to both.

Figure 4 shows results of a paired t-test contrasting the two scans.

During the first scan, eigenvector centrality scores were signifi-

cantly higher in left and right thalamus and in the cerebellum.

During the second scan, eigenvector centrality was larger in

posterior cingulate, medial frontal and right opercular cortices,

and medial frontal areas.

For comparison, we additionally computed another centrality

map - this time using degree centrality instead of eigenvector

centrality (Figure 5). Note that during the second scan, degree

centrality was larger almost everywhere in the brain.

Experiment 2
Figure 6 shows group averages of ECM based on scaled linear

correlation. The overall ECM pattern looked very similar

although we found statistically significant differences in precuneus

when contrasting hungry against sated state (Figure 7 and

Appendix S2). Recent literature postulated that posterior midline

cortex, comprising precuneus and posterior cingulate cortex

constitutes the core hub within the default network of the human

brain with strong connections to ventral medial prefrontal cortex/

anterior cingulate cortex, inferior lateral parietal cortex, and the

hippocampi [31,32]. This particular portion of the precuneus,

located in the anterior section adjacent to the marginal ramus of

Figure 2. The region of interest in experiment 2. The mask used
in experiment 2 containing about &40,000 voxels. Talairach coordi-
nates of slice positions are (0,0,0).
doi:10.1371/journal.pone.0010232.g002

Figure 3. Group averages of eigenvector centrality maps in
experiment 1. The group average of the first scan is shown in the top
row. The bottom row shows results of the second scan. The similarity
metric was scaled linear correlation. MNI coordinates of slice positions
are (24,271,220).
doi:10.1371/journal.pone.0010232.g003

Figure 1. The region of interest in experiment 1. The mask
covering the entire brain including the cerebellum containing about
&52,000 voxels. MNI coordinates of slice positions are (0,0,0).
doi:10.1371/journal.pone.0010232.g001

Eigenvector Centrality Maps
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the cingulate sulcus, has been implicated in self-related processing

(in contrast to the episodic memory-related role of the posterior

precuneus) [33]. Although the enhanced centrality of precuneus

during the hungry state indicates a changed core hub of the default

network, we found no other areas with significantly changed

centrality values across the brain. Nonetheless, the increased

centrality of anterior precuneus during the hungry state is

consistent with the proposed self-related functionality of this

region.

We next employed spectral coherence to investigate frequency

based similarity metrics because of their known advantages in the

observation of interregional dependencies [15]. We found strong

effects of frequency in ECM across spectral bands as shown in

Figure 8. In frequency bands 1/10 Hz up to 1/20 Hz, ECM was

significantly larger in precuneus, the striatum and several more

areas. Very low frequency bands (1/25 Hz, 1/30 Hz, 1/35 Hz)

dominate at the temporal poles and mediodorsal frontal areas.

Figure 9 and Table 1 show differences between the sated and

the hungry state across various spectral bands based on spectral

coherence. In particular, differences appear in the anterior

precuneus at 1/20 Hz and 1/30 Hz, and in the ventral striatum

at 1/30 Hz.

Discussion

We propose eigenvector centrality as a new method for

analyzing fMRI data. It is parameter-free, computationally fast

and does not depend on prior assumptions. In contrast to previous

studies using centrality measures [6,8,9], we have applied them

here to a large region of interest consisting of thousands of voxels.

Under those circumstances, betweenness centrality becomes

computationally intractable. The computational speed allowed

us to obtain whole brain centrality maps and use them in a

manner similar to contrast maps obtained in standard regression

analyses.

In the first experiment, we found significant differences between

ECMs of two resting state scans following each other within the

same session. In particular, left and right thalamus had higher

eigenvector centrality scores during the first scan. Thalamus has

been implicated in mediating attention and arousal in humans

[34,35] suggesting that subjects’ attention and/or arousal may

have declined with time spent in the scanner. We also found

Figure 4. Pairwise t-test between the two ECMs of experiment
1. Results are thresholded at pv0:05 (corrected). MNI coordinates of
slice positions are (24,28,7).
doi:10.1371/journal.pone.0010232.g004

Figure 5. Group averages of degree centrality maps in
experiment 1. The similarity metric was scaled linear correlation.
Note that degree centrality is larger almost everywhere in the brain
during the second scan. MNI coordinates of slice positions are
(0,217,18).
doi:10.1371/journal.pone.0010232.g005

Figure 6. Group averages of eigenvector centrality maps in
experiment 2. The top row shows group averages of eigenvector
centrality maps of subjects in the sated state. Below, the group average
across the hungry state is shown. The similarity metric used here was
scaled linear correlation. Talairach coordinates of slice positions are
(4,249,58).
doi:10.1371/journal.pone.0010232.g006

Figure 7. Pairwise t-test between sated and hungry subjects
using scaled linear correlations in experiment 2. Results are
thresholded at pv0:05 (corrected). Centrality values in precuneus were
significantly higher during the hungry state. Other regions did not show
significant effects. Talairach coordinates of slice positions are
(22,250,56).
doi:10.1371/journal.pone.0010232.g007

Eigenvector Centrality Maps
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higher centrality in the cerebellum during the first scan. The

cerebellum is involved in the coordination of voluntary motor

movement and muscle tone. Perhaps the mental effort of

remaining motionless for a prolonged period of time may have

played a role in this context [36].

On the other hand, posterior cingulate and anterior medial

frontal cortex appeared stronger in the second scan - regions that

are associated with the ‘‘default mode network’’ [37]. A possible

explanation might be that subjects were more relaxed and more

‘‘at rest’’ during the second scan so that the typical ‘‘default mode’’

pattern emerged more clearly.

For comparison, we also computed degree centrality and found

that during a second resting state scan, degree centrality increased

almost everywhere indicating a general increase in correlations

across the brain. This may be due to a global physiological

influence such as respiration or heart rate. Eigenvector centrality

on the other hand did not show such a global effect. Rather it

highlighted specific regions that were differentially affected by the

prolonged duration of the experiment.

For the second experiment, we additionally used frequency

instead of time based similarity metrics with the known advantages

in the detection of interregional dependencies [15], we identified

regions with significant changes in their centrality scores that

match well with previous findings from experiments addressing

paradigms related to food and eating in hungry and sated state

[38–40]. We found the ventral striatum as the most prominent

region within the network (in the 1/30 Hz band, see Figure 9)

which is well known as a key region implicated in reward, e.g. [41]

such as consummatory food [42], and displays functional

connectivity throughout the prefrontal and motor cortex [43].

The spectral coherence measure assumes that the coupling

between fMRI time series is stationary over time. This assumption

may sometimes be unrealistic. In such cases, the wavelet transform

coherence (WTC) [17] might be better suited because it describes

coherence and phase lag between two time series as a function of

both time and frequency. It has recently been used for analyzing

resting state fMRI data [44].

For the present work, we have only used spectral coherence but

not phase coherence. However, it might be advantageous to

include phase coherence and use it in conjunction with spectral

coherence. We plan to explore that possibility in future work.

In both experiments, we found high centrality values in cortical

and subcortical areas, but also in white matter regions. This agrees

with results found by Mezer et al. [45] who reported clusters of

similar BOLD fluctuations not only in the cortical and subcortical

regions, but also within the white matter. The origin of such effects

is still unclear and remains the object of future research.

Figure 8. Variations in eigenvector centrality across frequency
bands in experiment 2. The maps show a t-test contrasting spectral
ECMs of 1/10, 1/15, 1/20 Hz versus 1/25, 1/20, 1/35 Hz. Blue colors
indicate regions were higher frequencies showed stronger centrality.
Red colors indicate regions where very low frequencies dominate. The
maps are thresholded at pv0:05 (corrected). Talairach coordinates of
slice positions are (0,0,0).
doi:10.1371/journal.pone.0010232.g008

Figure 9. Pairwise t-test between sated and hungry subjects
using spectral coherence in experiment 2. The results are shown
for three frequencies (0.1 Hz, 0.05 Hz, 0.033 Hz) thresholded at p v

0.05 (corrected). Voxels where centrality values were significantly larger
in the sated state are shown in red, the reverse is shown in blue. Note
that the difference in precuneus is only present at frequencies v

0.1 Hz. At 0.033 Hz a significant difference becomes apparent at the
ventral striatum. Talairach coordinates of slice positions are
(28,260,22), see Table 1.
doi:10.1371/journal.pone.0010232.g009

Table 1. Significant differences between hungry and sated
state using spectral coherence in experiment 2.

frequency mm3 coordinates

1/10 Hz sup. front. sulc. 3618 (26, 27, 48)

intrapariet. sulc. 3186 (35, 261, 18)

thalamus 3429 (8, 27, 21)

1/20 Hz precuneus 7857 (8, 246, 48)

sup. temp. sulc. 324 (56, 219, 212)

1/30 Hz ventral striatum 4725 (210, 26, 3)

precuneus 5589 (24, 240, 51)

List of regions showing a significant difference in ECM between hungry and
sated state using spectral coherence at 1/10, 1/20, 1/30 Hz (see Figure 9). The
results are corrected for multiple comparison at pv0:05. Only regions larger
than 100 mm3 are listed. Coordinates of the peak voxel are given in the
Talairach system.
doi:10.1371/journal.pone.0010232.t001
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It should be noted that low frequency fluctuations may also be

caused by aliasing effects (undersampling) so that the actual

sources of these signals need not be in that same low frequency

range. Nonetheless, recent studies have confirmed that oscillations

- even at very low frequencies - appear robust and reliable [46,47]

so that these results are not unexpected. It remains to be shown

whether these findings indicate the existence of natural frequencies

at which specific networks operate. Such natural frequencies have

recently been postulated by Rosanova et al. [48] for the human

corticothalamic circuits based on EEG and TMS data. Our

findings suggest that analogous patterns might exist at much lower

frequencies observable in fMRI even though the exact nature of

these connectivity patterns remains to be investigated. In this

context, it may be interesting to use alternative frequency-

dependent similarity metrics as described e.g. in Salvador et al.

[15].

The initial analyses presented in this study demonstrate that

eigenvector centrality is a computationally efficient tool for

capturing intrinsic neural architecture on a voxel-wise level. The

independence of centrality approaches from a priori hypotheses,

makes it a valuable methodological addition to the ‘‘model-free’’

analytic toolbox.

Supporting Information

Appendix S1 A symmetric matrix with non-unique eigenvalues.

Found at: doi:10.1371/journal.pone.0010232.s001 (0.02 MB

PDF)

Appendix S2 Axial slices of ECM group averages in experiment

2.

Found at: doi:10.1371/journal.pone.0010232.s002 (0.34 MB

PDF)
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