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Abstract

Background: Epstein-Barr Virus (EBV) latent infection is associated with several human malignancies and is a causal agent of
lymphoproliferative diseases during immunosuppression. While inhibitors of herpesvirus DNA polymerases, like gancyclovir,
reduce EBV lytic cycle infection, these treatments have limited efficacy for treating latent infection. EBNA1 is an EBV-
encoded DNA-binding protein required for viral genome maintenance during latent infection.

Methodology: Here, we report the identification of a new class of small molecules that inhibit EBNA1 DNA binding activity.
These compounds were identified by virtual screening of 90,000 low molecular mass compounds using computational
docking programs with the solved crystal structure of EBNA1. Four structurally related compounds were found to inhibit
EBNA1-DNA binding in biochemical assays with purified EBNA1 protein. Compounds had a range of 20–100 mM inhibition of
EBNA1 in fluorescence polarization assays and were further validated for inhibition using electrophoresis mobility shift
assays. These compounds exhibited no significant inhibition of an unrelated DNA binding protein. Three of these
compounds inhibited EBNA1 transcription activation function in cell-based assays and reduced EBV genome copy number
when incubated with a Burkitt lymphoma cell line.

Conclusions: These experiments provide a proof-of-principle that virtual screening can be used to identify specific inhibitors
of EBNA1 that may have potential for treatment of EBV latent infection.
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Introduction

Epstein-Barr virus (EBV) is a carcinogenic cofactor for several

lymphoid and epithelial cell malignancies (reviewed in [1,2,3]).

EBV is associated with the majority of endemic forms of Burkitt’s

lymphoma and nasopharyngeal carcinomas (NPC). EBV is also

found in ,40% of all Hodgkin’s disease tumor biopsies, some

forms of gastric carcinoma, thyroid tumors, NK/T cell lymphoma,

and the majority of immunosuppression-associated non-Hodgkin’s

lymphomas and lymphoproliferative disease. Most EBV associated

tumors harbor the latent viral genome as a multicopy episome in

the nucleus of the transformed cells. During latent infection, EBV

does not produce progeny virions, but does express a limited set of

viral gene products that promote host-cell survival and prolifer-

ation. In proliferating cells, the maintenance of the latent viral

genome depends on the functions of the Epstein-Barr Nuclear

Antigen 1 (EBNA1) protein [4]. EBNA1 is expressed in all types of

EBV latent infection found in proliferating cells and tumors.

EBNA1 is essential for the immortalization of primary B-

lymphocytes by EBV infection [5], and its inhibition by siRNA

depletion or by ectopic expression of dominant negative mutants

induce apoptosis in EBV-infected cells [6,7].

EBNA1 is an attractive candidate for targeting inhibition of

EBV latent infection. EBNA1 is consistently expressed in most, if

not all, EBV associated malignancies[8]. EBNA1 is essential for

viral genome maintenance and for infected-cell survival [6,7].

Most importantly, EBNA1 is a viral-encoded protein that has well-

defined biochemical and structural properties. EBNA1 consists of

two major functional domains, a carboxy-terminal DNA binding

domain, and an amino-terminal chromosome tethering domain

[4,9]. The DNA binding domain is essential for interaction with

the viral origin of plasmid replication (OriP) [10]. OriP consists of

a series of 30 bp repeats to which EBNA1 binds an 18 bp

palindromic-sequence as a homodimer [11,12]. The DNA binding

and dimerization interface have been solved by high resolution X-

ray crystallography in the apo- and DNA-bound forms [13,14].

While there are no known cellular homologues of EBNA1, the

three dimensional structure of EBNA1 resembles the overall
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structure of human papillomavirus (HPV) E2 protein, which has

an analogous function to EBNA1 at the HPV origin of DNA

replication [13]. Protein structure prediction programs suggest

that EBNA1 and E2 share structural folds similar to the Kaposi’s

Sarcoma-Associated Herpesvirus (KSHV) LANA protein, which

shares many functional properties with EBNA1, including DNA

binding and episome maintenance of KSHV oriP [15]. These

observations suggest that EBNA1 is a member of a family of viral

origin binding proteins that have no apparent orthologue in the

human genome, and therefore may represent attractive targets for

inhibitors of viral latent replication and persistence.

Identification of small molecules that specifically inhibit protein-

DNA binding activity has had some success [16,17,18,19].

Because of the cost-inefficient and time-consuming process of

conventional drug discovery over the past decade, high through-

put virtual screening (HTVS) has emerged as an attractive and

complementary approach to traditional solution based HTS.

HTVS typically depends on the availability of a high-resolution

crystal structure of the protein target as a template for

computational screening. Over the years, HTVS has been applied

to the successful identifications of biologically active molecules

against targets such as HIV-1 protease, thymidylate, influenza

hemagglutinin, and parasitic proteases [20,21]. The availability of

crystal structure of the EBNA1/DNA complex[22] presents to us

an opportunity to utilize the HTVS strategy. As a proof-of-

principle, we screened about 90,000 low-molecular-weight com-

pounds from a publicly available small molecule database using

the HTVS approach, and after two generations of optimization

from a primary inhibitor lead, we developed a novel series of

compounds with IC50 values in twenty micro-molar range against

EBNA1. These results established our virtual screening protocol as

an effective screening strategy for the discovery of potent and

selective inhibitor of EBNA1, and provided a novel scaffold for

future design of more potent and specific EBNA1 inhibitors.

Results and Discussion

High throughout virtual screening procedure
The procedure for HTVS in this study is shown in Fig. 1.

Firstly, residues within a distance of 6 Å around the DNA

sequence (TGCTT) among the DNA of Epstein-Barr virus origin

binding protein/DNA complexes (EBNA1, PDB entry: 1B3T)

[23] were isolated for the construction of a grid for screening by

the use of the DOCK4.0 program [24]. This grid was large

enough to include every residue of the EBNA1 DNA-binding

pocket. Next, to create a library of compounds for screening, we

selected a public database that contained a large number of small

molecule compounds that would be available for subsequent

solution screening at a nominal cost. To this end, we selected the

SPECS database that contained about 300,000 small-molecule

compounds. To refine the database further to include the

compounds that were likely to be soluble in an aqueous solution

and enable eventual testing in solution based assays, we filtered

the database for compounds with a log S value of greater than 24

by in-house software ZLogS, which resulted in a database of

around 90,000 small-molecule compounds. Then to screen these

compounds efficiently within a reasonable time, we initially used

DOCK4.0 [24], a docking program that had already been

successfully used for the identification of small molecule inhibitors

of the HIV-1 protease, thymidylate synthase, influenza hemag-

glutinin, and parasitic proteases [25], as the primary molecular

docking program to screen the small molecule database. The top

5000 hits that were generated from the energy scoring function of

DOCK4.0 were docked using three other docking programs that

employed different scoring functions. XScore [26] (version 1.2.1)

was used for calculating a binding score for a given protein-ligand

complex structure, SLIDE (version 2.3.1) [27,28] was used for the

calculation of hydrogen bonds and the hydrophobic complemen-

tarity while considering the flexibility of both protein and ligand,

and AutoDock3.0[29] was used for calculating the free energy of

binding. Specifically, the XScore program was first carried out on

the top 5000 candidate compounds that were generated from

DOCK4.0. The top 2000 compounds from XScore were then

selected for reevaluation by the use of the SLIDE scoring

function. The top 500 potential hits from SLIDE were finally

evaluated according to the free energy of binding with the

AutoDock3.0 program. According to their binding modes, free-

energy scores, and scaffold diversity, finally, 30 compounds from

15 manually classified groups were selected for experimental

validation. The 30 compounds were assayed by fluorescence

polarization (FP) and electrophoresis mobility shift assay (EMSA)

for physical inhibition of EBNA1-DNA binding (data not shown).

As a control for specificity, the compounds were rescreened for

there inhibition of an unrelated DNA binding protein, Zta, also

encoded by EBV. Zta is an EBV-encoded b-zip DNA binding

protein that bears no structural resemblance to EBNA1 and is

unlikely to be affected by EBNA1-specific inhibitors. Among the

30 candidates, four compounds were found to have selective

inhibitory activity for EBNA1 and not for Zta. The structure of

the four compounds, referred to as SC7, SC11, SC19, and SC27

are shown in Fig. 2.

Figure 1. Flow chart of virtual and experimental screening
strategy for discovering EBNA1 inhibitors. The EBNA1/DNA
crystal structure was computationally fitted into a 6 Å grid containing
every residue of the EBNA1 DNA-binding pocket was used to dock a
library of compounds from the SPECS database. Compounds were
preselected for solubility in an aqueous solution using a log S value of
greater than 24. A database of ,90,000 small-molecule compounds
were then analyzed by one primary docking programs and three score
functions to calculate the free energy of binding. 5000 candidates were
then re-examined using Xscore, Slide, and AutoDock programs to select
30 top candidates. The top 30 compounds from 15 manually classified
groups were selected for experimental DNA binding and cell-based
bioassays.
doi:10.1371/journal.pone.0010126.g001

Inhibitors of EBNA1
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Biochemical validation of EBNA1 Inhibitors Identified
through Virtual Screening

The four candidate compounds were further characterized for

their relative potency of inhibiting EBNA1-DNA binding using

both the FP and EMSA. EBNA1 DNA binding domain was

purified to near homogeneity and capable of binding a fluorescent

tagged DNA hairpin containing a consensus EBNA1 binding site

with ,50 nM affinity (data not shown). As a control for selectivity,

the same analysis was performed with purified Zta, and its cognate

fluorescent DNA probe. In the FP assay, SC7, SC11, and SC19

had IC50 ranges between 20–100 mM, while SC27 did not

perform well in the FP assay. However, SC27 showed highly

specific inhibition of EBNA1 in EMSA (Fig. 3D, lower right

panel), suggesting that the poor performance in FP may be due to

fluorescence interference properties or solution solubility prob-

lems. The EMSA analysis confirmed that each compound

inhibited EBNA1-DNA binding with an IC50 between 20–

100 mM, similar to that determined by FP. SC7, SC11, and

SC19 showed no significant inhibition of Zta-DNA binding in

either the FP assay or EMSA, suggesting that these compounds are

selective inhibitors of EBNA1-DNA binding function.

Inhibition of EBNA1 functions in cell-based assays
SC7, SC11, and SC19 were assayed for their ability to inhibit

EBNA1 in two cell-based assays. Transcription activation of the

EBV Cp promoter by EBNA1 is known to be essential for B-cell

immortalization [30]. We therefore assayed the effect of

compounds to inhibit EBNA1 transcription activation of Cp using

a luciferase reporter-based assay in transiently transfected

HEK293T cells (Fig. 4). The luciferase reporter plasmid consisted

of a ,2 kb region of EBV containing both OriP and Cp fused

upstream of the luciferase gene. Cotransfection of this plasmid

with an EBNA1 expression plasmid produced a 4–5 fold increase

in luciferase activity relative to control expression vector lacking

EBNA1 (data not shown). Incubation of transfected cells with

control vehicle DMSO had no effect on EBNA1 transcription

activation. Incubation of transfected cells with 5 mM SC7, SC11,

or SC19 completely blocked EBNA1 transcription activation

(Fig. 4). As a control for specificity, the same compounds were

assayed for their inhibition of Zta transcription activation. Zta is a

potent transcription activator of the EBV BHLF1 promoter. We

therefore assayed these compounds for their effect on Zta

transactivation of BHLF1 promoter fused to luciferase reporter

gene. Cells incubated with 5 mM SC7 and S11 showed ,60%

inhibition of Zta transactivation, indicating that these compounds

were not highly selective inhibitors of EBNA1 transcription

function in vivo. In contrast, cells incubated with 5 mM SC19

had no detectable inhibitory effect on Zta transactivation, yet a

robust inhibition of EBNA1. This indicates that SC19 can

selectively inhibit EBNA1 transcription activation function in a

cell-based assay.

Elimination of EBV episomes
To further evaluate the ability of these compounds to inhibit the

EBNA1 function required for EBV genome replication, we assayed

their effect on EBV genome copy number in the Raji Burkitt

lymphoma cell line (Fig. 5). Raji cells typically contain ,100 copies

of the EBV genome per cell. Previous studies have demonstrated

that hydroxyurea (HU) can reduce the number of EBV episomes

in Burkitt lymphoma cell lines, including Raji cells. Therefore, we

assessed the effects of HU, SC7, SC11, and SC19 on EBV copy

number in Raji cells. Cells were treated with 10 mM SC7, SC11,

SC19 or with 100 mM HU for six days. The EBV genome copy

number was determined by real time PCR for EBV DNA (DS)

relative to cellular actin DNA. We found that HU treatment

caused ,50% reduction in EBV genome copy number. Treatment

with SC11 or SC19 caused a 75–90% reduction in EBV copy

number, while SC7 had no apparent effect (Fig. 5). These findings

suggest that SC11 and SC19 might be more effective than HU in

promoting loss of EBV genomes from latently infected cells.

Molecular docking interaction analysis
To understand the mode of inhibition of compounds binding

with DNA binding site of EBNA1, we docked the best two

inhibitors (SC7 and SC19, their inhibitory activity against EBNA1

is 23 and 49 mM, respectively) into the DNA binding site of

EBNA1 by using AutoDock3.0, shown in Fig. 6. As shown in

Fig. 6A, SC7 is modeled to bind the DNA-binding site of EBNA1

that forms two hydrogen bonds with the nitrogen of side chain of

Arg469 and one hydrogen bond with oxygen of side-chain of

Tyr518, respectively. In addition, the binding mode suggests that

extensive hydrophobic interactions are formed between SC7 and

hydrophobic region (R1 region in Fig. 7) near the residues Pro535

and Leu536. In particular, from the electrostatic surface contour

analysis shown in Fig. 6A, SC7 matches the binding site very well

inwhich the hydrophobic motif of SC7 interacts with hydrophobic

regions of EBNA1, while the negative-charged oxygen of sulfonyl

and bromide in 2-bromophenyl acetate motifs interact with the

positive charged region near the Arg469 (R3 region in Fig. 7). In

comparison with the EBNA1-DNA crystal structure, the SC7 is

well aligned with the T111, G112 and C113 of the DNA sequence

(shown in Fig. 6E). In particular, the sulfonyl motif mimics the

interaction with the receptor as the phosphate motif of G112 of

DNA sequence. In contrast to SC7, SC19 is modeled to bind to

the EBNA1 active site in a different orientation, which is

apparently due to the bulky phenyl group derivatization on the

benzamide motif (SC19) (Fig. 6C and D). In addition to extensive

hydrophobic interactions between EBNA1 and SC19 with residues

Lys514, Tyr518, Arg522, Leu536 and Leu554, SC19 also makes

three additional hydrogen bonding interactions with Arg469,

Lys514 and Tyr518 of EBNA1. Based on the interaction analysis

of SC7 and SC19 binding with EBNA1, the residue Arg469 and

Tyr518 may play crucial role in the maintaining the inhibitory

activity of inhibitor binding with EBNA1.

Figure 2. The chemical structure of four related compounds
identified by virtual screening that were validated for physical
inhibition of EBNA1-DNA binding.
doi:10.1371/journal.pone.0010126.g002
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Conclusions and Future Prospects
We have identified four small molecules as novel inhibitors

against EBNA1 by using a HTVS approach from a filtered small

molecule SPECS compound database that contains about 90,000

compounds. Among these novel inhibitors, compound SC7 was

found to inhibit the DNA binding activity of the EBNA1 protein in

FP assays with an IC50 value of 23 mM. On the basis of the

molecular docking of this compound to EBNA1, a fragment scaffold

(the scaffold listed in Fig. 6B) was hypothesized to be the functional

moiety for EBNA1 inhibition. Furthermore, the docking simulation

of SC7 and SC19 into the EBNA1 active site provides some

pharmacophore clues for future inhibitor optimization to increase

EBNA1 inhibitor potency and selectivity (Fig. 6 or 7). In particular,

compounds with modifications that extend the R1 position of the

phenyl group with hydrophobic motifs might enable compound

analogues to reach deeper into the EBNA1-binding pocket that

interacts with residue Pro535 and Leu536 of EBNA1. The

modification of bulky group at the R2 and R4 positions may clash

with the amino acid side-chain residues of the EBNA1 DNA binding

pocket, therefore changes at these positions may be limited to

relatively small substituents. In the R3 position, the substitution of a

bulky group, such as a phenyl, will likely be unfavorable for the

binding of the inhibitor to EBNA1. In contrast, hydrophilic groups

introduced at the R5 and R3 groups could mediate additional

hydrogen bonding interactions with the residues of EBNA1 protein

(Arg469 in R3 position, Gly472 and Tyr518 in R5 position) and

potential enhance the binding affinity of the inhibitors.

Our study demonstrates that an efficient and cost-effective virtual

screening procedure can be used to identify novel EBNA1 inhibitors

that also show considerable selectivity for EBNA1 over other

proteins. Moreover, the promising results that were obtained in this

study will serve as an excellent platform for the further development

of EBNA1 inhibitors with even greater potency and selectivity for

use as therapeutic agents against latent EBV infection.

Materials and Methods

Virtual screening
The virtual screening strategy was shown in Fig. 1. The X-ray

crystal structure of the Epstein-Barr virus origin binding protein/

DNA complexes (EBNA1, PDB accession code 1B3T) [23] was

used as the target structure in this approach. The modified small

Figure 3. Physical inhibition of EBNA1-DNA binding assays. Candidate inhibitors SC7, SC11, SC19, and SC27 were assayed by fluorescence
polarization (FP) for inhibition of EBNA1-DNA binding (panel A) and for inhibition of Zta-DNA binding (panel B). IC50 values were calculated for each
isotherm. Inhibitor concentrations were diluted 2-fold from 833 to 7 mM for each compound. Inhibitors were also assayed using a secondary EMSA
assay to monitor EBNA1-DNA binding (panel C) or Zta-DNA binding (panel D) using the same concentrations of inhibitor compounds (two fold
dilutions from 833 to 7 mM) as that shown for FP assays in panels A and B, above.
doi:10.1371/journal.pone.0010126.g003
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molecular database containing approximately 90,000 molecules

for virtual screening was generated as a SPECS subset from the

Zinc databases (compounds are available from the SPECS

Company)[31] with a predicted solubility filter by in-house

program ZLogS (log S.24). ZLogS (unpublished) was gifted

from Dr. MY Zheng in Drug Discovery and Design Center,

SIMM, Chinese Academy of Sciences. ZlogS performs solubility

prediction based on the generalized atom additive model and

stepwise multiple linear regression (SMLR). Eight putative

relationships between the atomic solvent assessable surface area,

electro-descriptors and atomic contribution of water solubility

were investigated.

The virtual screening was performed on SGI Origin3800

computer at the Shanghai Institute of Materia Medica. A heuristic

docking and consensus scoring strategy was used to evaluate the

results of the virtual screening. Specifically, we used DOCK4.0 as

the primary screening tool targeting at DNA binding site of the X-

ray crystal structure of EBNA1. Residues around the DNA at

radius of 6 Å was isolated for the construction of the grid for

docking simulation. This radius was large enough to include all of

the residues that are involved in putative inhibitor site. During the

docking procedure, Kollman-all-atom charges were assigned to

the protein, and Geisterger-Hückel charges assigned to the small

molecules in the SPECS database. Furthermore, the conforma-

tional flexibility of the molecules from the database was considered

during the docking simulations. We used 30 configurations per

ligand building a cycle and 50 maximum anchor orientations were

used in the anchor-first docking algorithm. After the protocol was

set up, the modified database was screened and top-5000

molecules were taken as the hits list for further analyses. These

molecules were re-ranked by Xscore (version 1.2.1)[26] and top-

2000 molecules were taken as the hits list for the docking and

scoring mode of SLIDE (version 2.3.1)[27,28]. The binding

affinity of identified top-500 potential hits from SLIDE were

further evaluated by AutoDock3.0[29]. Last, on the basis of the

results of these scoring functions, the top 200 molecules were

extracted and carefully considered for the receptor binding and

scaffold diversity. Finally, we purchased 30 available candidate

compounds from different scaffolds for the in vitro assay.

Score functions with Xscore, SLIDE and Autodock
In this study, the Xscore and SLIDE were performed as score

functions with default parameters. And last, the molecular docking

program AutoDock 3.0[29] was used for the automated molecular

docking simulations for the prediction of the binding affinity. The

docking scheme is summarized as follows. First, the receptor

molecule was checked for polar hydrogen and was assigned for

partial atomic charges. The PDBQS file was created, and the

atomic solvation parameters were also assigned. Second, a 3D

search grid was created by the use of AutoGrid algorithm[32] to

evaluate the binding energies between the ligands and the EBNA1

receptors. Third, a series of the docking parameters were defined.

The atom types, generations and the run numbers for LGA

algorithm were properly assigned according to the requirement of

the Amber force field. The number of generations, energy

evaluations, and docking runs were set to 370,000, 1,500,000,

and 20, respectively. Kollman all-atom charges were assigned for

the EBNA1 receptors and Gasteiger-Marsili [22] charges were

Figure 4. Inhibition of EBNA1 transcription activation function in cell-based assays. Soluble compounds SC7, SC11, and SC19 were
assayed for their ability to inhibit either EBNA1 or Zta-dependent transcription activation in transfected 293T cells. Cells were transfected with vector
or EBNA1 expression plasmid and the OriP-Cp-Luciferase reporter plasmid in the presence of 5 mM SC7, SC11, SC19 or DMSO control. 100% inhibition
was equivalent to basal expression levels of OriP-Cp-Luc in the absence of ectopic EBNA1 expression. In parallel experiments, the same compounds
were also assayed for inhibition of Zta transcription activation of the BHLF1-Luciferase reporter plasmid. Percent inhibition of Zta is shown in grey.
Percent inhibition of EBNA1 is shown in black. Error bars represent standard deviation from the mean for at least three experimental replicates.
doi:10.1371/journal.pone.0010126.g004

Inhibitors of EBNA1

PLoS ONE | www.plosone.org 5 April 2010 | Volume 5 | Issue 4 | e10126



assigned for the ligands. Finally, the docked ligand-receptor

complexes were selected according to the criteria of interacting

energy combined with geometrical matching quality. These

complexes were used as the starting conformation for further

energetic minimization and geometrical optimization before the

final binding models were achieved.

Compounds
All compounds used were ordered from SPECS company which

reported purities of over 90% for all compounds as analyzed by

LCMS. Compounds were stored as powder in a dessicator and

resuspended to 50 mM in DMSO immediately prior to use.

SPECS catalogue numbers are as follows: SC7: AG-690/

36423053; SC11: AG-690/36749014; SC19: AG-690/36535028;

SC27: AJ-292/40706570.

Protein Purification
The EBNA1 DNA binding domain (DBD) (aa 454–607) with a

hexa-histidine amino-terminal fusion protein was expressed in E. coli

and purified over Ni-NTA agarose according to manufacturers

recommendations (Qiagen). The protein was purified from four liters

of E. coli to generate ,20 mg of highly purified EBNA1 protein,

estimated to be .90% pure. Purified protein was then dialyzed into a

buffer consisting of 200 mM NaCl, 20 mM, Tris-HCl pH 7.4 and

20% Glycerol. Hexa-His tagged Zta was purified from E. coli to near

homogeneity, similar to EBNA1 protein. Purified Zta was dialyzed

into 500 mM NaCl, Tris-HCl pH 7.4 and 20% Glycerol.

FP Assay EBNA1
A reaction mix containing 200 mM NaCl, 20 mM Tris-Cl

pH 7.4, 1 mM DTT, 10 ug/mL BSA, 10 nM Cy5 59 modified

EBNA1 (Cy5-GGGTAGCATATGCTATCTagatagcatatgctaccc)

or ZTA (Cy5-CACTGACTCATTaatgagtcagtg binding site)

oligonucleotide hairpins (purchased from IDT) and 246 nM

EBNA1 DBD (aa 459–607) or 300 nM ZTA full length purified

recombinant protein was incubated for 20 minutes at room

temperature prior to dispensing (BioTek MicroFlo Select) 30 uL

to each well of a 384 well black opaque microtiter plate

containing the test compounds. Test plates were centrifuged

at 1656g prior to fluoresence polarizaration measurements in

an Envision Xciter multilable plate reader (Perkin Elmer) using

a Cy5 FP 620 excitation and Cy5 FP P/S-pol 688 emission

filters.

EMSA Assay
An EMSA reaction buffer was prepared containing 20%

Glycerol, 200 mM NaCl, 20 mM Tris-Cl pH 7.4, 1 mM DTT,

10 ug/mL BSA, 10 nM Cy5 oligonucleotide probe and with or

without 246 nM EBNA1 DBD or 300 nM Zta full length

purified recombinant protein. This solution was incubated for

20 minutes at room temperature to ensure binding. 30 uL of this

solution was dispensed to eppendorf tubes containing 0.5 uL of

a test compound in DMSO and mixed. Samples were then

loaded onto a 6% polyacrylamide gel in 1/2X Tris-Borate

buffer and electrophoresed for 90 min at 170 V. The gel was

then scanned for flouresence using at Typhoon Imager (GE

Healthcare).

FP screening
For initial screening 2 ul of test compounds resuspended in

DMSO were plated in triplicate wells in a black opaque Optiplate

(Perkin Elmer) at a concentration of 50 mM to achieve a final

Figure 5. Elimination of EBV genomes from Burkitt lymphoma cell lines. EBV-positive Raji Burkitt lymphoma cell lines were treated with
10 mM SC7, SC11, or SC19 or DMSO control for six days. EBV genome copy number was determined by quantitative real-time PCR analysis of EBV DNA
(DS) relative to cellular DNA (actin). Error bars represent standard deviation from the mean for at least three experimental replicates.
doi:10.1371/journal.pone.0010126.g005

Inhibitors of EBNA1
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concentration of 3.33 mM when resuspended in 30 uL of

reaction solution. The plate was assayed using the FP assay

above.

IC50 Determination
To determine IC50s, an 11- point series of 2-fold dilutions in

DMSO was performed in duplicate starting at an initial

concentration of 50 mM using a Janus Verispan (Perkin Elmer)

to create a master plate. From this master plate 0.5 uL was

transfered to black opaque 384 well Optiplate (Perkin Elmer) using

a Janus MDT (Perkin Elmer) or to microfuge tubes by hand. The

plate or microfuge tubes were assayed using the FP and EMSA

protocols described above. IC50 plots were generated by analyzing

the binding of EBNA1 or Zta with inhibitor compounds ranging

from 833 to 7 uM final concentrations following two fold dilutions

(specifically 833, 417, 208, 104, 52, 26, 13, 7, and 0 mM). The data

was calculated as percentage of EBNA1 binding activity and then

plotted versus the log of the concentration of inhibitor. Using

Figure 6. Docking simulation of two best hits (SC7 and SC19) in the EBNA1 site. (A) Interactions of SC7 with the EBNA1 binding Pocket; (B)
Interaction analysis between SC7 and EBNA1 calculated by LIGPLOT program; (C) Interactions of SC19 with the EBNA1 binding Pocket; (D) Interaction
analysis between SC19 and EBNA1 calculated by LIGPLOT program; (E) The comparison between the binding mode of SC7/EBNA1 and DNA/EBNA1
crystal complex structure, SC7 is shown in yellow stick and DNA is shown in magenta stick.
doi:10.1371/journal.pone.0010126.g006

Inhibitors of EBNA1
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GraphPad Prism 5.0 software the plotted data was fit with a Hill-

Slope dose-response curve to calculate the relative IC50.

Raji EBV Genome Copy Number Assay
Raji cells (purchased from ATCC) were grown at

56106 cells/ml in RPMI media supplemented with 10% FBS

and 10 mM Streptomycin and 10 mm Penicillin. Test com-

pounds were added to achieve a final concentration of 10 uM.

Cells were grown at 37uC for three days and then passaged 1:10

into fresh media with the same concentration of drug. After a

second 3-day incubation cells were harvested and the DNA was

isolated using ChIP Lysis Buffer followed by sonication,

phenol:chloroform extraction, and ethanol precipitation. Rela-

tive EBV DNA copy number was quantified by real-time PCR

with primers for cellular actin and the EBV dyad-symmetry

region, as described previously [33].

EBNA1 Transcription Activation Assay
HEK293T cells (purchased from ATCC) were seeded in 24-well

plates at a density of 50,000 cells/well in DMEM media with 10%

FBS. Following an 18 hr incubation at 37uC, cells were transfected

using 2 ml of lipofectamine with 0.4 ug/well of a pCMV-FLAG-

EBNA1, pCMV-FLAG-ZTA (N362) or a control pCMV-FLAG

vector and 0.2 ug/well of either a Cp-Luciferase (EBNA1-

reporter) or a HP-Luciferase (Zta-reporter) plasmid. All samples

were cotransfected with 100 ng of Renilla expression vector as an

internal control for transfection efficiency. After 6 hrs the

transfection media was replaced and test compounds were added

to achieve a final concentration of 5 uM. Cells were incubated at

37uC for 48 hrs and then harvested. Cells were lysed and prepared

for analysis using the Promega Dual Reporter system and

luminescence was measured using a Perkin Elmer Wallac Victor2

1420 Multilabel reader.
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