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Abstract

The hypothesis of a Hierarchy of the Sciences with physical sciences at the top, social sciences at the bottom, and biological
sciences in-between is nearly 200 years old. This order is intuitive and reflected in many features of academic life, but
whether it reflects the ‘‘hardness’’ of scientific research—i.e., the extent to which research questions and results are
determined by data and theories as opposed to non-cognitive factors—is controversial. This study analysed 2434 papers
published in all disciplines and that declared to have tested a hypothesis. It was determined how many papers reported a
‘‘positive’’ (full or partial) or ‘‘negative’’ support for the tested hypothesis. If the hierarchy hypothesis is correct, then
researchers in ‘‘softer’’ sciences should have fewer constraints to their conscious and unconscious biases, and therefore
report more positive outcomes. Results confirmed the predictions at all levels considered: discipline, domain and
methodology broadly defined. Controlling for observed differences between pure and applied disciplines, and between
papers testing one or several hypotheses, the odds of reporting a positive result were around 5 times higher among papers
in the disciplines of Psychology and Psychiatry and Economics and Business compared to Space Science, 2.3 times higher in
the domain of social sciences compared to the physical sciences, and 3.4 times higher in studies applying behavioural and
social methodologies on people compared to physical and chemical studies on non-biological material. In all comparisons,
biological studies had intermediate values. These results suggest that the nature of hypotheses tested and the logical and
methodological rigour employed to test them vary systematically across disciplines and fields, depending on the complexity
of the subject matter and possibly other factors (e.g., a field’s level of historical and/or intellectual development). On the
other hand, these results support the scientific status of the social sciences against claims that they are completely
subjective, by showing that, when they adopt a scientific approach to discovery, they differ from the natural sciences only
by a matter of degree.
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Introduction

Although it is still controversial, the idea of a Hierarchy of the

Sciences is nearly 200 years old [1,2,3]. Philosopher and historian

of science August Comte (1798–1857) first suggested that scientific

disciplines differed systematically in the complexity and generality

of their subject of study, in the precision with which these subjects

are known, and in their level of intellectual and historical

development. Comte hypothesised a rank order in which what

he called ‘‘celestial physics’’ (astronomy) preceded ‘‘terrestrial

physics’’ (physics and chemistry), followed by ‘‘organic physics’’

(biology) and ‘‘social physics’’ (which he later renamed sociology)

[1,4]. Comte believed that sociology was the queen of all

disciplines and the ultimate goal of all research, but also the most

complex and least developed of the sciences [4].

Similar ideas have been proposed by contemporaries of Comte

(e.g. William Whewell [5]) and by modern philosophers and

sociologists of science who, for example, have distinguished

between ‘‘hard’’ and ‘‘soft’’ sciences [6,7], different levels of

‘‘empiricism’’ [8], different levels of ‘‘codification’’ [9], ‘‘pre- and

post-paradigmatic’’ sciences [10], and argued that fields of

research differ in the level of agreement on a single set of theories

and methodologies [10], the rigour with which data is related to

theory [7], the extent to which the choice of problems and

decisions made in solving problems are based upon cognitive as

opposed to non-cognitive criteria [11], the level of ‘‘consensus on

the significance of new knowledge and the continuing relevance of

old’’ [9], their explanatory success [12]. These scholars did not

always endorse the exact same definitions and hierarchies, but they

all shared an intuition that here we will summarize as follows: in

some fields of research (which we will henceforth indicate as

‘‘harder’’) data and theories speak more for themselves, whereas in

other fields (the ‘‘softer’’) sociological and psychological factors –

for example, scientists’ prestige within the community, their

political beliefs, their aesthetic preferences, and all other non-

cognitive factors – play a greater role in all decisions made in

research, from which hypothesis should be tested to how data

should be collected, analyzed, interpreted and compared to

previous studies.

The hypothesised Hierarchy of the Sciences (henceforth HoS) is

reflected in many social and organizational features of academic life.

When 222 scholars rated their perception of similarity between

academic disciplines, results showed a clustering along three main

dimensions: a ‘‘hard/soft’’ dimension, which roughly corresponded

to the HoS; a ‘‘pure/applied’’ dimension, which reflected the

orientation of the discipline towards practical application; and a
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‘‘life/non-life’’ dimension [13]. These dimensions have been vali-

dated by many subsequent studies, which compared disciplines by

parameters including: average publication rate of scholars, level of

social connectedness, level of job satisfaction, professional commit-

ment, approaches to learning, goals of academic departments,

professional duties of department heads, financial reward structures

of academic departments, and even response rates to survey

questionnaires [14,15,16,17].

Numerous studies have taken a direct approach, and have

attempted to compare the hardness of two or more disciplines,

usually psychology or sociology against one or more of the natural

sciences. These studies used a variety of proxy measures including:

ratio of theories to laws in introductory textbooks, number of

colleagues acknowledged in papers, publication cost of interrupt-

ing academic career for one year, proportion of under 35 s who

received above-average citations, concentration of citations in the

literature, rate of pauses in lectures given to undergraduates,

immediacy of citations, anticipation of one’s work by colleagues,

average age when receiving the Nobel prize, fraction of journals’

space occupied by graphs (called Fractional Graph Area, or FGA),

and others [17,18]. According to a recent review, some of these

measures are correlated to one-another and to the HoS [2]. One

parameter, FGA, even appears to capture the relative hardness of

sub-disciplines: in psychology, FGA is higher in journals rated as

‘‘harder’’ by psychologists, and also in journals specialised in

animal behaviour rather than human behaviour [19,20,21].

Whether disciplines really differ in hardness and can be ranked

accordingly, however, is still controversial [3,12,21,22]. This

controversy is manifest, for example, in the debate on the

applicability of the scientific method within disciplines like

psychology or sociology. At one extreme are researchers that

approach the social sciences like any other and test hypotheses

through laboratory and field experiments; at the other extreme,

eminent scholars argue that the social sciences are qualitatively

different from other disciplines and that scientific objectivity within

them is purely a myth [23,24,25,26,27]. Radically anti-hierarchy

positions have been developed within the ‘‘second wave’’ of

science studies and its ‘‘postmodern’’ derivations, according to

which all scientific knowledge is ‘‘socially constructed’’ and thus

not different from any other form of knowledge, faith or politics

[28,29]. Under this perspective, all the empirical measures of

hardness listed above could be re-interpreted as just reflecting

cultural differences between ‘‘academic tribes’’ [30].

Several lines of evidence support a non-hierarchical view of the

sciences. The consensus between scientists within a field, measured

by several independent parameters including level of agreement in

evaluating colleagues and research proposals, is similar in physics

and sociology [3]. The heterogeneity of effect sizes in meta-

analyses also appears to be similar in the physical and the social

sciences, suggesting a similar level of empirical cumulativeness

[22]. Historical reconstructions show that scientific controversies

are common at the frontier of all fields, and the importance and

validity of experiments is usually established in hindsight, after a

controversy has settled [31,32]. Analysis of molecular biology

papers showed that the interpretation of experiments is heavily

influenced by previously published statements, regardless of their

verity [33]. In evolutionary biology, published estimates on the

heritability of sexually selected traits in various species were low for

many years, but then suddenly increased when new mathematical

models predicted that heritability should be high [34]. Cases of

‘‘pathological science’’, in which a wrong theory or non-existent

phenomenon are believed for many years and are ‘‘supported’’ by

empirical data, have been observed in all fields, from parapsy-

chology to physics [35].

The contrast between indirect measures of hardness, which

point to a hierarchy, and evidence of high controversy and

disagreement in all kinds of research has inspired an intermedi-

ate position, which distinguishes between the ‘‘core’’ and the

‘‘frontier’’ of research. The core is the corpus of agreed upon

theories and concepts that researchers need to know in order to

contribute to the field. Identifiable with the content of advanced

university textbooks, the core is clearly more developed and

structured in the physical than in the social sciences [11,36]. The

frontier is where research is actually done, where scientists produce

new data and concepts, most of which will eventually be

contradicted or forgotten and will never make it to the core. At

the frontier, levels of uncertainty and disagreement might be

similar across fields [3,36].

The question, therefore, is still unanswered: does a Hierarchy of

the Sciences really exist? Does the hardness of research vary

systematically across disciplines? This study compared scientific

papers at the frontier of all disciplines using an intuitive proxy of

bias. Papers that declared to have tested a hypothesis were

sampled at random from all 10837 journals in the Essential

Science Indicators database, which univocally classifies them in 22

disciplines. It was then determined whether the authors of each

paper had concluded to have found a ‘‘positive’’ (full or partial) or

a ‘‘negative’’ (no or null) support for the tested hypothesis. The

frequency of positive and negative results was then compared

between disciplines, domains and methodological categories.

Papers were classified by discipline based on the journal in which

they were published. Disciplinary categories (e.g. pure/applied,

life/non-life, etc…) followed previous classifications based on the

perception of scholars [13,14,15,16,17]. Methodological categories

are based on very general characteristics of the object of study and

the parameters measured in each paper. The term ‘‘methodolo-

gy’’, therefore, in this paper is used in its broadest possible sense of

‘‘system of methods and principles used in a particular discipline’’

[37].

Since papers were selected at random with respect to all factors,

the proportion of positive results in this sample is a proxy of the

level of confirmation bias. Scientists, like all other human beings,

have an innate tendency to confirm their expectations and the

hypotheses they test [38]. This confirmation bias, which operates

largely at the subconscious level, can affect the collection, analysis,

interpretation and publication of data [39,40] and thus contribute

to the excess of positive results that has been observed in many

fields [38,41,42,43,44]. In theory, application of the scientific

method should prevent these biases in all research. In practice,

however, in fields where theories and methodologies are more

flexible and open to interpretation, bias is expected to be higher

[45].

In sum, if the HoS hypothesis is correct, scientists in harder

fields should accept more readily any result their experiments

yield, while those in softer fields should have more freedom to

choose which theories and hypotheses to test and how to analyze

and interpret their own and their colleagues’ results. This freedom

should increase their chances to ‘‘find’’ in the data what they

believe to be true (see the Discussion section for a detailed

analysis), which leads to the prediction that papers will report

more negative results in the harder sciences than in the softer.

Results

A total of 2434 papers were included in the analysis. No paper

testing a hypothesis was retrieved from mathematical journals,

and the ‘‘multidisciplinary’’ category (which includes journals like

Nature, Science, PNAS, etc…) was excluded. Therefore, the sample

Hierarchy of Positive Results

PLoS ONE | www.plosone.org 2 April 2010 | Volume 5 | Issue 4 | e10068



represented 20 of the 22 disciplines in the Essential Science

Indicators database (Fig. 1). Overall, 2045 papers (84%) reported a

positive or partial support for the tested hypothesis. Positive results

were distributed non-randomly between disciplines (X2 = 61.934.

df = 19, p,0.0001).

Negative results by discipline, dimension and domain
Space Science had the lowest percentage of positive results

(70.2%) and Psychology and Psychiatry the highest (91.5%). The

overlap between disciplines in the physical, biological and social

sciences was considerable (Fig. 1), yet the rank observed (based on

the frequency of positive results) and that predicted by the

hypothesis (physical = I, biological = II and social sciences = III)

tended to correlate when all disciplines were included (Kendall’s

t-c = 0.35360.194SE, T = 1.813, p = 0.07), and were significantly

correlated when only pure disciplines [13,14,16] were included

(t-c = 0.56860.184SE, T = 3.095, p = 0.002). Applied disciplines

showed no significant trend (t-c = 0.06160.364SE, T = 0.168,

p = 0.867).

Of the three disciplinary dimensions identified by previous

studies [13,14,16], the hard/soft and the pure/applied dimensions

were significantly associated with the frequency of positive results

(Figure 2). The odds among soft disciplines were over 50% higher

than among hard sciences (OR(95%CI) = 1.529(1.037–2.116),

p = 0.011). The odds of reporting a positive result among papers

published in hard-applied, soft-pure and soft-applied disciplines

[13,14,16] were around 70% higher than among hard-pure

disciplines (Fig. 2). The life/non-life dimension was not signif-

icantly associated with the frequency of positive results alone

(X2 = 2.675, p = 0.102; power to detect a small effect (Cohen’s

w = 0.1) = 0. 998), but it was when controlling for the other two

dimensions (Wald = 5.493, p = 0.019, OR(95%CI) of life vs.

non-life = 1.327(1.047-1.681)).

The disciplinary domain of a paper was a significant pre-

dictor of positive results when all disciplines were included

(Wald = 9.335, df = 2, p = 0.009, OR(95%CI) of biological vs.

physical sciences = 1.228(0.962-1.569), OR(95%CI) of social vs.

physical sciences = 1.754(1.220-2.522)). When only pure disci-

plines were included, the effect was stronger (N = 1691,

Wald = 13.34, p = 0.001, OR(95%CI) of biological vs. physical

sciences = 1.387(1.041-1.847), OR(95%CI) or social vs. physical

sciences = 2.207(1.431-3.402)). Among applied disciplines, howev-

er, positive results were uniformly high and not significantly

different (N = 743, Wald = 0.110, p = 0.946; power to detect a

small (OR = 1.5), medium (OR = 2.5) and large effect (OR = 4.5),

respectively = 0.343, 0.89 and 0.996; OR(95%CI) of biological vs.

physical sciences = 1.068(0.66-1.727), OR(95%CI) of social vs.

physical = 1.105(0.565-2.161)) (Fig. 3).

Negative results by methodological category
The methodology of papers varied significantly between

disciplines (X2 = 4271.298, df = 152, p,0.001), but there was also

considerable within-discipline variability, particular among the

physical and biological sciences (Fig. 4).

Methodological category was a significant predictor of positive

results both when all disciplines and only pure disciplines were

included (respectively, Wald = 37.943 and Wald = 33.834, df = 8,

p,0.001), but not when only applied disciplines were included

(Wald = 9.328, p = 0.315; power to detect a small, medium and

large effect, respectively 0.18, 0.575 and 0.867) (Fig. 5). Including

all disciplines, behavioural/social studies on humans (whether or

not they included non-behavioural methods) reported significantly

more positive results than behavioural studies on non-humans

Figure 1. Positive Results by Discipline. Name of discipline,
abbreviation used throughout the paper, sample size and percentage
of ‘‘positive’’ results (i.e. papers that support a tested hypothesis).
Classification by discipline was based on the Essential Science Indicators
database, the hard/soft, pure/applied and life/non-life categories were
based on previous literature (see text for details). Error bars represent
95% logit-derived confidence interval.
doi:10.1371/journal.pone.0010068.g001

Figure 2. Positive Results by Disciplinary Dimension. Number of
papers that supported (white) or failed to support (black) a tested
hypothesis, classified by disciplinary categories based on dimensions
identified by previous studies (see text for explanations). Percentage in
each bar refers to positive results. OR = Odds Ratio (and 95%Confidence
Interval) of reporting a positive result compared to the reference
category of Hard/Pure disciplines. Chi square was calculated for each
dimension separately (for category composition see Fig. 1).
doi:10.1371/journal.pone.0010068.g002
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(tot N = 685, Wald = 9.669, df = 1, p = 0.002, OR(95%CI) =

2.046(1.303–3.213), while no difference between human and non-

human was observed among biological, non-behavioural studies

(tot N = 1328, Wald = 0.232, df = 1, p = 0.630, OR(95%CI) =

1.088(0.771–1.537); power to detect a small, medium and large

effect, respectively = 0.551, 0.991 and 0.999). These latter reported

significantly more positive results than behavioural studies on

non-humans (tot N = 1511, Wald = 4.764, df = 1, p = 0.029,

OR(95%CI) = 1.541(1.045–2.273).

Confounding factors and corrected Odds-Ratios
Positive and negative results were not significantly associated

with the five-year impact factor of the journal standardized by

discipline (N = 2273, Student’s t (equal variances not assumed) =

-1.356, df = 511.827, p = 0.176; power to detect a small

effect = 0.968), nor to the year of publication (X2 = 11.413,

df = 7, p = 0.122, Cramer’s V = 0.068; power to detect a small

effect = 0.97). Controlling for these two factors in regression

models did not alter the results in any relevant way.

The frequency of negative results in papers that tested multiple

hypotheses (N = 151, in which only the first hypothesis was

considered), was significantly higher than in papers testing only

one hypothesis (X2 = 13.591, df = 1, p,0.001). Multiple-hypothe-

ses papers were more frequent in the social than in the biological

and the physical sciences (respectively, 18.47% (number of

multiple papers N = 76), 4.46% (N = 62) and 1.87% (N = 12),

X2 = 140.308, df = 2, p,0.001, Cramer’s V = 0.240), and were

most frequent in the discipline of Economics and Business (47%,

N = 55). However, the frequency of negative results in multiple-

hypotheses papers was not significantly different between disci-

plines nor between disciplinary domains (respectively, X2 = 15.567

df = 17, p = 0.555, V = 0.322, and X2 = 4.303, df = 2, p = 0.116,

V = 0.169), although only large effects can be excluded with

significant confidence (power to detect a small, medium and large

effect, respectively = 0.09, 0.59 and 0.98 for disciplines; 0.18, 0.92,

0.99 for domains).

When correcting for the confounding effect of presence/absence

of multiple hypotheses, the odds of reporting a positive result were

around five times higher for papers published in Psychology and

Psychiatry and Economics and Business than in Space Science

(Table 1, Nagelkerke R2
N = 0.051). When correcting for the

confounding effect of pure/applied discipline and presence/

absence of multiple hypotheses, the odds of reporting a positive

results were about 2.3 times significantly higher for papers in the

social sciences compared to the physical sciences (Table 2,

R2
N = 0.030), and about 3.4 times significantly higher for

behavioural and social studies on people compared to physical-

chemical studies (Table 3, R2
N = 0.045).

Figure 4. General Methodology by Discipline and by Domain. Methodology employed by papers in different disciplines and domains.
Methodological categories correspond to basic characteristics of the outcome: whether it measured physical/chemical parameters as opposed to
behavioural parameters, and whether the object of study was non-biological, biological non-human, or biological human (see Methods for further
details).
doi:10.1371/journal.pone.0010068.g004

Figure 3. Positive Results by Disciplinary Domain. Percentage of
papers that supported a tested hypothesis, classified by disciplinary
domain. Blue = including only pure disciplines, Red = including only
applied disciplines, Black = all disciplines included. Error bars represent
95% logit-derived confidence interval. For domain composition see
Figure 4.
doi:10.1371/journal.pone.0010068.g003
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Discussion

We analyzed a large sample of papers that, by declaring to have

tested a hypothesis, had placed themselves at the research frontier

of all disciplines and explicitly adopted the hypothetico-deductive

method of scientific inquiry, with its assumptions of objectivity and

rigour [24]. The frequency with which these papers reported a

positive result was significantly predicted by the hardness (as it is

perceived by scholars and suggested by numerous indirect

measures) of their discipline, domain, and overall methodology.

These results must be generated by a combination of factors that,

as will be discussed below, cannot be separated in this analysis.

Overall, however, they support the existence of a Hierarchy of the

Sciences, in which scientific rigour and objectivity are roughly

inversely proportional to the complexity of subject matter and

possibly other field-specific characteristics (e.g. level of development,

see below). On the other hand, the differences observed were only a

matter of degree. This supports the scientific status of the social

sciences against claims that they are qualitatively different from the

natural sciences and that a scientific method based on objectivity

cannot be applied to them [25,26,27].

Not all observations matched the predicted hierarchy, however.

At the disciplinary level, Psychology and Psychiatry had more

positive results than Social Sciences, General, contradicting previous

studies that placed psychology between biology and sociology

[18,21]. Moreover, Physics and Chemistry had more positive results

than Social Sciences, General and a few biological disciplines. At the

level of methodology, biological, non-behavioural studies on humans

and non-humans had more positive results than behavioural studies

on non-humans. At both levels, papers in applied disciplines showed

a markedly different pattern, having uniformly high frequencies of

positive results.

Overall, the predictive power of the regression models in this

study was highly significant statistically, but never exceeded a

5.1% reduction in error (although the validity of R2-equivalents in

logistic regression is controversial [46]). This value might appear

small, but it is comparable to the average variance explained, for

example, by ecological studies (which is between 2.5% and 5.4%

[47]). Moreover, it was obtained by using very broad categories as

predictors, which suggests that a higher predictive ability could be

achieved by more refined analyses that distinguished between

subfields and/or specific factors that might influence outcomes.

These factors, summarized below, are few and could be tested by

future studies.

The probability of a paper to report a positive result depends

essentially on three components: 1-whether the tested hypothesis

is actually true or false; 2-logical and methodological rigour with

Table 1. Logistic regression slope, standard error, Wald test
with statistical significance, Odds Ratio and 95% Confidence
Interval of the probability for a paper to report a positive
result, depending on the following study characteristics:
discipline of the journal in which the paper was published,
papers testing more than one hypothesis (only the first of
which was included in the study).

Variable B SE Wald df Sig. OR 95%CI OR

Discipline (all) 61.238 19 ,0.001

Geosciences 0.198 0.295 0.453 1 0.501 1.219 0.684–2.174

Environment/
Ecology

0.353 0.289 1.490 0.222 1.423 0.808–2.508

Plant and Animal
Sciences

0.472 0.277 2.900 1 0.089 1.604 0.931–2.761

Computer Science 0.711 0.390 3.329 1 0.068 2.036 0.949–4.372

Agricultural
Sciences

0.826 0.337 6.014 1 0.014 2.284 1.180–4.420

Physics 0.856 0.392 4.766 1 0.029 2.354 1.091–5.078

Neuroscience &
Behaviour

0.872 0.316 7.616 1 0.006 2.393 1.288–4.446

Microbiology 0.903 0.320 7.973 1 0.005 2.467 1.318–4.616

Chemistry 0.911 0.360 6.391 1 0.011 2.487 1.227–5.041

Social Sciences,
General

1.006 0.321 9.808 1 0.002 2.735 1.457–5.134

Immunology 0.984 0.323 9.311 1 0.002 2.676 1.422–5.035

Engineering 1.076 0.402 7.175 1 0.007 2.934 1.335–6.448

Mol. Biology &
Genetics

1.081 0.343 9.930 1 0.002 2.947 1.505–5.772

Economics &
Business

1.624 0.385 17.780 1 ,0.001 5.073 2.385–10.792

Biology &
Biochemistry

1.216 0.365 11.084 1 0.001 3.372 1.649–6.897

Clinical Medicine 1.286 0.355 13.090 1 ,0.001 3.618 1.803–7.262

Pharm. &
Toxicology

1.297 0.347 13.936 1 ,0.001 3.658 1.851–7.226

Materials Science 1.395 0.396 12.433 1 ,0.001 4.034 1.858–8.760

Psychiatry/
Psychology

1.569 0.372 18.427 1 ,0.001 4.935 2.381–10.230

Multiple hypotheses 20.877 0.221 15.756 1 ,0.001 0.416 0.27–0.642

Constant 0.856 0.214 15.962 1 ,0.001 2.355

The effect of discipline was tested for overall effect then each discipline was
contrasted to Space Science by indicator contrast.
doi:10.1371/journal.pone.0010068.t001

Figure 5. Positive Results by Methodological Category. Percent-
age of papers that supported a tested hypothesis in pure (top) and
applied (bottom) disciplines, plotted by general characteristics of their
methodology (defined by the outcome, see also Fig. 4). The ‘‘other
methodology’’ category is not shown. Black = studies on non-human
material or subjects, Red = studies on human material or subjects. Error
bars represent 95% logit-derived confidence interval.
doi:10.1371/journal.pone.0010068.g005
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which the hypothesis is linked to empirical predictions and tested;

3-statistical power to detect the predicted pattern (because low

statistical power decreases the probability to reject the ‘‘null’’

hypothesis of no effect [48]).

Statistical power -which is primarily a function of noise in the

data and sample size- is typically low in social, behavioural and

biological papers [49,50,51,52,53], and relatively high in disci-

plines like physics, chemistry or geology. These latter rarely use

inferential statistics at all, either because the outcomes are ‘‘yes’’ or

‘‘no’’ answers (e.g. presence or absence of specific chemical

compound in a rock) or because their data have such low levels of

noise to make any pattern unmistakable [22,54]. Based on

statistical power alone, therefore, the physical sciences should

yield as many or more positive results than the other sciences,

which should report more ‘‘null’’ results instead. It follows that the

differences observed must be caused by some combination of the

other two factors:

1-Truth value of the hypotheses tested
Hypotheses tested in biological and social sciences could have a

higher probability of being true. This is unlikely to be explained by

these sciences having stronger theories than the physical sciences

(as discussed in the introduction, these latter have, if anything, a

more developed and cumulative ‘‘core’’), or by these sciences

testing more trivial hypotheses (originality and innovativeness are

rewarded in all fields of research). More plausibly, the truth value

of tested hypotheses could differ (if indeed it does differ) because of

two sub-factors:

1A-Prior knowledge and beliefs
Scientists in softer sciences might chose their hypotheses based

on a greater amount of personal observations, preliminary results,

and pure and simple intuition that precede a ‘‘formal’’, published

‘‘test’’ of the hypothesis. How this might affect the objectivity of

research is unclear. On the one hand, accurate prior information

increases the likelihood that the tested hypothesis is true and

therefore, following Bayesian logic, reinforces the ‘‘positive’’

conclusion of an experiment. On the other hand, scientists’ prior

beliefs, whether or not they are based on accurate information,

introduce an element of arbitrariness and subjectivity in research,

and by reinforcing scientists’ expectations might also increase their

confirmation bias [55].

1B-Deepness of hypotheses tested
This has been suggested to reflect the level of ‘‘maturation’’ of a

science [56]. Younger, less developed fields of research should tend

to produce and test hypotheses about observable relationships

between variables (‘‘phenomenological’’ theories). The more a

field develops and ‘‘matures’’, the more it tends to develop and test

hypotheses about non-observable phenomena underlying the

observed relationships (‘‘mechanistic’’ theories). These latter kinds

of hypotheses reach deeper levels of reality, are logically stronger,

less likely to be true, and are more conclusively testable [56]. This

scheme aptly describes the scientific status of ecological studies

[40], and might contribute to explain not only the HoS, but also to

the differences observed between ‘‘pure’’ and ‘‘applied’’ disci-

plines, because these latter probably test more phenomenological

than mechanistic hypotheses.

2-Rigour with which hypotheses are linked to predictions
This can be further subdivided in four sub-factors:

2A-Flexibility in definitions, design, analysis and
interpretation of a research

In sciences that are younger and/or address phenomena of

higher complexity, the connection between theories, hypotheses

and empirical findings could be more flexible, negotiable and open

Table 3. Logistic regression slope, standard error, Wald test
with statistical significance, Odds Ratio and 95% Confidence
Interval of the probability for a paper to report a positive
result, depending on the following study characteristics:
methodological category, papers testing more than one
hypothesis (only the first of which was included in the study),
and papers published in pure as opposed to applied
disciplines.

Variable B SE Wald df Sig. OR 95%CI OR

Methodological
category (all)

40.048 8 ,0.001

Biological, Ph/Ch,
non-human

0.763 0.163 21.870 1 ,0.001 2.145 1.558–2.954

Biological, Ph/Ch,
human

0.750 0.205 13.449 1 ,0.001 2.117 1.418–3.161

Ph/Ch+Beh/Soc,
non-human

0.332 0.299 1.227 1 0.268 1.393 0.775–2.505

Ph/Ch+Beh/Soc,
human

1.164 0.425 7.499 1 0.006 3.201 1.392–7.362

Behavioural/Social,
non-human

0.497 0.287 2.991 1 0.084 1.643 0.936–2.885

Behavioural/Social,
human

1.213 0.213 32.421 1 ,0.001 3.364 2.215–5.107

Other, non human 0.469 0.284 2.738 1 0.098 1.599 0.917–2.788

Other, human 0.609 0.565 1.159 1 0.282 1.838 0.607–5.566

Multiple hypotheses 21.058 0.209 25.756 1 ,0.001 0.347 0.231–0.522

Pure discipline 20.343 0.134 6.599 1 0.01 0.709 0.546–0.922

Constant 1.303 0.177 53.93 1 ,0.001 3.682

Methodological category (see text for details) was tested for overall effect, then
each category was contrasted by indicator contrast to physical/chemical studies
on non-biological material.
doi:10.1371/journal.pone.0010068.t003

Table 2. Logistic regression slope, standard error, Wald test
with statistical significance, Odds Ratio and 95% Confidence
Interval of the probability for a paper to report a positive
result, depending on the following study characteristics:
disciplinary domain, papers testing more than one hypothesis
(only the first of which was included in the study), and papers
published in pure as opposed to applied disciplines.

Variable B SE Wald df Sig. OR 95%CI OR

Domain (all) 17.805 2 ,0.001

Biological
sciences

0.297 0.127 5.487 1 0.019 1.346 1.05–1.726

Social sciences 0.813 0.194 17.519 1 ,0.001 2.256 1.541–3.301

Multiple
hypotheses

21.036 0.207 25.11 1 ,0.001 0.355 0.237–0.532

Pure discipline 20.490 0.131 14.031 1 ,0.001 0.613 0.474–0.792

Constant 1.803 0.136 176.034 1 ,0.001 6.071

Disciplinary domain was tested for overall effect, then biological and social
sciences were each contrasted to physical sciences by indicator contrast.
doi:10.1371/journal.pone.0010068.t002
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to interpretation. This would give scientists more freedom in

deciding how to collect, analyze and interpret data, which

increases the chances that they will produce a support of the

hypotheses they believe to be true [45,57]. In its earliest stages of

development, a discipline or field can be completely fragmented

theoretically and methodologically, and have different schools of

thought that interpret the same phenomena in radically different

ways –a condition that seems to characterize many fields in the

social sciences and possibly some of the biological sciences [10,11].

2B-Prevalence and strength of experimenter effects and
self-fulfilling prophecies

The biasing effect of researchers’ expectations is increasingly

recognized in all disciplines including physics [58,59], but has been

most extensively documented in the behavioural sciences [60,61].

Indeed, behavioural data, which is inherently noisy and open to

interpretation, might be particularly at risk from unconscious

biases. Behavioural studies on people have an even higher risk of

bias because the subjects of study can be subconsciously aware of

researchers’ expectations, and behave accordingly [25,26,62].

Therefore, experimenter effects might explain why behavioural

studies yield more positive results on humans than non-humans.

2C-Non-publication of negative and/or statistically
non-significant results

These can remain unpublished because researchers prefer not to

submit them and/or because journal editors and peer reviewers are

more likely to reject them [63]. In fields that use statistical inference

to test the experimental hypothesis (which, as discussed above, tend

to be the ‘‘softer’’ ones), the positive-outcome bias overlaps with a

more generic bias against statistically non-significant results (i.e.

results that fail to reject the null hypothesis), which is well

documented in many disciplines [43]. This latter produces an

excess of positive results when the tested effect sizes are medium or

large. When effect sizes are very small, however, a pure bias against

non-significant results should not affect the direction of the outcome

(i.e. both positive and negative supports should be published, as long

as they are statistically significant) [48]. In this latter case, therefore,

a bias against non-significant results could generate an increase in

positive results only if researchers in softer sciences tested more

generic hypotheses (for example, ‘‘x is correlated to y’’ or ‘‘x influences

y’’ instead of ‘‘x is positively correlated to y’’ or ‘‘x causes y’’), and/or if

they adjusted their hypothesis after knowing the results (a

questionable practice sometimes defined as HARKing [64]). The

publication bias against negative and non-significant results can

have several causes. In particular, it is expected to be higher in less

developed sciences and in fields where the time-lag between

hypothesis formulation and testing is longer, because in such

conditions the paucity of conclusive empirical evidence is

compensated by a higher confirmation bias and ‘‘theory tenacity’’

of the scientific community [40].

2D-Prevalence and strength of manipulation of data and
results

Several factors are hypothesised to increase scientists’ propensity

to falsify research, including: the likelihood of being caught,

consequences of being caught, the costs of producing data

compared to publishing them, strong belief in one’s preferred

theories, financial interests, etc…[65,66,67,68]. Each of these

factors leads to straightforward predictions on where misconduct is

most likely to occur (e.g., in fields where competition is high,

replicability is low, conflicts of interest are high, etc…), which very

few studies to date have verified empirically. Survey data suggests

that outright scientific misconduct is relatively rare compared to

more subtle forms of bias, although it is probably higher than

commonly assumed, particularly in medical/clinical research [69].

Critics might argue that these results, like previous attempts to

measure the hardness of different fields, simply reflect cultural

differences between ‘‘academic tribes’’ [30]. However, this study is

different from previous ones because it measures a parameter linked

to the outcome of research itself. Future studies might show, for

example, that a specified discipline has a high frequency of positive

results largely because it has a ‘‘cultural tradition’’ of keeping negative

results in drawers (or of dropping outliers, or of HARKing, etc…).

Such a tradition, however, would have clear and direct consequences

for the reliability of the scientific literature in that discipline.

Perhaps the strongest counter-interpretation of these results

could be that scientists in different disciplines or fields use the

expression ‘‘test the hypothesis’’ in slightly different contexts. For

example, sociologists and molecular biologists might use it more

when they have positive results, while astronomers and physicists

when they have negative results. Although this possibility cannot

be ruled out, it seems unlikely to fully explain the patterns

observed in this study. Even if it did, then we would have to

explain why a certain use of words is correlated so strongly with

the hypothesised hardness of different fields and methodologies. In

particular, this would suggest that a falsificationist approach to

research [70] is applied differently (more rigorously) in the physical

sciences than in the biological and social sciences, ultimately

supporting the conclusion that the hierarchy of the sciences reflects

how research is done.

Papers testing multiple hypotheses were more likely to report a

negative support for the first hypothesis they presented. This

suggests that the order in which scientists list their hypotheses

follows a rhetorical pattern, in which the first hypothesis presented

is falsified in favour of a subsequent one. It also suggests that part

of the papers that in this study were classified as ‘‘negative

supports’’ were in fact reporting a positive result. Since papers

reporting multiple hypotheses were more frequent in the social

sciences, and particularly in the discipline of Economics and

Business, it is possible that these sciences yield more positive results

than it appears in this analysis. However, there was no statistically

significant difference between disciplines or domains and large

differences could be excluded with significant confidence, which

suggests that the rhetorical style is similar across disciplines.

A major methodological limitation of this study is the data

extraction protocol, because the classification of papers as positive

and negative was not blind to the papers’ discipline and

methodology. Therefore, the confirmation bias of the author

himself could not be controlled for. However, parallel analyses on

the same sample showed significant correlations between positive

results and independent parameters hypothesised to increase

scientific bias (Fanelli, submitted). The scoring of papers was

completely blind to these latter parameters, which suggests that the

proportion of positive results measured in this sample is a genuine

proxy of confirmation bias.

Given what sociologists have sometimes written about sociology

(e.g. that it is probably the only science where knowledge is truly

socially constructed [11]), economists of economics (e.g. that

econometrics is like alchemy, with regression analysis being it’s

philosopher’s stone [71]), and psychiatrists of psychology and

psychiatry (e.g. that they ‘‘pretend to be sciences, offering allegedly

empirical observations about the functions and malfunctions of the

human mind’’ [72]), it could be surprising to find any negative

results at all in these disciplines. As argued above, this study

suggests that such categorical criticisms of the social sciences are

excessive. However, at least two limitations need to be considered.

Hierarchy of Positive Results
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First, this analysis is based on the assumption that scientists are

generally biased towards positive results, which is well documented

[38,41], but not always true. Scientists will sometimes be biased

against the hypothesis they are testing. The frequency with which

this occurs might vary by discipline and thus represent a

confounding variable. Second, and most importantly, the analysis

focussed on papers that explicitly embraced the scientific method

and are published in English-speaking scientific journals. Howev-

er, most of the research published in the social and behavioural

sciences is qualitative, descriptive or speculative, and is published

in monographs rather than journals, so it eludes the conclusions of

this study.

Materials and Methods

Data collection
The sentence ‘‘test* the hypothes*’’ was used to search all 10837

journals in the Essential Science Indicators database, which

classifies journals univocally in 22 disciplines. When the number of

papers retrieved from one discipline exceeded 150, papers were

selected using a random number generator. In one discipline,

Plant and Animal Sciences, an additional 50 papers were analysed,

in order to increase the statistical power of comparisons involving

behavioural studies on non-humans (see below for details on

methodological categories). By examining the abstract and/or full-

text, it was determined whether the authors of each paper had

concluded to have found a positive (full or partial) or negative (null

or negative) support. If more than one hypothesis was being tested,

only the first one to appear in the text was considered. We

excluded meeting abstracts and papers that either did not test a

hypothesis or for which we lacked sufficient information to

determine the outcome.

All data was extracted by the author. An untrained assistant

who was given basic written instructions (similar to the paragraph

above, plus a few explanatory examples) scored papers the same

way as the author in 18 out of 20 cases, and picked up exactly the

same sentences for hypothesis and conclusions in all but three

cases. The discrepancies were easily explained, showing that the

procedure is objective and replicable.

To identify methodological categories, the outcome of each

paper was classified according to a set of binary variables: 1-

outcome measured on biological material; 2- outcome measured

on human material; 3-outcome exclusively behavioural (measures

of behaviours and interactions between individuals, which in

studies on people included surveys, interviews and social and

economic data); 4-outcome exclusively non-behavioural (physical,

chemical and other measurable parameters including weight,

height, death, presence/absence, number of individuals, etc…).

Biological studies in vitro for which the human/non-human

classification was uncertain were classified as non-human.

Different combinations of these variables identified mutually

exclusive methodological categories: Physical/Chemical (1-N, 2-

N, 3-N, 4-Y); Biological, Non-Behavioural (1-Y, 2-Y/N, 3-N, 4-Y);

Behavioural/Social (1-Y, 2-Y/N, 3-Y, 4-N), Behavioural/Social +
Biological, Non-Behavioural (1-Y, 2-Y/N, 3-Y, 4-Y), Other

methodology (1-Y/N, 2-Y/N, 3-N, 4-N).

The five-year impact factor of the journal measured by the

Journal Citation Reports was recorded for each paper. Impact

factors were then normalized by discipline with mean zero and

standard deviation one (i.e. z-transformed).

Statistical analyses
The strength of the association between ranks of hardness and

ranks based on the proportion of positive results was tested with

Kendall’s t-c, that between ranks of hardness and positive/

negative outcome (which is a nominal category) was measured by

Cramer’s V.

The ability of independent variables to significantly predict the

outcome of a paper was tested by standard logistic regression

analysis, fitting a model in the form:

logit Yð Þ~ln
pi

1{pi

� �
~b0zb1Xi1z . . . zbnXin

in which pi is the probability of the ith paper of reporting a positive

or partial support, and X1,… Xn, represent the predictors tested in

each regression model, the details of which are specified in the

Results section. Statistical significance of the effect of each variable

was calculated through Wald’s test, and the relative fit of

regression models (variance explained) was estimated with

Nagelkerke’s adjusted R2.

Post-hoc statistical power estimations for X2 tests assumed

Cohen’s w = 0.1, 0.3 and 0.5, for small, medium and large effects,

respectively. Post-hoc statistical power in logistic regression was

calculated for a hypothetical binary variable with bimodal

distribution and sample frequency equal to the average sample

frequency of all dummy variables in the relevant model (e.g. for a

regression with disciplinary domain, the average sample frequency

of biological and social sciences). This effect was contrasted to the

base-rate probability of the reference category (e.g. for disciplinary

domain, the proportion of positive results in physical sciences),

assuming no other predictors in the model (i.e. R2 = 0). Odds-

Ratio = 1.5, 2.5 and 4.5 were assumed to equal a small, medium

and large effect, respectively.

All analyses were produced using SPSS statistical package.

Power analyses were performed using the software G*Power 3.1

[73].

Figures
Confidence intervals in the graphs were also obtained by logit

transformation, using the following equations for the proportion

and standard error, respectively:

Plogit~Loge

p

1{pð Þ

� �

SElogit~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

np
z

1

n 1{pð Þ

s

Where p is the proportion of negative results, and n is the total

number of papers. Values for high and low confidence interval

were calculated and the final result was back-transformed in

percentages using the following equations for proportion and

percentages, respectively:

P~
ex

exz1

%~100P

Where x is either Plogit or each of the corresponding 95%CI

values.
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