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Abstract

Background: Reporting of influenza-like illness (ILI) from general practice/family doctor (GPFD) clinics is an accurate
indicator of real-time epidemic activity and requires little effort to set up, making it suitable for developing countries
currently experiencing the influenza A (H1N1 -2009) pandemic or preparing for subsequent epidemic waves.

Methodology/Principal Findings: We established a network of GPFDs in Singapore. Participating GPFDs submitted returns
via facsimile or e-mail on their work days using a simple, standard data collection format, capturing: gender; year of birth;
‘‘ethnicity’’; residential status; body temperature (uC); and treatment (antiviral or not); for all cases with a clinical diagnosis of an
acute respiratory illness (ARI). The operational definition of ILI in this study was an ARI with fever of 37.8uC or more. The data
were processed daily by the study co-ordinator and fed into a stochastic model of disease dynamics, which was refitted daily
using particle filtering, with data and forecasts uploaded to a website which could be publicly accessed. Twenty-three GPFD
clinics agreed to participate. Data collection started on 2009-06-26 and lasted for the duration of the epidemic. The epidemic
appeared to have peaked around 2009-08-03 and the ILI rates had returned to baseline levels by the time of writing.

Conclusions/Significance: This real-time surveillance system is able to show the progress of an epidemic and indicates
when the peak is reached. The resulting information can be used to form forecasts, including how soon the epidemic wave
will end and when a second wave will appear if at all.
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Introduction

On 2009-04-24, the World Health Organization (WHO)

reported the spread of a novel influenza A (H1N1) strain in the

United States and Mexico. Sentinel surveillance which was mainly

hospital based had indicated increased numbers of influenza-like-

illness (ILI) in Mexico occurring since 2009-03-18 [1]. Over the

next months, the virus spread rapidly across the globe, resulting in

the WHO declaring a pandemic and advising countries to activate

their pandemic preparedness plans [2]. Singapore identified her

first imported case of influenza A (H1N1-2009) on 2009-05-27 [3],

and the first unlinked cases on 2009-06-19 [4], which indicated

community transmission had begun in Singapore.

Singapore experienced all three influenza pandemics of the last

century—in 1918, 1957 and 1968 [5,6]. During the 1957 pandemic,

reporting of influenza cases by clinicians provided a reasonably clear

indication of daily epidemic activity (Figure 1A) [7]. Influenza-like

illness (ILI) has also been used widely as an indicator of influenza

activity during non-pandemic epidemics, with ILI reporting by

sentinel general practice/family doctor (GPFD) clinics forming the

backbone of surveillance systems for influenza in many countries

[8–14], and these have been used to monitor the current pandemic

[15–18]. In Singapore, though, acute respiratory illness (ARI) data

captured from electronic medical records, as a more general

indicator of infectious disease outbreaks, have traditionally been

used by health authorities, including during the early part of the

current pandemic. However, ILI monitoring can provide an

estimate of case numbers and hence attack rates, hospitalisation

and case fatality ratios [19], and is more specific for influenza than

ARIs.
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Data from ILI monitoring can also be used for modelling of

influenza epidemics and pandemics [20–23]. Modelling can be

performed retrospectively to determine the relative importance of

community compared to household transmission, or to determine

the effect of pharmaceutical and non-pharmaceutical interventions

[21,23–26]. Modelling can also be performed in real-time during an

epidemic, as proposed by Hall and colleagues, who used mortality

data from England and Wales to demonstrate how models could

have forecast when epidemic activity would peak during several

historical pandemic events [27]. Since H1N1-2009 has low

hospitalisation and mortality rates (less than 1% of infected

individuals) [28], reporting of ILI from GPFD clinics would

potentially provide a more accurate indicator of real-time epidemic

activity and progress than hospitalisations and confirmed fatalities.

While data on ARIs are routinely collated and laboratory

surveillance of influenza has been in place in Singapore for more

than 30 years [29], there is currently no system for monitoring

GPFD consults for ILI in Singapore. In order to monitor the

epidemic and adjust response plans in real-time, we rapidly

developed a system for ILI surveillance, with resulting data and

forecasts made publicly available via a website. The purpose of this

paper is twofold:

N to describe how the system was developed and used to monitor

the progress of the epidemic; and

N to describe how the resulting information was used to perform

near real-time forecasting of the course of the epidemic in

Singapore.

Results

We started the project in early June 2009, shortly after

Singapore identified her first imported case of influenza A

(H1N1-2009) on 2009-05-27. We sent out mass appeals to 535

e-mail addresses of GPFDs or clinics, and 23 clinics agreed to

participate; the locations of the participating GPFD clinics are

shown in Figure 2. Four clinics were city or office area practices

and the remainder were situated in residential areas across the

island.

Figure 1(B,C) shows trends in consultations for ARIs and ILIs

from the network. Data submissions started on 2009-06-25, by

which time there had been 315 confirmed H1N1 cases (including

87 locally transmitted cases) in Singapore [30]. There was a clear

but initially unanticipated weekly periodicity to the data, with

 
  

 

     
    

 

  
 
   

 
   

 

  
 

  

 

    
   

  
 
      

  
 
  

Figure 1. Influenza diagnoses in Singapore in 1957 and 2009 using alternative methods. (A) ILI in government and city council clinics,
1957 [7]. (B) ARI in this GPFD sentinel network, 2009. (C) ILI in this GPFD network, 2009. (D) Weekly ARI in government polyclinics, 2009 [31]. (A–C)
Both daily counts (lines) and weekly averages (shaded polygons) are presented. (D) A marked drop in baseline ARI consultations can be seen
immediately before the epidemic, complicating the determination of when the epidemic started using this measure.
doi:10.1371/journal.pone.0010036.g001
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lower consultation rates on the weekend and a post-weekend surge

in attendances. For descriptive purposes (but not analytical ones),

we therefore used weekly averages to provide a smoothed picture

of the epidemic trajectory. A comparison between Figure 1B or D

and C clearly displays ILI as a better indicator of epidemic activity

than ARI. The weekly average ARI consults per doctor in the

early epidemic period was between 10 and 15 (Figure 1B), and

peaked at 17 in the week ending 2009-07-25, but from this alone it

was difficult to determine how much H1N1-2009 epidemic activity

there was around the time community transmission was starting;

this is compounded by the high baseline rate making the height of

the peak relatively low, at just around one and a half times the

baseline level. Figure 1D shows the weekly epidemiological data

for acute respiratory tract infections in Singapore based on

government clinic attendances for ARI [31]. The government

clinic ARI data peaked in the week ending 2009-08-01, but, as

with our ARI surveillance data, the high levels of background

noise make it difficult to ascertain how much community-level

infection there was near the start of the epidemic, especially since

the epidemic was preceded by a considerable dip in ARI numbers.

On the other hand, there was a marked, nearly five-fold increase

in our ILI case data, from an average of about 2=3 of an ILI per

GPFD per day in the week ending 2009-06-27 to a peak of 31=2 in

the week ending 2009-08-01. The highest recorded ILI rate

occurred on 2009-08-03 (a Monday) with 61=2 ILIs per family

doctor being reported. The sentinel network indicated that the

epidemic had peaked around the start of August, and that ILI rates

had returned to near baseline levels early in September.

Predictions of the number of ILIs being seen by our GPFDs and

of the total number of people infected are presented in figure 3;

animations of these forecasts and of the forecast total number

seeking medical attention can be found in the supporting

information (ILI/ GPFD /d in video S1, total ILI/d in video S2

and cumulative infections in video S3). These incorporate both

population stochasticity and parametric uncertainty. The eventual

forecast was that 13% of the population had been infected, with a

95% credible interval of (9%,19%). Initial forecasts were adversely

affected by uncertainty in the parameters, caused by the vagueness

of the subjective prior distributions we used and the scarcity of

information from the data. By the middle of July, the algorithm

was correctly forecasting the peak would occur at the start of

August, although the magnitude of the epidemic was grossly

overpredicted, and the accuracy of the forecast of the time of the

peak may have been merely fortuitous. By the end of July,

forecasts were stabilising around what transpired to be the

eventual data, and by the middle of August, after the peak had

come, the forecasts closely foreshadowed the tail of the epidemic.

A measure of predictive accuracy is presented in figure 4. By the

end of July, predictive error was averaging around 1 ILI per

GPFD per day over a one-week time horizon. The sequence of

subjective posterior distributions for the parameters and for the

effective reproduction number Rt over time are presented in

figure 5, although we stress that these are our subjective

distributions and do not expect the reader to share them [32–34].

Discussion

We have shown that it is possible rapidly, and at short notice, to

deploy a real-time influenza epidemic surveillance system using

GPFDs in the absence of an existing system. This is likely to be a

workable model in much of the developing world where a

significant proportion of primary care is delivered by private

practice GPFDs. Firstly, we provide proof of concept that it is

feasible, within a month, and with no budget, to establish a

protocol for daily data submission for ILI and begin submission.

Secondly, we show that processing the data in near real-time—

with cases seen each day entered by the following day—can

provide graphical trends that describe the progress of an influenza

epidemic. Finally, we demonstrate how such data can be used in

real-time, and in combination with a process-based model refitted

daily, to generate forecasts that can subsequently be verified

against actual data as an epidemic unfolds, as is common in other

dynamic applications such as weather and finance.

While ILI surveillance is used widely in temperate countries

[8–13], there are few publications on the effectiveness of ILI

surveillance in tropical countries to chart the spread of epidemic

Figure 2. Spot map showing the locations of participating GPFD clinics in Singapore. Most populated parts of the island were
represented, the exception being the Woodlands, Sembawang and Yishun areas to the North.
doi:10.1371/journal.pone.0010036.g002
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influenza, given the high baseline incidence of other non-influenza

diseases and minimal seasonal forcing. Evidence is now emerging

on the value of such surveillance systems in the tropics [35], and

our study shows that ILI surveillance can track epidemic influenza

activity in such settings. The slow uptake of influenza surveillance

systems for tropical countries may be related to the lack of

appreciation for the epidemiology and impact of tropical influenza

[36]. Previous work has shown that both non-pandemic (often

called ‘‘seasonal’’ in temperate countries in which influenza is

associated with winter) and pandemic influenza caused substantial

excess mortality in tropical Singapore [5,37].

In Singapore, influenza activity has traditionally been moni-

tored through a combination of laboratory and ARI morbidity

[29]. ARI data reflect the total burden of acute respiratory illness

from all causes, often including non-infectious causes such as

exacerbations of chronic lung disease which may be environmental

in origin. However, it is clear from this study that while both ARI

and ILI counts give an indication of when epidemic activity peaks,

ILI data provide better resolution of influenza epidemic activity,

with the relative magnitude of increase over the baseline being far

greater than for ARI data, since influenza activity in the early

epidemic phase is masked by the high and obstreperous baseline

rates of other respiratory illnesses diagnosed as ARI. The other

system for tracking influenza activity in Singapore is based on

laboratory confirmed diagnoses of influenza. This is similar to

what is done in many countries throughout the world as part of the

World Health Organization’s Global Influenza Surveillance

Network. Monitoring of laboratory confirmed diagnoses picked

up an increase in H1N1-2009 isolates among a sub-sample of ILI

cases presenting at government polyclinics about one week before

the epidemic was apparent in our ILI data (data not shown).

However, the advantages of ILI surveillance is that it is much

cheaper than laboratory-based surveillance and there are no

capacity issues that may limit the number of samples that can be

processed daily. In addition, laboratory testing of random samples

is less sensitive to changes in absolute numbers of community cases

at the peak of the pandemic when the influenza proportion among

ILI cases remains relatively steady [31]. ILI surveillance is

therefore a cheaper and possibly more effective alternative to

traditional laboratory surveillance, especially for resource-poor

areas, to obtain reasonable sample sizes.

Setting up such a surveillance network has the secondary benefit

of allowing real-time forecasting, which allows more informed

policy making. By forecasting the epidemic ahead of time, we

allow our forecasts of epidemic activity to be verified against data.

We observed during the epidemic that modelling results correctly

forecast the timing of peak epidemic activity on some days, but was

off by up to a week at other times, though the actual magnitude of

the peak was markedly different from early forecasts. We note

though that even the relative accuracy of the forecast of the timing

of the peak may have been merely fortuitous, and stress that we

provide no theoretical results to guarantee this accuracy is

repeatable. One particular difficulty we faced was ensuring the

predictive accuracy of the system, given the lack of training data

and the need to inform policy making as the epidemic unfolded.

The results presented herein are therefore almost entirely the same

as those presented on-line, including any shortcomings; the only

alterations to the model and approach were to allow reporting

rates to vary across the week (a change partially implemented part-

way through the study) and to remove an adhoc method intended

to make the approach more robust to potential changes to the

parameters in time (which transpired not to improve matters

enough to warrant introducing statistical non-coherencies).

The eventual forecast for the final size of the outbreak was

around 13% with a 95% credible interval of (9%,19%). If true,

then combined with the rolling out of vaccine and the potential for

some additional existing immunity [38] (a possibility we

conservatively excluded from the analysis), this figure suggests

Singapore is unlikely to experience a large second wave without

substantial mutation of the pathogen. The estimate of around 13%

corresponds closely to a paired serological study of Singaporean

adults which estimated 13% (11,16)%, adjusting for the age

distribution of the country, had experienced a four-fold rise in

antibody titres (Mark I-Cheng Chen, personal communication).

The close correspondence adds considerable confidence to the

conclusions of the study.

Further evaluation is underway of the value of retaining a sentinel

network permanently in a tropical city-state with year-round non-

pandemic influenza transmission and additional bi-annual epidem-

ics. By establishing an avenue for public display of infectious disease

forecasts, we hope to build public and institutional confidence in

and acceptance of modelling in the context of infectious diseases. To

this end, the network was publicised in the local media and the

website was made freely available to the general public. This helped

provide an additional layer of transparency to reporting of the

numbers of people infected with influenza and the relative impact

on the wider community. We believe that this contributed to the

overall national risk communication strategy and helped to reduce

the level of panic and disruption to normal activity feared at the

onset of the pandemic.

Several limitations of our work need to be highlighted. Firstly,

this system of data collection was fully dependent on the goodwill

Figure 3. Evaluation of forecasts. (Left) Actual (red and orange crosses) and predicted (grey shaded area) average number of patients presenting
with influenza-like illness per day at the average participating GPFD. The information used to form the forecast is indicated by the red crosses. The
last day of information used in forming the forecast is indicated with a red triangle. Predictions here (and in the right-hand column) take the form of
decreasing credible intervals, with the region spanned by the outermost polygons corresponding to 95% credibility. Orange crosses indicate future
data not used in forming the forecasts. (Right) Predicted total number of people who (i) are currently symptomatic, or (ii) have recovered, assuming
no pre-existing immunity. The last day of information used in forming the forecasts is indicated with a red triangle. The cyan cross on the bottom
panel indicates the age-adjusted estimate of adult seroconversion in the community from an independent study (maximum likelihood estimate and
95% confidence interval, Mark I-Cheng Chen, personal correspondence).
doi:10.1371/journal.pone.0010036.g003

Figure 4. Quantification of predictive error. Posterior absolute
deviation between predicted average ILIs per GPFD and observed
average, with error averaged over the one week period following the
time the forecast is made.
doi:10.1371/journal.pone.0010036.g004
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of participating GPFDs, who received no monetary compensation.

We found that we could continue to motivate the participating

GPFDs by providing frequent updates based on their aggregated

contributions. Although we sent out mass appeals to over 500 e-

mail addresses, only 23 GPFDs agreed to participate. The poor

response rate could be due to a combination of factors, including:

1. duplicate or invalid e-mail addresses, the former of which could

have been addressed by pre-grepping the list, the latter by

better book-keeping;

2. spam filtering, which can only really be addressed by using

alternatives to e-mail, such as facsimile;

3. lack of publicity on the objectives and importance of our

project, which might have been improved by more careful

rhetoric in the invitation letter we sent;

4. and reluctance by GPFDs to commit to the burden of data

collection during an impending epidemic which was already

anticipated to increase workload.

The final premise may be the most critical, and we suggest that

some form of financial reimbursement be considered to compen-

sate GPFDs for the effort and time needed to drive data

submission in future, as this would likely improve recruitment

rates and make such a system sustainable in the long term.

Overall, the poor response rate highlights the challenge of

recruiting appropriate clinics for any such system, particularly

when using e-mails to disseminate such information, and at short

notice. However, for a medium-sized city of 4.8 million residents,

the network of around 20 GPFDs sufficed to provide considerable

information on epidemic progress. Notwithstanding this small

number of participating GPFDs, the surveillance system achieved

its intended objective of tracking and forecasting influenza

epidemic activity in near real-time. The small number of

participating GPFDs (estimated to be about 2% of all GPFD

clinics in Singapore) may make it difficult to assess if our ILI data

are representative of all influenza diagnoses during the epidemic,

but this is a limitation common to sentinel GPFD networks for

influenza. The potential impact of non-representativeness caused

by non-response would not, however, impact the validity of the

forecasts, since the methods used for that do not assume the

sentinels were selected at random. Other countries have used

GPFD networks for surveillance of other viral illnesses [8–

13,20,21,28] and perhaps the combined lessons from these

strategies could be applied more widely internationally.

In hindsight, several aspects of the approach could have been

bettered. We did not anticipate the strong day of the week effect on

ILI consulting rates, and this had a deleterious effect on predictions,

especially when moving to Mondays from Sundays. In mid-July we

changed the model to allow different rates at the weekend from the

rest of the week, but by mid-August it became clear that the model

would fit much better were every day of the week allowed its own

reporting rate; this is the model presented herein. Again, in

hindsight, it is obvious that there was bound to be sufficient

information in the data to be able to estimate the differential

reporting rates over the days of the week. Alternative models, such

as the Richards model [39,40], might have proven as or more

effective, and certainly could be more parsimonious, than the

compartmental model we used, but our experience was that the

challenges of developing the software before any data had been

collected effectively ruled out deciding on an optimal model to use.

As is common in the field of infectious disease modelling, the model

we used made many simplifying assumptions (see methods), all of

which may potentially have reduced the quality of the forecasts. For

instance, the presence of heterogeneous mixing or susceptibility in

reality but not in the model may lead eventually to changes to the

parameter estimates over time as the routine endeavours to fit a

model excluding these effects, but in forming forecasts at an early

stage, the future path of parameter estimates is unknown and so

forecasts cannot take this into account. In this paper, we have used

the term ‘‘forecast’’ sensu Keyfitz [41], to indicate the belief we

invested in these predictions and the way they were used in

contingency planning in some of the authors’ institutions. This

contrasts with his definition of a projection, which is the

extrapolation of past trends without claiming to expect them to

match the future. A consequence of this reticence, according to

Keyfitz, is that projections cannot be wrong (never being claimed

right), while predictions or forecasts are ‘‘practically certain’’ [41] to

be in error, and are prone to black swan-type events [42]—

accepting this, and excepting the initial predictions, the forecasts we

made fared very well (figures 3 and 4). Had we concentrated instead

on projecting the epidemic, via a suite of competing models, we

might have learned more about the assumptions underlying those

models, which would have informed future modelling efforts. A

comparison of different projecting approaches, as has been done for

seasonal influenza monitoring [43], would therefore be very useful

to refine the general approach for future outbreaks of emerging

diseases, but this remains work for the future.

In conclusion, a real-time GPFD surveillance system can be set

up rapidly during an epidemic and is able to show the progress of

the epidemic. Such an inexpensive system can be deployed even in

resource-poor settings to track future influenza epidemics and

pandemics and forecast their trajectories in near real-time.

Materials and Methods

Ethics approval
Ethics approval for the project was obtained from the

institutional review board of the National University of Singapore.

Recruitment, enrollment and inclusion criteria for GPFDs
We obtained e-mail addresses of GPFDs in Singapore from the

College of Family Physicians Singapore (CFPS) and the directory of

Pandemic Preparedness Clinics, a group of over 200 clinics registered

with the Ministry of Health to manage influenza cases. In all,

invitations were sent to 535 e-mail addresses. A series of road shows

was also conducted at the CFPS to describe how ILI surveillance

could help to track an epidemic. GPFDs who agreed to participate

were also asked to extend the recruitment to their contacts.

Participating GPFDs had to be doctors registered with the

Singapore Medical Council who worked at least three full days a

Figure 5. Subjective posterior distributions of parameters and Rt Posterior mean and marginal point-wise 95% credible intervals.
The reader’s posterior distributions may differ from ours (see refs [32–34]). In the background for reference is the number of ILIs per GPFD per day
(not to scale). The line of unity is marked on the panel for the effective reproduction number, Rt ; the posterior crosses the line of unity around the
day of the peak. Prior distributions for the parameters (Rt is not a parameter) are indicated on the appropriate panels, using the notation Be for the
beta distribution and Nz m,s2

� �
for the modified normal distribution such that if X*Nz m,s2

� �
then Y*N m,s2

� �
and X~DY D. The prior

distributions taken for the states were E 0ð Þ*Nz
Z 75,302
� �

, I 0ð Þ*Nz
Z 60,302
� �

and R 0ð Þ~0 (a Dirac delta prior), where Nz
Z m,s2
� �

is similar to
Nz m,s2

� �
except that its support is the integers, and its mass function at x is obtained by integrating the density for Nz m,s2

� �
from x{1=2 to

xz1=2.
doi:10.1371/journal.pone.0010036.g005
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week in a general practice or family medicine clinic in the

community. Participation was purely voluntary and participating

GPFDs were given the option to withdraw from the project at any

time.

Data submission and processing
Enrolled GPFDs were requested to submit returns on their work

days by e-mail or facsimile by 2pm the following day. The data

submitted comprised information on clinically diagnosed ARIs.

Clinically, influenza is an acute respiratory infection. As a group,

the ARIs may be defined as a clinical diagnosis of patients who

present with new short-term (time from onset less than two weeks)

respiratory symptoms of cough, rhinorrhœ a, nasal congestion

and/or sore throat, which may or may not be accompanied by

fever. The syndrome is usually though not exclusively associated

with viral æ tiologies. The range of pathogens responsible for ARI

besides influenza is described in a recent WHO paper [44]. A

number of viruses cause a clinical illness which is difficult to

distinguish from influenza, including respiratory syncytial virus,

piconaviruses, parainfluenza, and adenovirus. These produce an

influenza like illness [45]. The operational definition of ILI we

then used in performing the analyses was an ARI exhibiting a

fever of §37.8uC; this approximates the definition used by the

United States’ Centers for Disease Control and Prevention, which

defines ILI as an acute illness with cough and/or sore throat with a

fever of §37.8uC, in the absence of a known cause other than

influenza [46]. Other data elements collected in the data collection

form (figure S1) included demographic, clinical, and antiviral

treatment information.

Mathematical modelling
Disease dynamics are modeled via a standard, stochastic

compartmental model [47–50, inter alios], with daily increments

and individuals passing through a series of unobserved classes

corresponding to clinical stages of infection—Susceptible, Exposed

(infected but not infectious), Infectious and Removed (recovered

and subsequently immune, or deceased)—formulated by the

equations

St~St{1{At

Et~Et{1zAt{Bt

It~It{1zBt{Ct

Rt~Rt{1zCt

where At, Bt, Ct represent the number of people in the whole

population newly infected, infectious, and removed, respectively.

These are assumed to follow binomial distributions as follows

At*Bin St{1,1{exp { e{bIt{1½ �=Nf gð Þ

Bt*Bin Et{1,1{exp {1=lf gð Þ

Ct*Bin It{1,1{exp {1=cf gð Þ:

To be explicit, the infection model is formulated under the

simplifying assumptions that:

1. infections are allowed to arise from importation at an

assumptive constant rate e and from other local cases using

the law of mass action, with b characterising the mixing and

transmission probabilities of the local population, which as a

first-order approximation is assumed to be homogeneous;

2. ‘‘importations’’ at rate e represent inhabitants of the country

becoming infected via travel abroad or via travellers passing

through Singapore, not of new immigrants entering the

country infected;

3. the population size is taken to be fixed at 4.8M with no birth,

death or genuine immigration or emigration during the

epidemic (we ignored the fact that the official population size

increased to 5M during the epidemic);

4. transition from exposed to infectious to removed is assumed to

occur at constant rates l{1 and c{1, respectively;

5. per-capita rates (r [ Rz) can be transformed to daily probabil-

ities (p [ (0,1)) using the relationship p~1{exp {rð Þ; and

6. no parameters change with time.

As with all models, the assumptions that go into ours can be

criticised on biological, sociological and epidemiological grounds.

Note that neither the parameters h~ b,e,l,cð Þ nor the states

St~ St,Et,It,Rtf g are known.

The infection model is married to an observation model,

namely that the (known) number of cases reported on day t is

Dt*Pois Ntytð Þ where Nt is the (known) number of GPFDs

submitting reports on day t and

yt~dd(t) wzIt=2084f g

where d tð Þ is the day of the week of day t (Monday being 1 and so

on). The parameters of the observation model are thus di for

i~1, . . . ,7—the probability an infectious individual will seek

medical attention on day of the week i—and w, which is related to

the ‘‘background’’ consulting rate for non-H1N1 ILIs. We took the

differential reporting rates to be the same for H1N1 and non-

H1N1 ILIs, so that wdi represents the typical number of ILIs per

GPFD on day i in the absence of the pandemic. There were 1480

GPFD in Singapore in 2001 [51], and the population grew 17%

from 2001 to 2009, resulting in an estimated 1730 GPFDs in

Singapore in 2009; 83% of patients attend these rather than

polyclinics [51], and together these yield the divisor 2084; this

permits the parameters to have a more natural interpretation

(under the assumption that the participating GPFDs are

representative) but is unneccessary for the analysis, as it functions

as a mere rescaling of dd(t). We artificially take the day of the week

of public holidays to be a Sunday, with the normal week structure

resuming the following day.

The assumptions of the observation model are that:

7. consultations occur only when individuals are infectious;

8. consultations are conditionally independent;

9. per capita consulting probabilities for those infected with

influenza A (H1N1-2009) are constant throughout the

epidemic; and

10. overall consulting rates for other diseases that may be mistaken

for influenza A (H1N1-2009) are also constant —excluding the

day of week effect— i.e. there are no concurrent epidemics (an

assumption subsequently supported by laboratory testing that

suggested limited levels of co-circulating strains).
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As before, the validity of these assumptions is open to debate.

In the original formulation, we forced di~d for all i, i.e. to be

equal. In the middle of July, in response to the obvious variation

over the week, we changed the constraint of the model to

d1~d2~ . . . ~d5 and d6~d7. By mid-August, it was apparent

that the day of the week effect needed to differ on each day of the

week to attain a good fit. It is therefore the model without

constraints that we present in this paper.

Statistical methodology
The parameters of the model are estimated within the Bayesian

statistical paradigm [52, for instance] in which semi-informative

prior distributions are assigned to parameters and incoming data

incorporated via the likelihood function to obtain a time series of

posterior distributions for the parameters and unobserved state

space.

Since the state space is unobserved, a statistical method called

particle filtering [53,54] is used to integrate over the possible

realisations consistent with the daily observations. A series of

10 000 ‘‘particles’’ are created to which are associated parameter

values and state space configurations generated from the prior

distribution. Particles are iterated forward one day at a time via

simulation of the state space, and the likelihood function calculated

conditional on the trajectory of that particle and its associated

parameter values. The likelihood function is then used to weight

the particle. Particle degeneracy is overcome via resampling [54],

while particle diversity is maintained via kernel smoothing [55];

the latter means that the resulting posterior distribution is

approximate. The (approximate) posterior predictive distribution

is derived by continuing the simulations beyond the last

observation and weighting the resulting distribution via the

particle weights at the last observation.

The particle filter algorithm proceeds as follows.

1. Initialisation. Set t~0. A set of P particles is drawn from the

prior distribution for initial states S0 and parameters h. This

prior distribution is described below, and is loosely based on

preliminary findings from the literature. Particle p at time t is a

vector x
p
t ~ St,hð Þ with associated weight w

p
t . Initially,

w
p
0~1=P V p.

2. Iteration. For each particle p, Stz1 is drawn using Monte

Carlo simulation from its conditional distribution given x
p
t .

3. Weighting. We then set ~xxp
tz1~ Stz1,hð Þ. The likelihood

contribution L
p
tz1~f Dtz1D~xx

p
tz1

� �
is then calculated. The

weights are adjusted by setting ~wwp
tz1~w

p
t L

p
tz1 and then scaled

so they sum to one:

ŵw
p
tz1~

~wwp
tz1PP

q~1 ~wwq
tz1

:

4. Resampling. Let x̂x
p
tz1~~xxq

tz1 where q is drawn from the

integers 1,2, . . . ,Pf g with probability proportional to ŵw
q
tz1,

then setting w
p
tz1~1=P V p.

5. Kernel smoothing. Let x
p
tz1~m

p
tz1zh x̂x

p
tz1{m

p
tz1

� �
z

Z
ffiffiffiffiffiffiffiffiffiffiffiffi
1{h2
p

(with entries rounded to the nearest integer for state

space values) where, following Trenkel et al. [55], we set h~0:3,

Z is generated from a multivariate Gaussian distribution with

mean vector 0 and variance given by the variance-covariance

matrix of x̂x
p
tz1 over all p, and m

p
tz1 is the vector of means of

x̂x
p
tz1 over all p if the simulated value x

p
tz1 falls within the

correct support or x
p
tz1~x̂x

p
tz1 otherwise.

6. Increment t by one and repeat steps 2 onwards, until the

current time is reached; thereafter to obtain the posterior

predictive distribution repeat step 2 only (incrementing t) for as

long as desired.

The algorithm provides the posterior distribution of any

parameter, state or function thereof (such as the basic reproduc-

tion number, R0, or the effective reproduction number, Rt, see e.g.

[56,57]) by taking a weighted average of this characteristic

according to the posterior weights w
p
t at the last observation time

t. Here, only the posterior predictive distribution of the underlying

states is of interest. Since the prior distributions taken were

subjective (see below), the resulting posterior distributions are also

subjective, and as a caveat lector we caution that our posterior

distributions may differ from the reader’s; for further information

on subjective probability the reader is directed to the writings of de

Finetti (e.g. [34]) or Lindley (e.g. [33]). For references on particle

filtering and examples of its use in population dynamic modelling

in ecology, see [53–55,58–61].

The prior distributions used are given in figure 5. In setting

these, we aimed to balance the need to supplement the

information content of the sentinel data with relevant information

from other sources, with the desire not to obliterate the signal from

the data. We set the prior mean for the infection rate, b, to be 1.2,

with standard deviation 0.8. Combined with the prior distribution

for the infectious period, this leads to a range for R0 of 0 to around

6, i.e. more than spanning the range of estimates for historic

pandemics. The prior distribution for the importation rate, e, was

derived from a crude extrapolation of the timeline of the first five

weeks of importations to the country [62]. The prior distributions

for the latent period and infectious period were modelled loosely

on symptom onset after infection on an aeroplane [63] and a

review of volunteer challenge studies [64]. The prior distributions

for the background rate of non-pandemic ILIs (w) were based upon

the clinical insight of the authors, and for the reporting

probabilities from guesstimation, noting that it is common for

employers or schools in Singapore to require a formal medical

certificate before allowing staff or students off work or out of class.

We conservatively forced R 0ð Þ to be 0 since we did not know how

the findings of studies in temperate countries [38] relating to prior

exposure would extrapolate to the tropics; in this way, forecasts

may be seen as worst case scenarios. The prior distributions for

E 0ð Þ and I 0ð Þ were derived from extrapolating the number of

confirmed locally acquired cases.

Predictive error was assessed by taking the posterior distribution

of absolute difference between forecasts and observations,

averaged over a one-week time horizon, and then averaged to

get the posterior mean prediction error.

All statistical routines were written by the authors using the R

statistical programming language [65].

Automation script
Modelling results were updated daily around 3pm to a website

that could be publicly accessed [66]. This was automated using a

bourne shell script that handled time, file transfer, archiving of

previous forecasts, statistical processing, and positing of new

output on the web. This was run on a unix web server using ISC’s

cron.

Supporting Information

Figure S1 Data collection form.

Found at: doi:10.1371/journal.pone.0010036.s001 (0.01 MB

PDF)
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Video S1 Animation of forecast average ILI per GPFD per day.

Note the change in scale on the y-axis.

Found at: doi:10.1371/journal.pone.0010036.s002 (0.81 MB

SWF)

Video S2 Animation of forecast total nationwide ILI cases

seeking medical attention. The day of week effect has been

removed for clarity by treating all days as being Mondays. Note

the change in scale on the y-axis.

Found at: doi:10.1371/journal.pone.0010036.s003 (0.48 MB

SWF)

Video S3 Animation of forecast proportion of population

infected or recovered, including those not seeking medical

attention. Note the change in scale on the y-axis.

Found at: doi:10.1371/journal.pone.0010036.s004 (0.50 MB

SWF)
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58. Cappé O, Godsill S, Moulines E (2007) An overview of existing methods and

recent advances in sequential Monte Carlo. Proceedings of the IEEE 95: 1–21.
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