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Abstract

Background/Aim: Incomplete or limited long-chain fatty acid (LCFA) combustion in skeletal muscle has been associated
with insulin resistance. Signals that are responsive to shifts in LCFA b-oxidation rate or degree of intramitochondrial
catabolism are hypothesized to regulate second messenger systems downstream of the insulin receptor. Recent evidence
supports a causal link between mitochondrial LCFA combustion in skeletal muscle and insulin resistance. We have used
unbiased metabolite profiling of mouse muscle mitochondria with the aim of identifying candidate metabolites within or
effluxed from mitochondria and that are shifted with LCFA combustion rate.

Methodology/Principal Findings: Large-scale unbiased metabolomics analysis was performed using GC/TOF-MS on buffer
and mitochondrial matrix fractions obtained prior to and after 20 min of palmitate catabolism (n = 7 mice/condition). Three
palmitate concentrations (2, 9 and 19 mM; corresponding to low, intermediate and high oxidation rates) and 9 mM palmitate
plus tricarboxylic acid (TCA) cycle and electron transport chain inhibitors were each tested and compared to zero palmitate
control incubations. Paired comparisons of the 0 and 20 min samples were made by Student’s t-test. False discovery rate
were estimated and Type I error rates assigned. Major metabolite groups were organic acids, amines and amino acids, free
fatty acids and sugar phosphates. Palmitate oxidation was associated with unique profiles of metabolites, a subset of which
correlated to palmitate oxidation rate. In particular, palmitate oxidation rate was associated with distinct changes in the
levels of TCA cycle intermediates within and effluxed from mitochondria.

Conclusions/Significance: This proof-of-principle study establishes that large-scale metabolomics methods can be applied
to organelle-level models to discover metabolite patterns reflective of LCFA combustion, which may lead to identification of
molecules linking muscle fat metabolism and insulin signaling. Our results suggest that future studies should focus on the
fate of effluxed TCA cycle intermediates and on mechanisms ensuring their replenishment during LCFA metabolism in
skeletal muscle.
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Introduction

Long-chain fatty acids (LCFA) are a crucial energy source in

mammalian peripheral tissues, including skeletal muscle. During

fasting physiological suppression of glucose uptake and oxidation

in muscle is an important feature of the shift to greater FA

oxidation (FAO) rate [1], enabling glucose to be spared for cells

that have an obligatory requirement for that substrate. Suppressed

glucose uptake and oxidation can, however, develop despite

plentiful glucose supply, leading eventually to the development of

type 2 diabetes (T2DM) [2]. Insulin resistance in skeletal muscle

has important consequences in this regard because this tissue

contributes substantially to whole body insulin-mediated glucose

disposal.

It is well established that FAs and other lipid species can

modulate signaling pathways in skeletal muscle, including insulin

signaling [2,3]. With the exceptions of the diacylglycerides and

ceramides, the mechanisms through which lipid species can impair

insulin signaling remain poorly understood [4,5,6,7,8]. In

particular, the relationship between mitochondrial FA uptake/

oxidation and insulin sensitivity in muscle is controversial.

Individuals with T2DM have lower skeletal muscle FAO rates in
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the fasted state [9,10], as well as decreased subsarcolemmal

mitochondrial content [11], decreased expression of oxidative

phosphorylation genes [12,13], and decreased maximal NADH-

linked phosphorylating respiration in isolated mitochondria

[14,15]. First degree relatives of T2DM patients also exhibited

reduced muscle mitochondrial content [16] and impaired

switching to FAO and mitochondrial adaptation to a high-fat diet

[17]. In rats, overexpression of carnitine palmitoyltransferase 1, a

key controlling enzyme in FAO, at physiologic levels improved

insulin sensitivity [18]. These findings have suggested that

impaired FAO (and mitochondrial function) promotes insulin

resistance. Yet other studies using pharmacological, dietary or

genetic interventions have linked insulin resistance in muscle to

increased FAO rates [19,20,21,22,23]. Moreover, improved

insulin sensitivity was correlated with lower FAO rate despite

higher intramuscular long-chain acyl-CoA species [22]. Thus a

shift from lipid oxidation to storage does not necessarily promote

insulin resistance. It has been proposed that insulin resistance is

associated with excessive flux through b-oxidation relative to

tricarboxylic acid cycle (TCA) capacity [22,24], a phenomenon

termed mitochondrial FA overload [22].

Collectively, the above raises the possibility that metabolites

associated with mitochondrial FA utilization are important in

determining insulin action in muscle. However, beyond the acyl-

carnitine species [22,25,26,27], the metabolites associated with

skeletal muscle mitochondrial FAO are poorly explored. Here, we

have utilized the novel technology of global metabolomics in

combination with a unique experimental design to identify

metabolite signatures of LCFA combustion in skeletal muscle

mitochondria oxidizing palmitate at different rates. This experi-

mental approach allowed the intra- and extra-mitochondrial

localization of metabolites, along with determinations of altered

pathway flux. Ultimately, the identification of muscle mitochon-

drial metabolites may reveal candidate molecules and/or path-

ways linking mitochondrial FA handling and lipid-mediated

modulation of insulin signaling.

Methods

Animals and Reagents
Female C57Bl/6J mice (n = 7) were obtained from Jackson

Laboratories at 4 months of age, housed in our facility at 23uC
(12:12 hr light cycle, lights on 0700), with free access to chow

(4.5% fat/weight; Charles River-5075), for at least 1 week before

being studied. Animals were cared for in accordance with the

principles and guidelines of the Canadian Council on Animal Care

and the Institute of Laboratory Animal Resources (National

Research Council). This study was approved by the Animal Care

Committee of the University of Ottawa. Unless otherwise stated,

reagents were from Sigma (Oakville, ON, Canada).

Isolation of Mitochondria from Skeletal Muscle
Skeletal muscle mitochondria were isolated essentially according

to Chappell and Perry [28]. All media were ice-cold, and

procedures done on ice or at 4uC. Briefly, pectoral, forelimb and

hindlimb muscles were rapidly dissected and placed in basic

medium [BM (mM): KCl (140), HEPES (20), MgCl2 (5), EGTA

(2); pH 7.0]. Together, these muscle groups comprise a mixed

population of mainly type II oxidative and glycolytic fibers. Muscle

was cleaned of connective tissue and fat, minced and placed in 15

vol of homogenizing medium (HM: BM with 1 mM ATP and 1%

BSA (w/v)) containing one unit of protease (Subtilisin A) per g

muscle wet weight. Tissue was homogenized using a glass/Teflon

Potter-Elvehjem tissue grinder (240 rpm) and fractionated by

centrifugation at 800 g (10 min), and the supernatant collected

and spun at 12000 g (9 min). The pellet was resuspended in 20 ml

BM and incubated on ice for 5 min (myofibrillar repolymeriza-

tion). Samples were spun at 800 g (8 min) to pellet actin-myosin

polymers. The supernatant was then spun at 12000 g (9 min). The

final pellet was resuspended in 220 ml of BM. This isolation

procedure yields mitochondria with high respiratory control ratios

(state 3/state 4; ,8–10 when supplied with 10 mM pyruvate/

5 mM malate), and which are capable of activating palmitate [29],

a process dependent on the integrity of enzymes on the

mitochondrial outer membrane. Protein concentration was

determined by a modified Lowry method with BSA as standard.

Incubation Conditions
Each of the 7 mitochondrial preparations derived from

independent mice was tested in all treatment conditions.

Mitochondria (0.6 mg/ml) were supplied with three concentra-

tions of palmitate corresponding to low (2 mM), medium (9 mM)

and high (19 mM) rates of b-oxidation [29]. Three ml aliquots of

incubation medium [IM, (mM): KCl (120), HEPES (5), KH2PO4

(5), MgCl2 (5) and EGTA (1); pH 7.4] were supplemented with

(mM) ATP (1), malate (0.05), coenzyme A (0.025), and carnitine

(0.5) and added to 20-ml glass reaction vials. Solutions of low,

medium and high palmitate concentrations were added to vials in

a 6:1 FA:BSA complex. Palmitate was solubilized in ethanol; the

final concentration of ethanol in the reaction mixture was 0.5%.

Two additional incubations were performed as controls. The first

control condition (0 mM palmitate) evaluated the metabolic profile

of mitochondria oxidizing only malate, and included ATP,

carnitine and CoA and ethanol (0.5%). The second control

condition (9 mM palmitate + inhibitors) assessed effects of FA in

the absence of complete oxidative catabolism, and consisted of

malate, 9 mM palmitate, ATP, carnitine and CoA, and supple-

mented with the TCA cycle inhibitor malonate (10 mM) and the

electron transport chain complex I inhibitor rotenone (5 mM) [30].

Experimental Design
Figure 1 summarizes the experimental design. Each mitochon-

drial preparation (n = 7) was tested in each of the five conditions

described above: 0, 2, 9, and 19 mM palmitate, and 9 mM

palmitate + inhibitors. Vials were pre-warmed for 5 min at 37uC,

and mitochondria were added to initiate the reaction. Immediately

upon addition of mitochondria, half of each reaction mixture was

transferred to tubes submerged in an ice slurry (‘time 0 min’

fraction); the time 0 fraction remained in the ice slurry for ,2

minutes prior to centrifugation (see below). The second half was

incubated for 20 min at 37uC, and the reaction stopped on ice as

for the time 0 min fraction (‘time 20 min’ fraction). This timed

sampling enabled later estimation of flux. Our choice of the 20-

min time point is based on pilot experiments showing that the rate

of CO2 production was similar with a 20 or 60 min incubation.

At each time point (time 0 and 20 min), aliquots were separated

into mitochondrial and buffer compartments by centrifugation

(12000 g, 3 min, 4uC). A 1300-ml aliquot of the incubation

medium (‘buffer’ fraction) was transferred to an empty tube, flash-

frozen in liquid N2, then stored at 280uC; removal of only a

fraction of the buffer ensured that the mitochondrial pellet was not

disrupted. The remaining incubation medium was carefully

removed and discarded, with care taken to remove as much of

the medium as possible with minimal disruption of the pellet.

Pellets were resuspended in 100 ml of IM without supplementa-

tion. A series of six freeze-thaw cycles (liquid N2 and 37uC) was

used to disrupt mitochondrial membranes. Membranes were

Metabolomics of LCFA Oxidation
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pelleted at 20000 g (10 min, 4uC) and 90 ml of the supernatant was

collected (‘matrix’ fraction).

Metabolite Identification
Matrix and buffer samples were supplemented with 13 internal

standards for retention index correction (C8-C30 fatty acid methyl

esters) as previously reported [31]. Samples were subsequently

dried down and derivatized with 2 ml of a solution of 20 mg/ml of

98% pure methoxyamine hydrochloride in pyridine at 30uC for

90 min to protect aldehyde and ketone groups. 8 ml of MSTFA

with 1% TMCS (Pierce, Rockford IL) was added for trimethylsi-

lylation of acidic protons at 37uC for 30 min. 1 ml of this mixture

was injected by a Gerstel automatic liner exchange system and

CIS cold injection system (Gerstel, Muehlheim, Germany). For

every 10 samples, a fresh multibaffled liner was inserted (Gerstel

#011711-010-00) using the Maestro1 Gerstel software (version

1.1.4.18). Before and after each injection, the 10 ml injection

syringe was washed three times with 10 ml ethyl acetate. The

injector was operated in splitless mode, opening the split vent after

25 s. Chromatography was performed on an Agilent 6890 gas

chromatograph (Santa Clara CA), under control of the Leco

ChromaTOF software (version 2.32) (St. Joseph MI), using a 30 m

long, 0.25 mm i.d. Rtx-5Sil MS column with 0.25 mm 95%

dimethyl 5% diphenyl polysiloxane film and an additional 10 m

integrated guard column (Restek, Bellefonte PA). Helium carrier

gas was set at a constant flow of 1 ml/min with an oven

temperature ramp starting at 50uC for 1 min and then ramped at

20uC/min to 330uC at which point it was held constant for 5 min.

Mass spectra were acquired using a Leco Pegasus IV time of flight

mass spectrometer with a transfer line temperature of 280uC and

electron impact ionization at 70 V under a mass resolving power

R = 600 from m/z 85–500 at 10 spectra s21 and 1850 V detector

voltage. The instrument performed autotuning for mass calibra-

tion using FC43 (perfluorotributylamine) and a 4-point calibration

using a quality control mixture of 30 known metabolites before

starting analysis sequences. ChromaTOF (version 2.32) was used

for data preprocessing without smoothing, 3 s peak width, baseline

subtraction just above the noise level, automatic mass spectral

deconvolution and peak detection at signal/noise levels of 10:1

throughout the chromatogram. Result *.txt files were exported to a

data server with absolute spectra intensities and further processed

by the BinBase algorithm [32] for removing inconsistent and noisy

spectra. Metabolites were identified in BinBase and its underlying

Fiehn mass spectral library using retention index windows of 6

2,000 units (around 6 2 s retention time deviation) and mass

spectral similarity thresholds that varied upon signal/noise ratios

and mass spectral purity values as given in supplemental data of

Fiehn et al. [31].

Data Analysis
Metabolite values were log transformed, and subsequent

analysis was performed on these values. Data are presented as

log-transformed; log transformation of metabolite data can

generally be taken as normally distributed [33], justifying the use

of parametric analysis. Each incubation condition was tested in

each mitochondrial preparation, therefore paired analyses were

performed. Thus, for each metabolite, comparison between the 0

and 20 min values for each metabolite was made by paired

Student’s t-test. To account for multiple comparisons, each false

discovery rate (FDR) was estimated by the product of the

significance level (Type I error rate) and the number of null

hypotheses tested divided by the number of null hypotheses

Figure 1. Summary of experimental design used to determine metabolite shifts in murine muscle mitochondrial preparations
under different rates of LCFA b-oxidation. Conditions: incubations with/without palmitate, in the absence or presence of inhibitors (inh; 10 mM
malonate, 5 mM rotenone). Times: subsamples of mitochondrial suspension removed at 0 and 20 min for subsequent metabolomics determinations.
Fractions: mitochondrial suspensions were separated into matrix (M) and buffer (B). GC/TOF-MS: gas chromatography, time-of-flight mass
spectroscopy.
doi:10.1371/journal.pone.0009834.g001
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rejected; this estimator is conservative [34,35,36]. Outlier analysis

was performed using Grubbs’ test. A single outlier was removed in

each of only 11 data sets; this is flagged for the affected

comparisons. Unless otherwise indicated, values are presented as

the mean 6 SEM.

Results

Optimization of Flux Conditions
Mitochondria were supplied with three concentrations of

palmitate corresponding to low (2 mM), medium (9 mM) and high

(19 mM) rates of FAO, as determined previously using mitochon-

dria isolated and incubated under identical conditions as in the

current study, but tracking 1-[14C]-palmitate [29]. Over this range

of palmitate concentration, flux of C16:0 carboxyl carbon to CO2

(i.e. complete oxidation) leveled off with increasing palmitate

concentration whereas incomplete oxidation, measured as the 14C-

label recovered in the acid soluble product of a lipid extraction,

increased linearly; thus there was a disproportionate increase in

incomplete relative to complete FAO (Figure S1). These

observations suggested that metabolite profiles of mitochondria

oxidizing palmitate at high versus low rates may differ substantially,

providing insight into how different LCFA oxidation rates impact

mitochondrial function and signaling from mitochondria. We

therefore determined metabolite profiles of mitochondria oxidizing

palmitate at low, medium and high rates. Two control conditions

were also assessed. To determine metabolite shifts under basal

conditions, the first control treatment contained all incubation

constituents except FA. The second control incubation assessed

the specificity of metabolite shifts observed with alterations in FAO

via inclusion of FAO inhibitors along with 9 mM palmitate.

To assess the bioenergetic status of mitochondria oxidizing

palmitate, O2 consumption was measured under the incubation

conditions used to generate samples for metabolomics analyses. As

presented in Table S1 (and explained in the accompanying text),

palmitate is oxidized under phosphorylating conditions, at a rate

between state 3 and state 4 but closer to state 3.

Metabolite profiling of the mitochondrial matrix and buffer

fractions enabled metabolite shifts between compartments to be

determined. In the matrix fraction, a decrease in metabolite

concentration indicates that mitochondrial catabolism of the

metabolite was increased and/or that the metabolite was effluxed

into the buffer fraction; insight into one or the other of these

interpretations can be gained by comparing changes in matrix and

buffer concentrations of a particular metabolite. Regarding an

increase in the concentration of a matrix metabolite, a distinction

cannot be made between an increase in a metabolite due to its net

synthesis versus one caused by a decrease in its degradation. A

further possible interpretation is an accumulation of a metabolite

due to its release from membrane-associated sites as could occur if

related enzymes exist as an organized, membrane-bound complex.

In the buffer fraction, an increase in the concentration of a

metabolite indicates efflux from the mitochondrial fraction,

whereas a reduction in concentration indicates mitochondrial

uptake.

Global Characteristics of the Metabolomics Data Set
The global characteristics of the metabolomics data set are

summarized in Tables 1 and 2, and Figures 2 and 3. Importantly,

only high-quality metabolic signals were reported after applying

the multi-tiered filtering algorithm implemented in the BinBase

database [31]. Approximately half of all detected signals per

chromatogram are not reported in the final data set due to these

Table 1. Global characteristics of metabolomics dataset.

Number of Observations

Total number of detected metabolites 197

Number of unambiguously identified
metabolites

51

Chemical Classes

Fatty acid species 15

Organic acids 10

Amino acids 8

Carbohydrates 5

Phosphates 4

Alcohols 3

Nucleotides 2

Amines 2

Steroids 1

Inorganic ions 1

doi:10.1371/journal.pone.0009834.t001

Table 2. Estimated false discovery rates (FDR), P value threshold (paired t-test), and corresponding number of metabolites (#) that
changed over the 20-min incubation in each fraction (matrix, buffer).

Condition FDR, % P value # FDR, % P value # FDR, % P value # FDR, % P value #

Matrix 0 mM 31 0.05 32 23 0.035 30 19 0.02 20 19 0.005 5

2 mM 21 0.05 48 16 0.035 42 14 0.02 28 11 0.005 9

9 mM 28 0.05 35 20 0.035 30 18 0.02 18 14 0.005 7

19 mM 21 0.05 46 17 0.035 41 14 0.02 33 9 0.005 11

9 mM+inh 21 0.05 50 17 0.035 40 13 0.02 31 7 0.005 15

Buffer 0 mM 25 0.05 36 23 0.035 20 19 0.02 21 14 0.005 7

2 mM 32 0.05 31 28 0.035 23 33 0.02 12 16 0.005 6

9 mM 75 0.05 13 48 0.035 13 48 0.02 8 33 0.005 3

19 mM 70 0.05 14 76 0.035 7 46 0.02 7 20 0.005 3

9 mM+inh 33 0.05 30 34 0.035 20 26 0.02 15 16 0.005 6

Condition: concentration of palmitate; inh: inhibitors added.
doi:10.1371/journal.pone.0009834.t002
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stringent quality control procedures. For example, each reported

metabolite must be confirmed with high mass spectral similarity

and at the correct retention index in at least 80% of the samples in

at least one of the treatment classes of the experimental design

[31]. This leads to a very conservative assessment of the number of

identified metabolites that nevertheless spans various chemical

classes from medium and long-chain free fatty acids and steroids to

organic phosphates, polar and non-polar amino acids and

hydroxyl acids (Table 1). Raw and processed data sets can be

downloaded from SetupX, detailing the total of 197 analytes that

were reliably detected after BinBase processing and annotating the

51 metabolites that were unambiguously identified by PubChem

and KEGG database identifiers. All metabolites were further

characterized by the ion trace used for quantification, the

retention index, the BinBase identifier and the full mass spectrum

encoded as a string in the result tables (Table S2 and downloads

from SetupX [http://fiehnlab.ucdavis.edu:8080/m1/main_public.

jsp]).

False discovery rate (FDR) estimates, P value threshold and

numbers of metabolites for each FDR and P values are presented

in Table 2. Due to stringent quality control filters which

minimized the number of reported metabolites, and the use of a

conservative FDR estimator, a P value threshold of 0.05 was

selected for presentation and discussion of results despite the high

FDR estimates for some conditions.

Global representations of the data set are presented as a heat

map (Figure 2) as well as in Table S2. The heat map depicts only

identified metabolites that changed significantly in at least one

condition over the 20-min incubation. Intensity and color are

based on the degree of significance and direction of change,

respectively. Degree of significance was utilized to emphasize the

robust time-dependent changes in the data set. Some patterns,

Figure 2. Heat map showing the identified metabolites from murine muscle mitochondrial preparations that changed in
concentration over the course of the incubations. Metabolites are shown for which the concentration changed significantly during the 20-min
incubation for one or more of the treatment conditions (0, 2, 9, and 19 mM palmitate, and 9 mM palmitate plus FAO inhibitors).
doi:10.1371/journal.pone.0009834.g002

Figure 3. Numbers of metabolites that changed significantly in concentration (P,0.05, paired t-test) in buffer and matrix fractions
obtained from skeletal muscle mitochondria oxidizing LCFA at different rates.
doi:10.1371/journal.pone.0009834.g003
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including patterns that are unique to FAO rate, are apparent from

the heat map. As a group, TCA cycle intermediates (TCAi) were

found to accumulate in both the matrix and the buffer; the pattern

of change depended on the condition (see below). Amino acids

tended to decrease in the matrix, and did so most robustly with

19 mM palmitate (see below). Fatty acids also tended to decrease in

the matrix at high FAO rate, but tended to accumulate in the

buffer fraction at the lowest FAO rate as well as in the presence of

inhibitors.

The numbers of metabolite shifts (0 vs. 20 min, P,0.05)

uniquely associated with FAO was a function of both experimental

condition and compartment (buffer or matrix) (Figure 3). Of

interest was the extent to which the number and direction of the

shifts differed among the three palmitate oxidation conditions. A

large number of metabolites accumulated with 2 mM palmitate in

both the matrix (27 metabolites) and the buffer (16 metabolites). In

contrast, oxidation of 19 mM palmitate was associated with a large

reduction in the number of matrix metabolites (32 metabolites)

whereas only one and two metabolites increased significantly in

the buffer and matrix respectively. The number of metabolites that

changed with 9 mM palmitate was intermediate between that with

high and low FAO rates. This overview of the data set indicates

that palmitate oxidation rate per se is associated with distinct

metabolite changes in both the matrix and buffer compartments.

Shifts in Selected Metabolites
As a validation of our methodology, we examined the changes

in palmitate and malate in the buffer fraction (Figure 4). As

expected, there was a significant reduction over the course of the

20 min reaction in the concentration of palmitate in the buffer

with medium (70610% decrease; P = 0.02) and high (8565%

decrease; P,0.0001) palmitate supply, and no significant change

in palmitate concentration when inhibitors were present. Com-

plete and incomplete oxidation were measurable for the 2 mM

palmitate incubation (see Figure S1); however, a change in

palmitate could not be detected at this low palmitate supply. The

buffer was similarly depleted of malate, except when inhibitors

were present, as expected.

Some metabolites changed over time in all or in 4 of 5

conditions, in the same direction and by a similar magnitude,

indicating that these changes were not specific for any of the

treatment conditions. This occurred for 4 metabolites in the

matrix fraction (taurine, inositol, glucose, and unidentified analyte

219881) and illustrates the utility of the control conditions.

Among the metabolites identified by our unbiased approach,

the significant changes that were the most prominent in terms of

magnitude as well as showing a pattern related to FAO were the

TCAi, amino acids, and a ketone body species (3-hydroxybutanoic

acid).

TCA cycle intermediates. The detected TCAi were malate,

citrate, a-ketoglutarate (a-KG) and succinate. While significant

changes were observed in the matrix fraction, the most

pronounced changes were found in the buffer fraction. Citrate

accumulated in the buffer at the low (P = 0.0007; ,130% increase)

and medium (P = 0.03; ,30% increase) but not at the highest

palmitate concentration (Figure 5). Corresponding changes in

citrate were not detected in the matrix fraction, indicating citrate

production in the matrix during the 20 min incubation with

subsequent efflux. Export of citrate depended on substrate

oxidation since export was not detected with TCA cycle and

electron transport chain inhibition. In contrast, a large rise in

matrix citric acid was measured with oxidation of 19 mM

palmitate (P,0.001; ,800% increase), but interestingly there

was no significant export of this metabolite to the buffer.

Matrix levels of a-KG showed little change, with the exception

of a small increase with the lowest palmitate oxidation rate

(P,0.05). a-KG was found to accumulate in the buffer fraction

with increasing palmitate supply (P = 0.02 and 0.003 for 9 mM and

19 mM palmitate, respectively) (Figure 5). An increase was also

detected in the zero palmitate control that was of a comparable

magnitude to that observed with 9 mM palmitate (,400%

increase), but less than that with 19 mM palmitate (,1400%

increase). These increases in buffer a-KG in the absence of a

reduction in the matrix suggest that net production of a-KG

occurred during the 20 min incubation. As for citrate, export of a-

KG was not detected in the presence of inhibitors. Taken with the

Figure 4. Change in the concentration of supplied substrates (palmitate, malate) in the buffer fraction obtained from murine
muscle mitochondria over the course of the incubations. All 5 conditions are shown (0, 2, 9 and 19 mM palmitate, and 9 mM palmitate plus
inhibitors). Values are the log of the change in concentration (peak height). Significance: paired t-test, 0 vs. 20 min, within treatment; * P,0.05; **,
P,0.02, *** P,0.005.
doi:10.1371/journal.pone.0009834.g004
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citrate results, the data support the idea that citrate and a-KG

production rose with increasing palmitate b-oxidation, with robust

export of a-KG from the matrix space.

The absolute changes in matrix and buffer citrate and a-KG, as

well as the time 0 values, were estimated using standard curves and

the value of total extracted mitochondrial protein (,5 mg

mitochondrial protein/ gram muscle wet weight) (see Methods

S1). The time 0 value for citrate of ,60 nmol/g muscle wet weight

was of the same magnitude as that reported from whole rat skeletal

muscle (80–180 nmol/g muscle wet weight; [37,38]). The reported

values were, however, from mainly type I whereas our muscle

contained primarily type II fibers which would be expected to

contain citrate levels due to lower mitochondrial content. The time

0 value for a-KG was ,33 nmol/g muscle wet weight, similar to

that in whole mouse heart [39]. Over the course of the 20-min

incubation with 19 mM palmitate, the calculated change in matrix

citrate was 1.4 nmol/min/g muscle wet weight. Incubation with

2 mM palmitate resulted in net accumulation of a-KG at

1.9 nmol/min/g muscle wet weight. During incubation with 2

and 9 mM palmitate, net citrate efflux occurred at 0.4 and

0.2 nmol/min/g muscle wet weight, respectively. Compared to

citrate, substantially higher net efflux rates were measured for a-

KG (2.6 and 8 nmol/min/g muscle wet weight during incubation

with 9 and 19 mM palmitate, respectively).

Matrix levels of succinate were not significantly changed in any of

the treatment conditions (Figure 5). In the buffer, only the succinate

in the zero palmitate control changed significantly, showing a

,200% increase (P,0.005). While there was a trend for such an

increase with increasing palmitate concentration, changes were not

significant. Changes in malate are confounded by its addition as a

substrate. However, it is noteworthy that matrix levels of malate

increased significantly in the presence of inhibitors (P,0.02;

,300% increase) as would be expected, but also increased with

19 mM palmitate (P = 0.02; ,30% increase) (Table S2).

Amino acids. Seven amino acids were detected, including

both polar (serine, lysine) and non-polar (glycine, phenylalanine,

tyrosine, tryptophan, isoleucine) species (Figure 6). The most

pronounced and consistent change was a significant reduction in

the matrix levels of 5 amino acids (tyrosine, tryptophan,

phenylalanine, lysine, glycine) with oxidation of 19 mM

palmitate. Lysine was also reduced with 9 mM palmitate and in

the presence of inhibitors; therefore this change may not be related

to FAO per se. There was no corresponding accumulation in the

buffer of any of these five species, indicating net degradation in the

matrix fraction. Two species (tryptophan, phenylalanine)

accumulated in the buffer in either the inhibitor condition

(phenylalanine) or with 2 mM palmitate; a corresponding

reduction in the matrix was observed with phenylalanine only.

Figure 5. Changes in detected TCA cycle intermediates over time in buffer and matrix fractions obtained from muscle
mitochondrial preparations. All 5 conditions are shown (0, 2, 9 and 19 mM palmitate, and 9 mM palmitate plus inhibitors) for both fractions
(matrix and buffer). Values are the log of the change in concentration (peak height) over a 20-min incubation. Buffer and matrix fractions can be
compared within each metabolite. Significance: paired t-test, 0 vs. 20 min, within treatment; * P,0.05; **, P,0.02, *** P,0.005. {: indicates that an
outlier was removed from either the 0 or 20 min group for that metabolite in that fraction.
doi:10.1371/journal.pone.0009834.g005
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3-hydroxybutanoic acid (3-hydroxybutyrate; 3-OHBA).

In the matrix fraction, a significant change in 3-OHBA was only

detected with oxidation of 19 mM palmitate (Figure 7). However, 3-

OHBA accumulated in the buffer in all palmitate conditions with

the exception of 9 mM palmitate for which there was a large degree

of variability in the sample set. For the 19 mM palmitate condition,

buffer accumulation exceeded matrix reduction (+76778622196 vs.

-11756316 arbitrary units). Thus, net synthesis of 3-OHBA is

suggested for the inhibitor+9 mM condition and concurrent with

FAO.

Unidentified metabolites. Mass spectra of unknown metab-

olites can be viewed and compared to other BinBase entries

through a web service [http://eros.fiehnlab.ucdavis.edu:8080/

binbase-compound/database/selectDatabase]. Many unknown

species were detected. However, only a small subset showed

significant changes specific to FAO; three such analytes are

presented in Figure 8. The overall pattern of change of these 3

metabolites was matrix disappearance with 19 mM palmitate and

buffer accumulation with 2 mM palmitate in the absence of a matrix

reduction. Other potential species of interest are: 215355, 217840,

222047, 222099.

Discussion

Long-chain FAs are a key carbon source in tissues that consume

ATP at high rates, such as cardiac muscle and skeletal muscle

during exercise or fasting. Cellular disposal of FA is associated with

reduced insulin-mediated glucose uptake [2], and a role for

mitochondrial FAO has been suggested [22]; however the

mechanistic basis for such a role is unknown. This question is of

particular interest given that b-oxidation flux may exceed TCA

Figure 6. Changes in detected amino acids over time in buffer and matrix fractions obtained from muscle mitochondrial
preparations. Significance: paired t-test, 0 vs. 20 min, within treatment; * P,0.05; **, P,0.02, *** P,0.005. See legend to Figure 5 for further details.
doi:10.1371/journal.pone.0009834.g006

Figure 7. Changes in 3-hydroxybutanoic acid over time in
buffer and matrix fractions obtained from muscle mitochon-
drial preparations. Significance: paired t-test, 0 vs. 20 min, within
treatment; * P,0.05; **, P,0.02, *** P,0.005. {: indicates that an outlier
was removed. See legend to Figure 5 for further details.
doi:10.1371/journal.pone.0009834.g007
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cycle flux [22]; in rodents, such ‘mitochondrial FA overload’ was

reflected in higher incomplete oxidation, and specifically in

increased serum and muscle levels of acylcarnitines [22].

Compartmentalization of these metabolites within muscle was

not determined, and other potential species of interest were not

identified. Here, we utilized unbiased metabolite profiling of

skeletal muscle mitochondria oxidizing LCFA at different rates to

provide insight into changes in mitochondrial function and

intermediary metabolism during FAO. Our approach demon-

strated overall that FAO and FAO rate are associated with unique

shifts in mitochondrial metabolites and with the efflux of

metabolites from mitochondria. Several pathways emerged as

being worthy of further study, namely the TCA cycle and ketone

body metabolism (Figure S2). Altogether our findings demonstrate

the power and applicability of the novel experimental design,

technology and analytical approaches utilized.

TCA Cycle Anaplerosis
Our observations indicate that titration of b-oxidation impacts

TCA cycle dynamics; that is, production and/or catabolism as

well as efflux of TCA cycle intermediates (TCAi). Supportive

evidence is summarized as follows. Changes in TCAi (citrate, a-

KG, succinate, malate) were detected in the matrix and buffer in

all conditions in which complete oxidation was possible (i.e., in the

absence of inhibitors), indicating that metabolite shifts depended

on TCA cycle and/or electron transport chain flux. In the case of

efflux into the buffer, passive exchange of existing pools of

intermediates with malate cannot explain these observations since

matrix levels of intermediates were never found to decrease. Efflux

is also unlikely to reflect non-specific leakage of metabolites from

mitochondria since only a small fraction of all detected metabolites

increased in the buffer in any of the conditions, and efflux of TCAi

was not even detected in the inhibitor condition. That the

Figure 8. Change over time in levels of selected unidentified metabolites in buffer and matrix fractions obtained from muscle
mitochondrial preparations. Significance: paired t-test, 0 vs. 20 min, within treatment; * P,0.05; **, P,0.02. See legend to Figure 5 for further
details.
doi:10.1371/journal.pone.0009834.g008
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oxidizing conditions were associated with a distinct pattern of

change in the TCAi is striking (Figure 5). Buffer or matrix

accumulation of citrate and a-KG was apparent with FAO, and

the magnitude dependent on rate. However, a-KG also

accumulated in buffer with provisioning of malate alone (zero

palmitate control). While speculative, the significant increase in net

a-KG efflux with zero palmitate might be explained by net flux

toward succinate, since under these conditions there is minimal

fuel-derived acetyl-CoA to combine with oxaloacetate. In support

of this view, we observed a robust net efflux of succinate only in

the zero palmitate control condition. Finally, accumulation of

malate in the matrix was associated only with the highest FAO

rate, and a-KG accumulation in the buffer was also most apparent

in this condition. Thus, FAO rate appears to influence TCA cycle

dynamics. This interpretation concurs with some observations

made in the isolated working heart [40,41]; however important

differences between skeletal and cardiac muscle may exist, as

discussed below. Also, it is noteworthy that prior studies in skeletal

muscle only measured TCAi in whole muscle extracts

[37,38,42,43]; thus the present study is the first to compartmen-

talize TCAi in skeletal muscle and to directly link mitochondrial

TCAi efflux with FAO rate.

Each of the oxidizing conditions was associated with increased

matrix and/or buffer levels of intermediates without a reduction in

matrix levels. These observations could arise from one or a

combination of the following: increased synthesis of an interme-

diate; its slowed catabolism; its release from membrane-associated

sites. Anaplerosis of TCAi replenishes loss of carbon through

metabolites other than CO2. Anaplerotic generation of citrate and

a-KG in the present study concurs with previous reports in skeletal

and cardiac muscle [37,38,40,41,42,43]. Physiologically, the main

anaplerotic substrates are pyruvate, glutamate/glutamine, and

precursors of propionyl-CoA (some amino acids, odd-chain FAs,

and C5-ketone bodies) [44]. Here, exogenous malate was provided

as an anaplerotic substrate, and would be expected to contribute to

TCAi generation. In support, malate disappeared from the buffer

in all oxidizing conditions indicating its uptake by mitochondria,

and, except at the highest FAO rate, it did not accumulate in the

matrix indicating that it was catabolized. Possible additional

anaplerotic substrates in isolated mitochondria are stored pyruvate

and amino acids. It has however been suggested that isolated

muscle mitochondria contain only limited stores of pyruvate [45].

We detected amino acids in the matrix fraction and, interestingly,

levels tended to decrease with increased FAO, suggesting a link

between FAO rate and amino acid catabolism. It needs to be

recognized that of the seven detected amino acids, only two

(glycine and serine) are known to undergo initial breakdown in the

mitochondrial matrix. Initial catabolism of the other five is thought

to occur extra-mitochondrially, with subsequent import of

intermediates into the matrix. That we could detect the

disappearance of four of five of these amino acids without

accumulation in the buffer, and this disappearance was, with the

exception of lysine, confined to the highest FAO rate, implicate a

specific process that can be regulated by FAO. A possible scenario

is that these amino acids underwent catabolism, and thus that

related enzymes are intimately associated with skeletal muscle

mitochondria, and/or that amino acids in addition to glycine and

serine can be initially catabolized within the matrix.

Glycine was depleted in the matrix only at the highest FAO

rate. Glycine can be degraded to pyruvate via conversion to serine.

That there was no net accumulation of serine at the highest FAO

rate supports the possibility that serine was degraded to pyruvate.

Conversion of serine to pyruvate is believed to partially occur

extra-mitochondrially; again, it is possible that related enzymes are

either intimately associated with mitochondria or are present

within the matrix. Pyruvate can be degraded to a-KG via alanine

aminotransferase, or to citrate via carboxylation or decarboxyl-

ation. Notably, citrate and a-KG accumulated at the highest FAO

rate. As well, flux through each of the latter pathways has been

documented in muscle; flux through alanine aminotransferase

accounted for increased a-KG in skeletal muscle at the onset of

exercise [43], and, in the isolated working heart perfused with high

or low concentrations of oleate, both carboxylation and decar-

boxylation contributed to citrate production [41]. Little is known

about the role of pyruvate carboxylase activity in skeletal muscle

mitochondria except that the protein is expressed, albeit at lower

levels than in heart [46]. Increased oleate supply to the heart was

associated with reduced anaplerotic carboxylation and decarbox-

ylation of pyruvate [41]. Thus, at high FAO rate, pyruvate

conversion to TCAi may be minimal and flux through alanine

aminotransferase may become a more important anaplerotic

mechanism. Our overall approach, combined with targeted

metabolomics and the provision of isotopically-labelled anaplerotic

substrates, could be used in focused studies of anaplerosis during

FAO in skeletal muscle mitochondria.

Studies on the functional role of anaplerosis in muscle have

focused mainly on the heart and demonstrated that insufficient

anaplerosis leads to reduced contractile function (reviewed in [46]).

Yet in exercising skeletal muscle, interventions that limited

anaplerosis have not affected ATP production, even at VO2max

[43,47]. A role for anaplerosis in skeletal muscle is evident,

however, in the context of enhanced reliance on FAs or of

aberrant FAO. In patients with very long-chain acyl-dehydroge-

nase deficiency, the provision of anaplerotic triheptanoin relieved

muscle weakness [48]. In type 2 diabetics, plasma propionylcarni-

tine correlated inversely with HbA1c, suggesting reduced ana-

plerotic capacity with type 2 diabetes severity[24]. That matrix

levels of TCAi did not decrease in the present model indicates that

anaplerosis likely was not limiting and was well-matched to

removal of TCAi (‘cataplerosis’; e.g. [44]). However, if anaplerotic

capacity were diminished, ongoing efflux of intermediates would

lower TCA cycle capacity, reducing the oxidative disposal of

LCFA-CoA. Moreover, during FAO, a reduction in pyruvate as

an anaplerotic substrate may result from inhibition of mitochon-

drial uptake and lower anaplerotic utilization, as reported in hearts

supplied with FAs [41].

Efflux of TCA Cycle Intermediates
Citrate and a-KG were detected in the buffer fraction,

indicative of efflux from skeletal muscle mitochondria. Little

information exists on the efflux of TCAi from skeletal muscle

mitochondria, although studies in muscle extracts suggest that it

occurs [37,38]. In the isolated working heart supplied with

different concentrations of oleate, efflux of citrate, measured as

citrate release from whole heart, was observed, and the rate was

the same for high and low oleate concentrations [40,41]. We found

citrate efflux to be most robust at the lowest palmitate

concentration, measurable at the medium concentration, but not

significantly increased at the highest concentration. Thus, our

observation of a lack of significant mitochondrial citrate efflux at

the highest FAO rate differs from the situation in cardiac muscle.

The absence of malate as a counter-molecule for citrate exchange

cannot be an explanation since malate was supplied exogenously,

disappeared from the buffer fraction, and a fate other than

mitochondrial association seems unlikely. Competition by the

tricarboxylic acid and oxoglutarate carriers for malate is a

possibility. However, the Km values of the tricarboxylic acid

carrier for malate and citrate are lower than the Km values of the
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oxoglutarate carrier for malate and a-KG [49], favouring

exchange of malate for citrate. Thus the difference between heart

and skeletal muscle in citrate efflux may depend on other factors

such as differential modulation of citrate or a-KG transport. In

heart supplied with isotopically labeled oleate, pyruvate and

lactate, and in skeletal muscle supplied with glucose and insulin,

effluxed citrate contributed to malonyl-CoA production

[37,38,40]. Both pyruvate and oleate contributed to the acetyl

moiety of malonyl-CoA in the heart [40]. Because our results

suggest that citrate export in skeletal muscle mitochondria depends

on FAO rate, and, at least at high FAO rate, to be differently

modulated relative to cardiac mitochondria, further investigation

into the association of malonyl-CoA with citrate and FAO rate in

skeletal muscle is warranted.

Ketone Body Production & TCA Cycle Activity
Hepatic ketone body production is a crucial source of acetyl-

CoA equivalents for other tissues including skeletal muscle, and

ketogenesis is a mechanism by which finite pools of matrix free

CoASH are maintained and reducing equivalents consumed to

support continued robust hepatic LCFA b-oxidation. Thus, much

of the 3-OHBA detected in the matrix fraction at time 0

presumably originated in the liver. However, as 3-OHBA

accumulated in the buffer in excess of its reduction in the matrix,

we can conclude that 3-OHBA was somehow produced in the

matrix. These changes in 3-OHBA occurred in the presence of

inhibitors, indicating that complete palmitate oxidation to CO2

was not required. Ketogenesis in muscle is, however, contentious.

Mitochondrial HMG CoA synthase, a key control point in

ketogenesis [50], has thus far only been reported in skeletal muscle

as a transcript [51]. As well, ketone body production in the heart

[52,53] has been explained by exchange between acetoacetate and

acetyl-CoA pools resulting from the reversibility of the ketolytic

reactions (‘pseudoketogenesis’) [53]. Thus, it is premature to

propose that our findings indicate true ketogenesis. Yet, they

warrant further investigation especially in light of the observed

export of 3-OHBA, as well as the association of 3-OHBA with

insulin resistance and reactive oxygen species formation [54,55].

Excess acetyl-CoA units, resulting from greater b-oxidation

relative to TCA cycle flux, would become available to generate 3-

OHBA or acetylcarnitine [22]. Potentially adding to this mismatch

is inactivation of aconitase or a-KG dehydrogenase by reactive

oxygen species [56,57], that are particularly associated with FAO

[58] (ELS, CE and MEH, unpublished observations). That we

could not detect peroxide emission from muscle mitochondria

under the same phosphorylating conditions as used here [29]

suggests that oxidative inactivation of aconitase or a-KG may not

be occurring in the present system. Nevertheless, it is notable that

under conditions of high FAO, we observed increased accumu-

lation of malate-citrate and a-KG, a pattern consistent with a

saturation or reduced activity of a-KG dehydrogenase activity

with increasing FAO. Such a hypothetical mechanism linking

FAO and TCA cycle metabolism warrants further examination.

Methodological considerations
The unique analytical approaches used in conjunction with

intact and highly functional mitochondria in the current study

have enabled specific analyses of complex mitochondrial processes.

An additional advantage of using an enriched mitochondrial

preparation instead of whole muscle is that it allows rapid

separation of mitochondrial matrix and extra-mitochondrial

fractions. It should be noted however that cellular components

extrinsic to mitochondria are present in the mitochondrial

preparation used here and in numerous published bioenergetic

studies. Yet, some extrinsic enzymes and organelles are linked to

mitochondria via protein-protein interactions. For example, the

endoplasmic reticulum is well known to be functionally and

physically linked to mitochondria in liver (e.g. [59]) and skeletal

muscle [60]. FA elongation occurring in the endoplasmic

reticulum may be the source of C.16 FA in the present study.

Hexokinase (I and II) is associated with the mitochondrial outer

membrane via binding to porin [61]. Binding of hexokinase II to

porin on skeletal muscle mitochondria has been reported [62], and

we have detected mitochondrial hexokinase activity (ELS, CE and

MEH, unpublished). Thus, flux through hexokinase likely

accounts for glucose disappearance in the matrix fraction; data

from control incubations indicate however that this is unrelated to

FA provisioning. Localization of lactic acid dehydrogenase to the

inner membrane of skeletal muscle mitochondria has also been

reported [63], and would account for lactic acid accumulation in

the matrix. It is likely that other enzymes not normally associated

with mitochondria will be identified in the future, such as glucose

6-phosphate dehydrogenase [64].

Peroxisomes also participate in b-oxidation, but do not chain-

shorten beyond 6 carbons. The acetyl-CoA and medium-chain

acyl-CoA species formed by peroxisomal b -oxidation are exported

to the cytosol where they are incorporated into biosynthetic

pathways or can enter mitochondria and be completely oxidized.

Thus it is possible that some of the detected fatty acids were

derived from peroxisomes. It is noteworthy, however, that, in the

absence of carnitine, O2 consumption is not detectable with

palmitate concentrations below 200 mM (ELS, CE, MEH,

unpublished observations); thus our results are likely to mainly

reflect mitochondrial processes. As well, since peroxisomes lack a

TCA cycle, the detected TCAi would have strictly originated in

mitochondria.

In summary, this ‘proof-of-principle’ mitochondrial metabolo-

mics study highlights that skeletal muscle FAO rate is associated

with distinct changes in metabolites within and exported from

mitochondria. We also demonstrate that net accumulation and

efflux of TCA cycle intermediates is responsive to FAO in skeletal

muscle mitochondria. Its extent, and the specific metabolites that

are exported, depend on FAO rate. Future studies utilizing

targeted metabolomics are required to further characterize and

quantify TCA cycle cataplerosis during oxidation of different

substrates, at different rates, in skeletal muscle, as well as to better

understand anaplerotic mechanisms.

Supporting Information

Figure S1 14C-Palmitate oxidation rates for the three palmitate

conditions tested. Complete (14CO2) and incomplete (14C-ASP)

oxidation were determined. Data were re-plotted from Seifert et

al., 2008.

Found at: doi:10.1371/journal.pone.0009834.s001 (0.13 MB PPT)

Figure S2 Palmitate oxidation rate is associated with unique

shifts in TCA cycle intermediates, fatty acids, and amino acids.

Presented is a simplified overview of the findings presented in

Figures 5–7 and S1, and, for clarity, does not include every

pathway and fate of each metabolite. Only the detected TCAi are

shown. Low palmitate oxidation rate is associated with the efflux

of citrate (panel A). Since matrix levels of citrate do not decrease,

anaplerotic replenishment of citrate is occurring. Exogenously

provided malate is one likely anaplerotic substrate. Amino acids

may be another source. Also effluxed at the low oxidation rate are

C12 and C14 fatty acids; these may be derived from b-oxidation

reactions, through cleavage of acyl-CoA units by a thioesterase, or

may be derived from membrane-bound pools. In contrast (panel
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B) , elevated palmitate oxidation rate leads to an increase in matrix

citrate without export, whereas a-ketoglutarate efflux is promi-

nent. The amino acid pool associated with the matrix fraction

diminishes, likely reflecting the anaplerotic replenishment of TCA

cycle intermediates. Note that amino acids that are not classically

found in the mitochondrial matrix were detected in the matrix

fraction; this may reflect pathways that are intimately associated

with mitochondria. TCA: tricarboxylic acid; ASP: acid soluble

product.

Found at: doi:10.1371/journal.pone.0009834.s002 (0.50 MB PPT)

Table S1 Bioenergetic status of murine skeletal muscle mito-

chondria oxidizing palmitate: Supplementary Table and accom-

panying Results and Discussion.

Found at: doi:10.1371/journal.pone.0009834.s003 (0.05 MB

DOC)

Table S2 Complete listing of metabolites detected in each

condition according to criteria described in Methods.

Found at: doi:10.1371/journal.pone.0009834.s004 (0.16 MB

XLS)

Methods S1 Methods for the determination of absolute amounts

of metabolites.

Found at: doi:10.1371/journal.pone.0009834.s005 (0.03 MB

DOC)
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