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Abstract

The ideas of continental philosopher Martin Heidegger have been influential in cognitive science and artificial intelligence,
despite the fact that there has been no effort to analyze these ideas empirically. The experiments reported here are
designed to lend empirical support to Heidegger’s phenomenology and more specifically his description of the transition
between ready-to-hand and unready-to-hand modes in interactions with tools. In experiment 1, we found that a smoothly
coping cognitive system exhibits 1=f b type positively correlated noise and that its correlated character is reduced when the
system is perturbed. This indicates that the participant and tool constitute a self-assembled, extended device during smooth
coping and this device is disrupted by the perturbation. In experiment 2, we examine the re-organization of awareness that
occurs when a smoothly coping, self-assembled, extended cognitive system is perturbed. We found that the disruption is
accompanied by a change in attention which interferes with participants’ performance on a simultaneous cognitive task.
Together these experiments show that a smoothly coping participant-tool system can be temporarily disrupted and that
this disruption causes a change in the participant’s awareness. Since these two events follow as predictions from
Heidegger’s work, our study offers evidence for the hypothesized transition from readiness-to-hand to unreadiness-to-hand.
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Introduction

Ever since the influential critiques by Hubert Dreyfus [1,2]

researchers in AI and cognitive science have been interested in, or at

least aware of, the work of phenomenological philosopher Martin

Heidegger. Initially, Dreyfus argued that Heidegger’s insights into

the nature of human thinking and experience made artificial

intelligence impossible. More recently, it has been argued that

Heidegger’s insights into the nature of thinking and experience

lead to a different approach to creating artificial intelligence and

studying cognition scientifically [3–8]. Despite widespread attention

in cognitive science and artificial intelligence to Heidegger’s work,

this interest has remained largely conceptual and no effort has been

made to put Heidegger’s theory in an experimental framework. A

search of the PsycINFO database on December 10, 2009, found no

articles concerning Heidegger that involved laboratory work. The

reasons behind this lack of an experimental approach are easy to

understand once one acknowledges that phenomenology is not a

psychological discipline and there is no established correspondence

between the two; one cannot directly test Heidegger’s concepts

using the tools of psychological science because his is not a

psychological theory. Yet, the current paper makes a first attempt to

fill this gap by deriving testable predictions that follow from specific

aspects of the philosopher’s work. The use of phenomenological

studies to inform experimental design, an approach called front-

loading phenomenology, has been proposed as one way to naturalize

phenomenology [9].

The portion of Heidegger’s philosophical thinking that has been

considered relevant to cognitive science is found in Division I of his

great early work Being and Time. In this paper, we follow the

‘‘analytic’’ interpretation of Heidegger’s work (e.g., [10]). This is

appropriate, whether or not it is the best way to understand

Heidegger, because the analytic reading is the only one that has

had any influence in the cognitive sciences. In Chapter III of Being

and Time, Heidegger distinguishes three modes of experiencing

the world. Most human activity, Heidegger argued, is absorbed,

skillful engagement with entities in the world. When we are coping

skillfully with the world, we experience entities around us as ready-

to-hand. To use Heidegger’s example, a hammer is encountered

ready-to-hand, as a piece of equipment, when it is being simply

used to drive in nails. Our engagement with entities ready-to-hand

does not involve explicit awareness of their properties; instead, we

‘‘see through’’ them to the task we are engaged in. When we are

smoothly driving in nails with a hammer, our focus is on the thing

we are building not the size or shape or color of the hammer.

Heidegger argues that skilled coping, when we engage with

entities as ready-to-hand, is our primary way of engaging with the

world. Sometimes, though, our skillful coping is temporarily

disturbed. When this happens, we encounter entities as unready-

to-hand. When we go from smoothly hammering to having

difficulty, our experience of the previously ready-to-hand entities

changes: we experience the hammer, nails and board as failing to

serve their function appropriately. The hammer is too light or

heavy, the nails are too soft, the board has an unfortunately placed
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knot. When we encounter entities as unready-to-hand, we expe-

rience them as frustrating our coping with the world, and we must

focus closely on our activity. As Blattner [11] puts it, unreadiness-

to-hand is a deficient mode of readiness-to-hand. We are still using

the piece of hardware to complete a task, but our experience of the

situation has changed. We can no longer ‘‘see through’’ the tool to

focus on the task; instead, we must explicitly attend to the unready-

to-hand object that the tool has turned into.

Heidegger’s third way of experiencing the world is as present-at-

hand. The hammer is encountered as present-at-hand when we

stop hammering and consider the hammer’s shape or color or

weight; when considered this way the hammer is no longer a useful

tool but merely an object with various properties. Heidegger

argued that readiness-to-hand is primary in two ways. First, the

majority of our experience of the world is engaging with entities

ready-to-hand. Second, readiness-to-hand is, from a phenomeno-

logical standpoint, ontologically primary while the other modes

are derivative of it. The true nature of the tools we experience is

their way of being ready-to-hand. Thus, a hammer is primarily

something used in building, and only secondarily something we

are temporarily having trouble using or something with a

particular shape, color and chemical composition.

Even these very brief remarks are enough to make sense of what

many have taken to be the import of Heidegger’s phenomenology

for the cognitive sciences. When you are smoothly coping with a

hammer that is ready-to-hand, the ready-to-hand hammer recedes

in your experience, and your focus is on the task you are

completing. Your experience of the hammer is no different than

the experience of the hand with which you are wielding it. This

has inspired the hypothesis of extended cognition, i.e., the claim

that cognitive systems sometimes extend beyond the biological

body [6,12–16]. Hammers and other tools that are ready-to-hand

are literally part of the cognitive system. When a tool malfunctions,

however, and becomes unready-to-hand, it becomes the object of

primary concern; it is no longer part of the extended cognitive

system, rather it is the thing that that the cognitive system is

concerned with.

These remarks also point to Dreyfus’s critique of artificial

intelligence, at least as it was practiced in the 1960s and 1970s in

what Haugeland calls Good Old Fashioned AI (GOFAI). In

GOFAI, a system’s knowledge of the environment is represented

as a series of logical propositions. Thus, a GOFAI system’s

representation of a hammer might include the following: it is a 1-

inch diameter cylinder, with a complex shape attached to one end

and a rubber coating on the other; it weighs 22 ounces; the center

of inertia is very close to the end with the complex shape; it is

made of steel; portions of it are painted blue, other portions are

unpainted; it can be used to hammer nails. But if Heidegger is

correct about our modes of engagement with the world, humans

are typically unaware of the weight, shape, color and center of

inertia of hammers. Instead they encounter them as ready-to-

hand, while using them to hammer nails. In fact, most of the time

when humans encounter hammers, they are not explicitly aware of

any of their properties: they use them skillfully, seeing through

them to the task at hand. Knowledge representation in GOFAI is,

perhaps, sufficient to capture the way humans experience things as

present-at-hand. But this is not the way humans typically

experience things, nor is it the way things most fundamentally

are. Thus, Dreyfus argued, AI (circa 1960s and 1970s) would

never succeed, nor would any scientific psychology that shared its

assumptions.

Things have changed dramatically in AI and cognitive science

since the time Dreyfus made these arguments, and at least some of

the changes have been made explicitly in response to Dreyfus’s

critiques. But notice that the Dreyfus arguments depend on

the correctness of Heidegger’s phenomenological analysis. The

credibility of Heidegger’s analysis of our ways of engaging with the

world has, thus far, depended on something like its face validity:

think about your experience, does it match up with what

Heidegger describes? Of course, not everyone gives the same

answer to this question.

The two experiments described below provide the beginning of

an empirical basis for Heidegger’s phenomenology: in particular,

they demonstrate the correctness of his hypothesized transition from

readiness-to-hand to unreadiness-to-hand. In order to investigate

this transition, we constructed in the laboratory a situation involving

equipment that participants are already familiar with. The

participant plays a simple video game, using a computer mouse

directly linked to a pointer figure on a computer screen to steer a

target figure into a designated area (See Figure 1a). The task

resembles a video game version of herding, as when a dog keeps a

sheep inside a proscribed area. What allows the participant to guide

the target is that it always tries to escape away from the pointer in a

semi-predictable fashion. To make an analogy to Heidegger’s

example, here the mouse plays the role of the handle and the on-

screen pointer figure plays a role similar to that of the hammer

striking face. About thirty seconds from the beginning of the trial a

perturbation in the mapping between mouse movement and pointer

movement instantiates equipment malfunctioning. It lasts a few

seconds and then the situation returns to normal.

Heidegger’s phenomenological philosophy would predict that

prior to the perturbation, the participant in the experiment will

Figure 1. The visual playground environment. A single frame (a) captured during the course of a trial is shown and visible inside it are the pen,
the gray center, and blue and green dots for the target and pointer objects, respectively. Representative pointer and target object trajectories on the
screen from three-second excerpts with a normally behaving (b) and impaired (c) mouse are portrayed.
doi:10.1371/journal.pone.0009433.g001
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smoothly cope with the tool as a ready-to-hand tool; during the

perturbation, the mouse will become unready-to-hand and the

participant will be forced to focus her attention and cognitive

resources on the mouse and mouse-pointer coupling and, by

necessity, away from a secondary cognitive task. In the first

experiment, we use relatively novel tools to analyze the dynamical

structure in the hand-mouse movements to examine at the level of

motor control the nature of skillful coping and its breakdown

induced by the temporary disturbance in mouse behavior. In the

second experiment, we show that this disturbance causes an

attentional shift and a temporary re-allocation of cognitive

resources. For the sake of consistency, the two experiments used

the same experimental design, that is, both experiments involved a

herding motor task and a verbalized counting cognitive task with

only slight differences in some parameters.

Ideally, we would be able to show explicitly that attention is

shifted towards the misbehaving tool as it has lost its transparency.

In the current study we are restricted only to an implicit test,

namely, attention to a second task is reduced, which is what the

ready-to-hand to unready-to-hand transition in conjunction with a

contemporary understanding of attentional resources predicts.

Experiment 1
Using motion-tracking equipment we recorded the three-

dimensional trajectory of the hand-tool system (from now on

called the hand-tool for simplicity). Research on the generation of

purposeful motor behavior in comparable tasks demonstrates that

the variability of the movement time series has an intrinsic role in

the generation of the movements, and is not mere additive noise

‘‘blurring’’ the signals coming from the central nervous system (for

a review, see [17] or, for a more analytical critique of the

conception of noise and signal in physiology and the life sciences

in general, [18]). In order to characterize the fluctuations in

the movements of the hand-tool before, during, and after the

perturbation, we applied an analysis that has been used to establish

long-range correlations in the time series which are expressed as

1=f b type noise in the frequency domain [19]. The significance of

1=f noise for behavioral data and for our experiment needs special

attention.

The technical meaning of classifying variability in human

behavior as 1=f noise [20] is that activity magnitude scales across

the frequency spectrum invariantly, that is, as a power-law with

unity exponent b in 1=f b. Usually the discussion of 1=f noise in

behavioral time series includes the more general class of 1=f b type

noise without positing a categorical difference between the two as

long as 0vbƒ1 [21,22]. Data where 0vbƒ1 are also said to be

a long-range correlated series or have long memory, and this

notion of long memory has become the epitome of scale-invariant

behavior [23,24]. Testing for the presence of a power-law long

memory process at the motor control level is the main goal of the

first experiment. Such power-law scaling has been associated with

a sort of extended cognitive systems that will be argued to follow

from Heidegger’s phenomenological philosophy. van Orden et al.

[21] and Holden et al. [25] argue that 1=f b noise found in an

inventory of cognitive tasks is a signature of a softly assembled

system exhibiting and sustained by interaction-dominant dynamics, and

not component-dominant dynamics. In component-dominant dynamics,

behavior is the product of a rigidly delineated architecture of

modules, each with pre-determined functions; in interaction-

dominant dynamics, on the other hand, coordinated processes

alter one another’s dynamics, with complex interactions extending

to the body’s periphery and, sometimes, beyond. When, as part of

an experiment, a participant is repeating a word, a portion of her

bodily and neural resources, along with environmental support

structures, assemble themselves into a ‘‘word-naming device’’ [21,

p.346]. Device assembly as the product of interactions within and

across the temporal and spatial scales of elemental activity can

account for the 1=f b character of behavioral data, while assembly

by virtue of rigid components with predetermined roles and fixed

communication channels cannot [26]. Thus we can take the

presence of a 1=f b long memory process as indicative of the

activity of a smoothly operating system, softly assembled by virtue

of interaction-dominant dynamics. For the sake of brevity, we use

the initials ‘‘IDS’’ to designate such systems.

By looking for 1=f noise recorded at the interface of body and

tool, we address the hypothesis that, while smoothly operating an

instrument, a human performer instantiates such an IDS spanning

the extended body-tool system. The first of the predictions from

Heidegger’s phenomenological philosophy that we laid out in the

introduction can now be expressed in a more operational form.

1. When participants are smoothly operating the tool to play the

computer game, i.e., when the participants are interacting with

the tool as ready-to-hand, it becomes part of the IDS solving

the problem posed by the game. Given this, we predict that the

variability recorded at the body-tool interface is 1=f b type noise

or a long memory process.

2. When, during the experiment, the connection between mouse

movements and pointer movements on the screen is perturbed,

the participants should experience a breakdown in their

smooth coping and, consequently, experience the tool as

unready-to-hand. When this occurs, we predict that the

variability recorded at the body-tool interface will not have

1=f structure, showing a disruption in the IDS.

The experiment involved an additional cognitive task of

counting backwards by three out loud. This task was only used

to keep the conditions consistent across experiments, however, and

performance in it was not assessed.

Experiment 2
Even if the results of experiment 1 successfully reveal that the

hand-tool, as a part of a larger smoothly-coping IDS, becomes

functionally removed from it during the perturbation, this would

only go part of the way to demonstrating Heidegger’s proposed

transition from readiness-to-hand to unreadiness-to-hand. Hei-

degger’s distinction also implies a change in experience: since we

can no longer see through the unready-to-hand entity to the task

we are using it to complete, it will attract our attention and

consequently impair performance in a secondary task. For this

reason experiment 2 employed a divided attention paradigm and

focused on the secondary cognitive task of counting out loud. Put

in terms of experiment 1, the participant shifts from attending to

the counting and the ‘‘herding’’ tasks to needing to attend to the

counting, herding, and tool handling tasks. To validate this

emergence of an additional object of attention we interpret the

task of experiment 1 within the light of longstanding results in

cognitive psychology concerning attention and cognitive abilities

[27,28]. Attention is a limited resource; changing the way that

attention is allocated among multiple tasks affects cognitive

performance [29–31]. This suggests that the redistribution of

attentional resources accompanying a shift from readiness-to-hand

to unreadiness-to-hand should have an impact on the performance

of a demanding cognitive task. This leads to the prediction that

counting rate with mouse perturbation will decrease, as partici-

pants are able to allocate less attention to that task. Consequently,

our study can support the validity of the hypothesized transition by

way of finding data that conform to a theory-derived prediction.

From Ready- to Unready-to-Hand
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Materials and Methods

Participants and Procedure
Experiment 1 was approved by the University of Connecticut

Institutional Review Board. Experiment 2 was approved by the

Franklin & Marshall College Institutional Review Board. All

participants in both experiments signed informed consent forms.

Undergraduate students (N~12) at University of Connecticut

participated in the first experiment for credit. At the beginning, the

experimenter explained that the nature of the task was to

investigate motor control in the context of playing a computer

game while also performing an additional cognitive task: verbally

counting backwards by three. In regard to the main task, the

specific instructions given were to, first, try to keep the target figure

within or as close as possible to the gray circle in the middle of the

‘‘pen’’ area and, second, not let the target leave the screen. An

example of performing both tasks was given and then the

participant was allowed a few practice trials with no mouse

perturbation. The goal of the practice trials was to make sure the

participant could maintain control over the target object on the

screen while also counting. Once the participant felt comfortable

with both tasks, six experimental trials were performed. Because

participants were allowed practice trials and conditions were

exactly the same in every trial, there was no need for more than six

trials. Furthermore, we did not want practice effects to interfere

with our results as participants began to expect the perturbation.

Experiment 2 took place at Franklin and Marshall College and

used the same design as experiment 1 with a few small

modifications. All participants (N~13) were given a similar set

of instructions as in experiment 1, plus that they would be

videotaped during the experiment. After they became comfortable

with the dot herding task during practice trials with no

perturbation, they were introduced to the additional counting

task, i.e. counting backwards by three. Only a single experimental

trial was necessary because the analysis of cognitive performance

was much more straightforward than the motor behavior one and

the effect of the perturbation was quite telling.

Apparatus
The participants sat in front of a table with a computer,

monitor, and a mouse. A custom Matlab (Mathworks, Natick,

MA) script was used for a 60-second-long visuomotor coordination

task involving the mouse and monitor. We took advantage of the

PsychoPhysics Toolbox [32–34] the main purpose of which is to

give our script nearly real-time control over the computer

operating system kernel. Before each step the script records

current mouse position and prepares a frame with pointer and

target locations. A frame is sent to the screen for update every

35 milliseconds. The result is a seemingly real-time relation

between mouse and pointer and between pointer and target.

Before a trial starts, a target blue dot and a mouse-controlled

green pointer dot stay in the center of a playground area

delineated by a red ellipse - the pen - on the computer screen.

Beginning with the start of the trial, the pointer is released and the

target starts being displaced away from the pointer by a vector

defined by the following equation

tnz1~tnza(tn{pnz1)zbg ð1Þ

where p,t5R2 are vectors of the computer screen Cartesian

coordinates for the pointer and target objects, respectively, a and b

are experimenter-assigned parameters determined during pilot

trials, and the vector g 5R2 is a noise term taken from a pseudo-

random uniform distribution. The vectors pnz1 and tnz1 are

calculated while frame n is on the screen and then projected

simultaneously in order to create frame nz1. This means that the

movement of the pointer figure and reaction of the target figure to

it always lag a few milliseconds behind the actual mouse

movements. This, however, seems to be an unnoticeable lag.

Furthermore, it is close to the ranges of regular computer

operation and, hence, does not constitute a departure from the

kind of tool we expect our participants to be familiar with.

The participant controls the pointer via the mouse and tries to

keep the target within a small gray area in the center of the pen. In

order to reduce the likelihood of exponential divergence in terms

of the target disappearing from the screen, its escape away from

the pointer is scaled down by the parameter a%1. Additionally,

the noise term in the target behavior prevents the participant from

approaching and trapping the target object under the mouse

pointer and, thus, establishing asymptotic convergence to a steady

state.

Establishing these constraints makes the task strikingly resemble

pole-balancing. We purposefully fashioned the current task as a

simulation of balancing a pole on a finger where the target object

stands for the pole’s center of mass projected onto the hand’s plane

and the pointer object stands for the point of contact between pole

and finger. The more the pole tilts, the more its center of mass

goes away from the point of contact and eventually the pole falls

down. Meanwhile, establishing completely stable control is

impossible, and one has to sway her finger along with the pole.

In such a study Treffner and Kelso [35] suggest that the

configuration of the task near such critical instabilities allows the

behavior to unfold across multiple spatial and/or temporal scales.

This gives our approach even more validity since the authors

utilized similar time series analysis techniques to confirm 1=f b type

noise.

During the initial period the mouse performs as a properly

functioning mouse would. Beginning at a point in time randomly

chosen from the interval 30 plus or minus six seconds after trial

onset, a 3-second-long perturbation in the relation between the

mouse and the pointer on the screen instantiates a malfunctioning

mouse. The pointer dot is not directly mapped from the mouse

coordinates to the screen. Instead, an ‘‘error’’ dot location was

assigned according to the following expression,

perror~pnz1zcg ð2Þ

where c&a, b is an experimenter-assigned parameter, and the

vector g5R2 is a noise term taken from a pseudo-random uniform

distribution. The result is that for three seconds the pointer object

jumps around its ‘‘proper’’ location on the screen as assigned by

the mouse and consequently it becomes hard to control. (See

Figure 1.)

OptoTrack motion-tracking apparatus (Northern Digital Inc.,

Waterloo, Ontario, Canada) using a separate computer stored the

three-dimensional coordinates of a hand marker at a sampling rate

of 875 Hz. We used a velcro band taped around the proximal

phalanx of the ring-finger to secure the infrared marker. All six

participants used the right hand to handle the mouse.

The verbal counting task requires starting from a randomly

chosen number between 90 and 100 and counting backwards by

three. The participant was told to start over from 100 if she reached

zero before the end of the trial. In the second experiment, we

simplified and made more reliable the encoding of the cognitive

performance dependent variable by setting the perturbation to

always begin precisely 30 seconds into the trial and last for six

seconds. Additionally, a starting number of 400 was chosen for the

From Ready- to Unready-to-Hand
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counting task such that counting would happen in the range of

three-digit numbers. No motion-tracking apparatus was involved

and, instead, a digital video camera was placed behind the

participant and aimed towards the monitor screen to record the

whole session and was used later for the encoding of counting rate.

Analysis of Motor Behavior
The data in experiment 1 were analyzed using Detrended

Fluctuation Analysis (DFA), a technique which allows us to

estimate a coefficient of temporal correlation in a time series

[36,37]. Since Mandelbrot [38] proposed to generalize Brownian

motion using fractional Brownian motion as including correlated

displacements, several related techniques for quantifying the noise

(the derivative of the trajectory) have been developed. While the

coefficient b in 1=f b, the slope in the logarithmically transformed

frequency power spectrum, estimates power-law scaling of activity

amplitude in the frequency domain, the a exponent from DFA

estimates power-law scaling of variability in the time domain, and

both a and b quantify temporal correlations in the time series [37].

We chose to use a here instead of b because, first, these two

coefficients are related as b~2a{1 [19,39], and second, DFA has

some advantages over other methods with respect to its robustness

to non-stationarities in the data [40]. In the context of behavioral

measurements, DFA has been applied to a wide range of studies,

including heartbeat [41], walking [42], postural sway [43], tapping

to a repetitive signal [22], and EEG recordings [44].

The analysis begins with transforming the data into the

appropriate variable. The raw data was filtered using a 60-Hz

low-pass filter and down-sampled by a factor of 10. Only lateral

displacement of the mouse in the horizontal plane of the table was

used because a one-dimensional time series is sufficient for

applying DFA and similar techniques. The filtered lateral position

data was differenced twice to obtain the acceleration. The

acceleration series is the relevant variable here since it corresponds

to the active control on the part of the participant, i.e., the

participant’s active changes of the movement of the mouse. In

order to make a correction in the trajectory of the mouse related to

inducing a correction in the trajectory of the target, the participant

needs to apply force on the mouse, that is, change its acceleration.

The input data (see Figure 2) with length N is integrated to form

the cumulated sum or profile. Then, a series of fluctuation

functions F(n), the RMS of the residuals of a linear regression fit

inside each block of a sequence of all consecutive blocks with size

n, is calculated per size n of the observation window according to

the following equation

F (n)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

k~1

y(k){yn(k)½ �2
vuut , ð3Þ

where y(k) is the integrated time series within a block and yn(k) is

the linear trend in the same block.

In a step-by-step fashion, the algorithm can be described as

follows. The first block y(1) with length of n samples is taken from

the integrated time series and the linear trend inside it, calculated

by fitting a first-order polynomial, is subtracted from it. The

operation is repeated for all consecutive non-overlapping blocks of

data with length n. This is the detrending step which produces a

series of residuals with length N. Finally, all terms in the residuals

series are squared and the root is taken from their mean to obtain

F (n). Next, the same procedure is repeated using a different value

for the binning parameter n.

Naturally, F (n) increases as n increases but more importantly,

in case of a linear relationship between them in a log-log plot as in

Figure 3, the exponent in the power-law relation F (n)*na

corresponds to the scaling parameter and has been used to identify

persistent or positively correlated process when :5vav1 [42]. In

the special case when a~1 it is equivalent to ideal pink 1=f 1 noise.

Thus, finding values of a significantly higher than .5 indicates the

presence of 1=f b type noise, and hence a smoothly operating IDS.

Figure 2. A portion of the analyzed acceleration data from a
representative trial. The section in the middle delineated with
vertical bars was collected while the mouse was malfunctioning.
doi:10.1371/journal.pone.0009433.g002

Figure 3. Fluctuation functions from representative five-second blocks covering behavior with proper (a) and malfunctioning (b)
mouse.
doi:10.1371/journal.pone.0009433.g003
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In order to quantify the evolution of the temporal correlations in

the hand-tool displacements during the whole trial, we applied

DFA recursively to 5-second-long blocks with increments of

4 seconds. Figure 4 portrays a series of a-coefficients for a given

trial. In order to evaluate the effect of mouse perturbation, the

coefficients were divided into three groups and averaged to obtain

mean coefficients for the blocks covering the time series before,

during, and after the perturbation.

Analysis of Cognitive Performance
Using the video recording we encoded the number of times a

number was pronounced during each of 10 consecutive 6-second-

long blocks within a trial. Consequently, three average counting

rates per participant for the periods before, during, and after

perturbation were obtained by dividing the total number of counts

in the blocks covering a period by the respective number of blocks.

For example, the average pre-perturbation counting rate is the

number of counts for the first five blocks divided by five.

Results

Scaling Coefficient a
First, we evaluated the hypothesis that hand-tool displacements

analyzed for each of the three groups of averaged a-exponents

exhibited 1=f b type positively correlated noise diverging from the

a~:5 level characteristic of white noise. Separate t-tests indicated

that the pre-perturbation (M~:631, SE~:035) and post-

perturbation (M~:612, SE~:032) ones diverged, t(11)~3:79,

pv:01 and t(11)~3:52, pv:01. The perturbation group,

(M~:579, SE~:029), albeit barely, also made it to the level of

a significant difference, t(11)~2:71, pv:05, with a lower

confidence interval boundary at :51. Repeated measures ANOVA

(RMANOVA) with perturbation-relative order as independent

variable and averaged a coefficients as dependent variable,

illustrated in Figure 5, indicated a significant effect of perturbation,

F (2,22)~8:03, pv:01. Accordingly, the mouse perturbation

reduced the long-range correlation in hand-mouse displacements

relative to the ones in pre-perturbation (pv:05) or post-

perturbation (pv:05) periods. The latter two did not differ

(p~:07).

Counting Rate
Four participants had to be excluded from the analysis of

Experiment 2 because two failed to perform the motor task

accurately, that is, they allowed the target to leave the playground

area, and two others forgot to restart the additional cognitive task

after the perturbation. For the remaining nine (N~9), consistent

with the motor behavior results in Experiment 1, RMANOVA

with perturbation-relative order as independent variable revealed

a significant effect of perturbation on counting rate, F (2,16)~
14:99, pv:001. Illustrated in Figure 5, pairwise-comparisons

revealed that the average counting rates for pre-perturbation

(M~2:17, SE~:24) and post-perturbation (M~2:00, SE~:24)

did not differ (p~:32) but were both significantly different (pv:01)

from counting rate during perturbation (M~:67,SE~:20).

Discussion

Noise at the Body-Tool Boundary
In Experiment 1 we find evidence to support our prediction that

during skilled task performance the behavior of the hand-tool will

exhibit the kind of power-law scaling associated with 1=f noise

[18]. Consequently, although one can distinguish anatomically

between separate behaving components, i.e., parts of the tool,

body segments, neural pathways, etc., the task performance is

more appropriately understood by taking the tool to be

functionally integrated into a larger IDS, the body-tool IDS. As

expected, a sudden alteration of the connectivity between certain

components disrupted task performance generally. Since dynamics

play a constitutive role in a softly-assembled perception-action

device [21,45], their disturbance leads to disruption of the integrity

of the device. This disruption is manifest in the significant decrease

of the scaling coefficient characterizing long-range correlations, or

‘‘whitening’’ of the noise while the mouse misbehaves. Notice that

while the anatomical relation between the mouse (the tool handle)

and body has not changed, functionally they act much more like

separate components interacting on a restricted local scale as

portrayed by Figure 6 a and b. That is, the mouse switches from

being an intrinsic part of a self-assembled device solving a certain

problem to the problem that a newly assembled IDS has to solve.

While we aimed for an obvious categorical distinction between

tool dynamics with and without perturbation, we observed only a

drop in the scaling coefficient without a complete transition to a

behavior characterized by white noise. Yet, this is not necessarily a

weakness in our argument. Remember that Heidegger never

establishes in a precise manner the nature of the unreadiness-to-

hand as a special mode of being of equipment. Instead, it is placed

in a gray area between presence-at-hand and readiness-to-hand

and is usually regarded as a deficient, still a subordinate mode of

Figure 4. DFA results per block for a representative trial. The x-
component of the lines stands for the time coordinates of the analyzed
block and the y-component is the scaling coefficient obtained for that
particular block. The red lines in the middle are the ones that cover the
perturbation section of the trial.
doi:10.1371/journal.pone.0009433.g004

Figure 5. Means of the main measures used in the two
experiments. Counting rates are averaged across consecutive 6-
second-long blocks. Error bars are standard errors.
doi:10.1371/journal.pone.0009433.g005
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the latter [10,11]. This conceptualization matches our experiment.

During pilot trials we tuned the magnitude of the perturbation so

that is does not give rise to a complete break-down; the participant

was capable of maintaining a certain level of control throughout.

During experimentation only two participants proved incapable of

performing the task with the perturbation and allowed the target

figure to escape from the pointer figure by leaving the screen.

Hence, it makes sense to say that, just as it is in Heidegger’s

example, we instantiated a situation where the tool misbehaves but

retains some of its ‘‘usability’’. Consequently, our reliance on

dynamics at the tool-hand interface to parallel the phenomeno-

logical description of the two modes - readiness-to-hand and

unreadiness-to-hand - is justified. We observed a certain level of

long-range correlations with both a properly and improperly

behaving tool, but the exponent was decreased significantly in the

latter case.

Another important clarification is needed here. Information

about the mouse never stops being available to the participant,

even during a period of perturbation. This is a crucial point since

for an object to be phenomenologically unready-to-hand, the user

needs to be interacting with it. We are not arguing that the flow of

interaction between tool and body is reduced in magnitude, just

that it is reduced in complexity. The mouse keeps providing

sufficient local stimulation through the eyes and the sense-organs

of the arm for the agent to maintain overall control over it, as

when one is holding a foreign object in hand and is trying to figure

out a specific property of it.

Cognitive Load
In accordance with our hypothesis, Experiment 2 revealed that

the effect of the motor perturbation apparent in the significant drop

in counting rate is not localized to the body periphery but extends to

other levels of behavior involved with the task. This satisfies the

second criterion for our operationalization of Hedeigger’s proposed

transition from readiness-to-hand to unreadiness-to-hand. Before

the perturbation, the tool, by way of the mouse, its handle, is

functionally a component of the smoothly coping IDS. Experiment

1 showed that this is less so during the perturbation. If this

disruption of smooth coping constitutes also a shift from readiness-

to-hand to unreadiness-to-hand, the mouse handling will start to

emerge as another object of attention. This would increase the

participants’ cognitive load, and lead to decreased performance in

some of the ongoing cognitive tasks.

Because experiment 2 tracks attention only indirectly, other

explanations of the decrease in counting rate are possible. We

believe that the attentional shifts due to increased cognitive load is

the most plausible explanation of the decreased counting rate,

especially considering the simplicity of the experimental task. In

support of this interpretation of the results, it is worth noting that

our reason for excluding two participants from our data analysis is

that they completely discontinued the counting task during

perturbation and, furthermore, failed to restart counting after

the perturbation. We take this is as indicating that, for these

participants, the perturbation caused such a profound shift in

attention to the herding task that the counting task was excluded

entirely.

It is important that participants could easily bring performance

back to its regular state of affairs. Probably it takes some time to

recover from such an environmentally-induced attentional strain.

The average post-perturbation counting rate and a, however, were

not significantly lower than the respective pre-perturbation values.

This allows us to maintain that we have correctly created a setup

involving the mouse, screen, and specific game that is not too taxing

for our participants even during perturbation and allows them to use

a tool they are fairly familiar with, something that is another line of

convergence with Heidegger’s description of ready-to-hand.

Figure 6. A schematic of two distinct model agent IDSs. The IDSs (delineated by the surrounding curves) are fluidly or softly assembled by
virtue of rich interactions on multiple scales (double-sided arrows) among the components (black dots and hammer) are portrayed. They either span
across (A) or do not (B) the tool (hammer). It is assumed that the black dots stand for bodily structures. Notice that interaction between the tool and
the agent is present in both cases but in (B) it is impoverished, i.e. constrained to a single scale. Customarily, one studies such systems by collecting a
time series locally from the behavior of a single point of observation (C), that is, from a single element. Next, if possible one establishes their character
as an IDS by searching for power-law scaling of certain statistical quantities (D) as it was done, for example, in [21,25,26]. The two fluctuation function
plots representative of our data exemplify analysis of the behavior of the tool in (A) and (B) and were obtained using DFA which we applied instead of
power spectrum analysis. The scaling coefficient a reveals long-range correlations characteristic of 1=f noise in the hand-tool in normal mode (A) and
approaches the uncorrelated white-noise level in (B).
doi:10.1371/journal.pone.0009433.g006
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One could ask how extreme a perturbation one can induce.

According to Eq. 2, the pointer behaves erratically, but it still

follows the mouse roughly. During pilot trials we tuned the

parameters a, b, and c such that the task became challenging but

not impossible even at its hardest stage. In this way we created the

conditions for the tool to become obtrusive and to require some

attention without interrupting the experimental tasks. This comes

closest to Heidegger’s notion of unready-to-hand. But one can

extrapolate from the current study and imagine the extreme case

of total tool breakdown when the pointer stops responding to the

mouse at all. Then, the motor behavior would most likely be

discontinued and the participants’ attention would be diverted

completely away from herding and counting. This would be an

example of presence-at-hand, Heidegger’s third mode of being for

equipment.

General Discussion
As noted in the introduction, Heidegger’s phenomenology has

been influential in the cognitive sciences, despite the fact that no

attempts have been made to empirically confirm his insights. The

experiments in this paper support Heidegger’s description of the

transition from readiness-to-hand to unreadiness-to-hand, a phe-

nomenon that is key for his overall phenomenological philosophy.

When humans are smoothly coping with entities ready-to-hand,

they see through their tools to focus on the task they are using those

tools to complete. When that coping is disrupted by a temporary

malfunction, humans can no longer see through the malfunctioning

tool and experience it as unready-to-hand. We demonstrated this

transition by showing that when participants smoothly operate a

mouse in a video game task, the body-tool performance displays the

complex dynamics typical of an IDS. Temporarily disrupting mouse

behavior temporarily disrupted this IDS, at least at the body-tool

boundary. We also showed that this disruption led to a

reconfiguration of the participants’ awareness of the situation by

showing a shift in resources allocated to an additional cognitive task.

This is closing in on Heidegger’s transition from readiness-to-hand

to unreadiness-to-hand. We take these experiments as progress

toward justifying the influence that Heidegger’s phenomenological

philosophy has had on cognitive sciences and justifying the partly

Heidegger-inspired claim that cognitive systems sometimes extend

beyond the biological body.

A major challenge in using experimental work to validate

phenomenological observations is that these might seem to be two

orthogonal planes. This is why we needed to check our predictions

related to extended cognition as derived from Heidegger against

predictions derived from an additional theoretical approach to

perception-action [21,25,26]. More interestingly, in the context of

the current study these two perspectives enriched each other’s

predictions. Without the notion of a self-assembled device with

interaction-dominant dynamics resulting in 1=f b noise, it would be

hard to predict what kind of change of motor behavior would

result from a perturbation of smooth coping. Similarly, until one

considers Heidegger’s discussion of ready- and unready-to-hand,

speaking of an IDS as incorporating or failing to incorporate a tool

does not necessarily inform you of the size and direction of the

impact on awareness that a functional perturbation of that tool is

going to have. The combination of the two approaches provides

for a model that explains the observed data.

The experiments described above have two further implications.

First, Experiment 1 lends support to an untested hypothesis found

in [21]. Particularly, the authors claim that 1=f b noise character-

istic of cognitive behavior should be observable even in relatively

fast scales of motor activity at the periphery of the body, and not

just in tasks the responsibility for which is traditionally attributed

solely to the central nervous system. Second, the experiments

provide further evidence in favor of the hypothesis of extended

cognition. That is, our demonstration of the presence of 1=f b long

memory process during smooth coping and its reduction during

perturbation of that smooth coping supports the notion that the

body-tool instantiates an IDS.
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