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Abstract

Vastly divergent sequences populate a majority of protein folds. In the quest to identify features that are conserved within
protein domains belonging to the same fold, we set out to examine the entire protein universe on a fold-by-fold basis. We
report that the atomic interaction network in the solvent-unexposed core of protein domains are fold-conserved,
extraordinary sequence divergence notwithstanding. Further, we find that this feature, termed protein core atomic
interaction network (or PCAIN) is significantly distinguishable across different folds, thus appearing to be ‘‘signature’’ of a
domain’s native fold. As part of this study, we computed the PCAINs for 8698 representative protein domains from families
across the 1018 known protein folds to construct our seed database and an automated framework was developed for
PCAIN-based characterization of the protein fold universe. A test set of randomly selected domains that are not in the seed
database was classified with over 97% accuracy, independent of sequence divergence. As an application of this novel fold
signature, a PCAIN-based scoring scheme was developed for comparative (homology-based) structure prediction, with 1–2
angstroms (mean 1.61A) Ca RMSD generally observed between computed structures and reference crystal structures. Our
results are consistent across the full spectrum of test domains including those from recent CASP experiments and most
notably in the ‘twilight’ and ‘midnight’ zones wherein ,30% and ,10% target-template sequence identity prevails (mean
twilight RMSD of 1.69A). We further demonstrate the utility of the PCAIN protocol to derive biological insight into protein
structure-function relationships, by modeling the structure of the YopM effector novel E3 ligase (NEL) domain from plague-
causative bacterium Yersinia Pestis and discussing its implications for host adaptive and innate immune modulation by the
pathogen. Considering the several high-throughput, sequence-identity-independent applications demonstrated in this
work, we suggest that the PCAIN is a fundamental fold feature that could be a valuable addition to the arsenal of protein
modeling and analysis tools.
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Introduction

Nature employs merely a few thousand protein folds to generate

the entire repertoire of the multimillion strong protein universe

[1]. Massively divergent amino acid sequences thus populate

protein families of many folds (Figure S1), ostensibly challenging

the notion that all information dictating fold mapping of

proteins—the protein fold code—is programmed in the sequence

[2,3]. We sought to decode conserved features within each fold

family despite the vast degrees of sequence divergence, so as to

better understand the factors governing the protein fold code.

Given that the residues constituting the core are generally amongst

the slowest evolving regions of protein structures [4] and are

central to folding [5] and unfolding [6], we focused on the core of

proteins to elucidate fold-conserved features.

At the heart of a stable protein domain, are the solvent-

unexposed residues in its core [7,8]. The identity and packing of

protein core residues are known to be key factors that mediate

both the energetics of folding [9] and the emergence of fold

families [10]. The quality of protein core packing has also proven

useful to successfully refine and validate computationally gener-

ated structural models [11]. Recent studies have further examined

specific families of proteins from sequence and packing/volume

perspectives to delineate factors governing protein stability

[12,13]. Owing to the fact that atomic interactions are

fundamental to defining protein folds, in this study, we considered

the information content of protein contact maps (PCMs)—a

function of the distance between atoms of all amino acids in a

protein [14]. Further, in order to capture the information content

in the solvent unexposed core regions of protein structures, we

defined the protein core atomic interaction network or PCAIN (Figure 1).

While different methods have been used to identify core residues of

protein structures [7–14], we used conserved solvent inaccessibility

as a metric to automate the identification of residues constituting

the core of domains from protein family alignments (see Methods

section) and focused exclusively on the atomic interactions

between these residues to characterize each fold and compute a

database of PCAINs.

We find that PCAINs are well-conserved between domains of

the same fold family, while significantly different from the PCAINs

for domains of other fold families—characteristics that are in sharp

contrast to the non-fold-specific nature of PCMs. The fold-specific
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Figure 1. Computation of the protein core atomic interaction network (PCAIN) from the 2-D protein contact map (PCM). The PCM
accounts for all atomic interactions in the 3-D protein structure while the PCAIN involves atomic interactions between just the conserved, solvent
inaccessible residues in the ‘core’ of protein domains.
doi:10.1371/journal.pone.0009391.g001
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nature of PCAINs is further found to be consistent accross families

from the entire universe of protein folds (numbering ,1018),

highlighting the PCAIN as ‘‘signature’’ of the native folded state of

protein domains. Building on the fold-specific nature of PCAINs,

we demonstrate the use of PCAIN-based scoring schemes for

effective classification of protein sequences into their native folds

and for high-throughput, accurate homology-based (comparative)

protein structure prediction. We further highlight the potency of

PCAINs for extending the current capabilities of homology

modeling into the ‘twilight’ and ‘midnight’ zones [15,16] of low

target-template sequence identity (,30% and ,10% respectively),

including those from recent CASP experiments [17]. Having

verified the utility of PCAINs, we proceed to estimate the

sensitivity of PCAINs to threshold interaction distance (r) and

conserved solvent accessibility (v)—the two fundamental physical

parameters that characterize the PCAIN—thus defining a (r, v)

landscape for protein structures. From this analysis, we find that

the PCAIN is most refined around specific windows of (r, v)

values and propose an adaptive approach for maximizing the fold

signature ‘‘signal’’ to evolutionary sequence divergence ‘‘noise’’,

thus enabling effective parameter-tuning of PCAINs for applica-

tions to derive biological insight into protein structure-function

relationships. Finally, we showcase as an application of the

developed protocols, PCAIN-based modeling of the hitherto

unknown structure of the NEL domain from the YopM effector

protein of plague-causative bacterium Yersinia Pestis. We conclude

with discussions on the biological implications of the modeled

bacterial protein structure, especially from the perspective of

adaptive and innate immune signaling modulation during host-

pathogen interplay.

Results and Discussion

We used the CATH database [18] as the source for our data on

protein domains and their folds. At the time when this study was

performed, the CATH database (Figure S2) had 112,450 protein

domains classified into 1,018 folds. We chose 8,698 protein

domains from accross the 1,018 folds representing all the different

homologous superfamilies in CATH to seed our database. The

structure-based multiple sequence alignments for the seeded

domains were obtained from DHS [18] and conserved, solvent-

unexposed core columns were identified for each alignment

(Figure S3) using the solvent accessibility parameters from DSSP/

CATH-wolf [19–21] for constructing the PCAIN database from

the PCM database (Figure S4) as described in the methods section.

As part of the PCAIN database, a comprehensive framework to

document key conserved interactions for each family of the protein

universe was developed (Figure 2), permitting assignment of

PCAIN scores to threaded structures.

In order to investigate the fold-specificity of PCAINs and

contrast with that of PCMs, the averaged PCM and PCAIN scores

for the seed domains from each of the 1018 folds were computed.

The averaged PCM and PCAIN scores for all fold pairs were

cross-correlated to obtain the correlation coefficients that provide

for a quantitative estimate of variations in these scores for different

folds (non-diagonal entries; Figure S5). The average degree of

correlation in PCMs and PCAINs were also computed for each

family, providing a quantitative estimate of the degree of fold-

conservation for these scores (diagonal entries from top left to

bottom right; Figure S5). From this data, it is clear that the PCM

provides for no discernable fold-specificity owing to random

correlations within (diagonal) and accross (non-diagonal) folds. On the

other hand, it is evident that the PCAIN is highly fold-specific with

low inter-family correlation coefficient values (non-diagonal) and

high intra-family correlation coefficient values (diagonal). In order

to better illustrate this point, the PCM and PCAIN scores for

several randomly selected fold families from architectures

spanning a significant portion of the protein universe is also

shown (Figure 3), from which the extremely high fold-specificity of

PCAINs and low fold-specificity of PCMs is evident.

Given that the PCMs and PCAINs are functions of the

threshold interaction distance (r) and conserved solvent accessi-

bility (v) parameters, the entire analysis was repeated for various

threshold interaction distances ranging from r= 3.5–5.0 and

conserved solvent accessibility cutoffs ranging from v= 0–10, to

observe consistently higher fold-specificity for PCAINs than PCMs

(data not shown). This analysis suggests that despite the large degree

of sequence divergence in a majority of fold families, atomic

interactions between amino acids in the solvent-unexposed core of

domains (PCAINs) are a highly fold-conserved feature. The poor

fold-specificity of the PCM on the other hand, is tell-tale of high

‘‘evolutionary tinkering’’ noise [22] drowning out the fold-

conserved atomic interaction signals. Thus, it emerges that PCMs

have high signal-to-noise (SNR) ratio and that the solvent

accessibility parameter (v) sieves out the function-driven evolu-

tionary tinkering noise from PCMs. This implies that PCAINs are

‘‘de-noised filtrates’’ of PCMs - a result that corroborates the long-

standing notion that exposure to solvent correlates with evolution-

driven amino acid substitution [23]. Furthermore, from the

perspective of 2-D and 3-D realms, this analysis suggests that

solvent exposed atomic interactions are more liable to evolutionary

tinkering than are solvent unexposed (buried) atomic interactions.

In order to examine the fold discriminating efficacy of PCAINs

and PCMs with greater detail, a general screen of 50,000

randomly selected domains was considered from the universal

set of 112,450 domains excluding the 8,698 representative

domains from which the seed databases were constructed. While

the PCAIN showed 97% accurate classification, the PCM showed

only 14% accuracy in classification of domains into their

respective folds (Figure 4A). Furthermore, the PCM’s ability to

classify folds was found to be heavily dependent on the target-

template pairwise sequence identity (PSI), with an exponential

decrease in classification accuracy with decrease in PSI (Figure 4B).

It must be noted that in the higher PSI realm (.50%) wherein the

PCM shows some marginal performance, sequence-based (1-D)

methods are known to perform significantly well [24] and the

utility of the 2-D PCM based approach is defeated owing to the

higher computational cost involved. On the other hand, the

PCAIN is found to be largely uninfluenced by the drop in PSI and

consistently shows over 95% fold-classification accuracy even in

the twilight (,30% PSI) and midnight zones (,10% PSI)

(Figure 4B). This analysis showcases the 2-D PCAIN as a useful

tool to add to the existing methods for protein fold recognition

such as profile pattern recognition and protein threading [25–28].

While some existing methods are able to recognize folds

accurately [25–27], there is still an unmet need for methods that

can proceed from fold recognition towards accurate homology-based

structure prediction [28] in the ‘twilight’ and ‘midnight’ zones—

wherein target-template sequence identity are ,30% and ,10%

respectively [15,16]. Furthermore, this breakdown of homology

modeling utility with low target-template identity challenges

elucidation of structures for newly discovered proteins, several of

which happen to fall into the twilight and midnight zones

[26,29,30]. To address this issue, we systematically evaluated the

potency of the PCAIN approach for homology-based structure

prediction, motivated by the high fold-specificity of PCAINs. For

this purpose, we developed a PCAIN-based scoring scheme

(Figure S6) outlined in the methods section—for template

The Protein Fold Code
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Figure 2. Snapshots from the PCAIN database used for mining fold-distinguishing signatures. The solvent inaccessible core of domains
(shaded brown) from all 1018 naturally occurring folds were identified and used to compute the PCAINs (as described in the methods section) as part
of the PCAIN database. Shown herein are representative domains and PCAINs (with yellow arrow between) from the following fold families–(A.)
Orthogonal a-bundle (DNA helicase RuvA subunit); (B.) Up-down a-bundle (coiled-coil); (C.) a-horseshoe (leucine-rich repeat variant); (D.) a-solenoid
(peridinin-chlorophyll protein); (E.) aa-barrell (glycosyltransferase); (F.) ab-roll (HIV reverse transcriptase); (G.) ab-complex (cytochrome); (H.) ab-box
(proliferating cell nuclear antigen); (I.) b-ribbon (seminal fluid protein PDC-109); (J.) b-sandwich (neurophysin); (K.) b-barrel (thrombin); (L.) b-propeller
(pseudo b-propeller); (M.) b-clam (outer membrane lipoprotein receptor); (N.) b-trefoil (acidic fibroblast growth factor). Fold-distinguishing PCAIN
patterns observed herein motivated systemic computation of intra-fold and inter-fold correlations on a family-by-family basis, as shown in
supplementary figure S5. Fold-conserved interactions are evolutionary markers and are demarcated (red stars) on the corresponding sample set of
the protein family alignments in supplementary figure S3.
doi:10.1371/journal.pone.0009391.g002
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Figure 3. Contrasting the fold specificity of protein contact maps (PCMs) and protein core atomic interaction networks (PCAINs).
Averaged intra-family (diagonal) and inter-family (non-diagonal) correlation coefficients of (A.) PCMs and (B.) PCAINs were computed at 5 angstroms
threshold distance r and normalized solvent accessibility/atom of v= 10 on a family-by-family basis for several prominent folds of the protein
universe. The complete 1018 folds by 1018 folds correlations of PCMs and PCAINs for the entire fold universe is shown in supplementary figure S5.
From these figures it is clear that PCAIN is highly fold-specific but PCM shows no discernible fold specificity.
doi:10.1371/journal.pone.0009391.g003
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selection, anchored sequence alignment, and homology-based

structure prediction. This testing was performed with a general

screen of randomly selected domains from the universal set of

domains, excluding the representative domains of the seed

database, and including those from recent CASP experiments.

The reference structure-based sequence alignments were seen to

have extremely high correlations to the PCAIN-based anchored

alignments with pearson’s correlation coefficient of 0.91. It is

interesting that atomic interactions are mined from 3-D structural

coordinates and 2-D PCAINs are used to identify the fold-

conserved set of atomic interactions that are finally mapped to

thread 1-D amino acid sequences. This underlines the application

of fold-conserved (including in twilight and midnight zones) higher

dimensional data from structural (3D) and contact (2D) spaces for

effective protein analysis. This also establishes that PCAIN-based

anchored alignments closely mimic the actual structure-based

sequence alignments, thus confirming the utility of PCAINs vis-a-

vis sequence alignment. Furthermore, superposition of the

modeled test structures onto the reference crystal structures

demonstrated good structure prediction accuracy in the range of

1–2 angstroms, with mean RMSD of 1.61 angstroms (Figure 4C).

In order to specifically estimate the efficacy of the PCAIN

approach for structure prediction in the twilight and midnight

zones of sequence identity, the RMSD range for the predicted

Figure 4. Applications of PCAIN as a divergence-independent metric for protein classification, anchored sequence alignment, and
structure prediction. (A.) PCAINs were computed on a general screen of unselected protein domain sequences that were not part of the database
and used to accurately classify these sequences as shown, confirming the fold-specific nature of PCAINs. PCMs of these domains are seen to be
ineffective as classifiers in the general sequence space. (B.) PCAIN is seen to be an effective classifier regardless of the sequence identity of the target
domain towards members of its native fold and is observed to be effective even in the twilight (,30% PSI) and midnight (,10% PSI) zones. On the
other hand, the PCM is observed to be highly dependent on this sequence identity and provides for some moderate classification accuracy only in
the high sequence identity range. (C.) The distribution of RMSD between PCAIN-based predicted structures and the reference crystal structures for
target sequences with mean RMSD of 1.61A highlights the structure prediction efficacy of the proposed method. (D.) Pie chart of RMSD distribution
for test sequences in the twilight and midnight zones is shown, indicating mean RMSD of 1.69A.
doi:10.1371/journal.pone.0009391.g004
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structures corresponding to the test domains in these zones was

also computed (Figure 4D). The mean RMSD in the twilight and

midnight zone was 1.69 angstroms with the overall RMSD

distribution (Figure 4D) very similar to that obtained for the entire

set of test domains (Figure 4C), thus proving that the PCAIN

approach to structure prediction is sequence-identity-independent

and hence notably potent in twilight-midnight zones. Successful

prediction of structures for example targets from recent CASP

(critical assessment of structure prediction) proceedings that are

not part of the CATH database or the seed datasets further

illustrate the generic, database-independent efficacy of the PCAIN

approach (Figure S7). This analysis confirms the high-throughput

accuracy of PCAIN-based structure prediction and showcases it as

a valuable addition to the arsenal of structural modeling tools.

The significantly improved performance of PCAINs over PCMs

[31] is due to three distinct advantages. Primarily, owing to de-

noising of ‘‘evolutionary tinkered’’ contacts from the PCM, the

PCAIN enables exclusive retention of fold-specific signals. Next,

the PCAIN scores for sequences generally best match with the

representative domains from the same superfamily, rather than

domains of other superfamilies even belonging to the same fold.

Since protein folds are classified into superfamilies based on

common functions and evolutionary relationships, it is likely that

the PCAIN-based methodology enables handpicking of an optimal

functionally-related template molecule for modeling the structure

of the unknown protein, thus contributing significantly towards

improving the accuracy of structure prediction. Finally, the

PCAIN methodology provides for utilizing the fold-conserved

residues as ‘‘anchors’’ in the target-template sequence alignment

step, thus increasing efficacy of conventional alignment protocols.

Taken together, these three factors contribute towards the potency

of PCAINs for the discussed applications. With further improve-

ments to the accuracy of secondary structure prediction methods

and incorporation of additional fold-conserved features from

solvent-exposed regions, it is conceivable that more accurate

structures may be predicted as part of future advancements to the

PCAIN methodology.

Given that the PCAIN is a function of two fundamental

parameters, namely, threshold interaction distance (r) and

conserved solvent accessibility (v), we investigated the effect of

modulating these parameters (Figure 5). For this purpose, a

parameter scan on (r, v) was performed and the effective operable

landscape for PCAIN-based methods was mapped for the range

r= 3.5–7.0 angstroms and v= 0–40%. Given that high intra-

family PCAIN correlation scores and low inter-family PCAIN

correlation scores are necessary for defining a refined fold

signature with high SNR, the difference between these two scores

provides a reliable measure of potency. We find that the PCAIN is

sensitive to both the threshold interaction distance parameter (r)

and the conserved solvent accessibility parameter (v), with higher

sensitivity towards the former (Figure 5A). Specifically, the PCAIN

is found to be most effective as a fold signature (high intra-family

and low inter-family correlations) in the window v= 2–20%

(Figure 5B) and similarly in the window r= 4.0–4.5 angstroms

(Figure 5C).

The (r,v) landscape may be interpreted as follows. Protein

structures are ensembles of backbone bonded dipeptide confirma-

tions that are characterized by the (Q, y) plot [32–34] and other

side-chain interactions that are characterized by inter-residue

distance [35]. Too much threshold interaction distance (r) implies

accounting for non-influential residue pairs as interactions and

such pseudo-interactions will add to the noise thus decreasing SNR

and PCAIN potency. Too little threshold interaction distance (r),

on the other hand, is not feasible, since it will be less than inter-

atomic Van der Waals distances. The ‘v’ parameter accounts for

the interplay between water molecules and the residues constitut-

ing the protein structure and from this perspective the PCAIN

may be viewed as essentially the solvent unexposed network (SUN)

of interacting residues. Specifically, a higher ‘v’ value implies

accounting for partially solvent exposed (and hence possibly non-

conserved) atomic interaction networks, thus adding to the noise

factor and decreasing PCAIN effectiveness. A ‘v’ value close to

zero, on the other hand, may be too stringent. Along the lines of

this analysis, it is conceivable that fine-tuning of the PCAIN may

be required for specific molecular biology applications. Having

mapped the effective operable landscape for PCAIN-based

methods with the goal of obtaining the maximal PCAIN

effectiveness and highest possible SNR, we propose an adaptive

framework (Figure 5D) for such fine-tuning of the (r, v)

parameters as required by the application of interest.

Protein fold recognition and structure prediction have numer-

ous biological applications [28–30]. In addition to the previously

demonstrated applications of sequence alignment, fold identifica-

tion, template selection, and homology modeling, we demonstrate

herein, application of the described PCAIN-based structure

prediction methodology to derive biological insight into potential

structure-function relationships of proteins with hitherto unre-

solved structure. As an example to highlight this application, we

consider the effector protein YopM from the plague-causative

bacterium Yersinia pestis [36]. While it is well-known that YopM is a

critical virulence determining factor, structural insight into

potential roles of YopM in Y. pestis pathogenesis has been elusive,

due to the unsolved structure of the YopM novel E3 ligase (NEL)

domain [37].

We modeled the YopM NEL domain structure using the

PCAIN methodology and investigated the putative ubiquitin ligase

catalytic site (Figure 6A). From the modeled structure, we note

remarkable correlation in molecular surface electrostatics includ-

ing the highly-conserved patches (Figure 6B), in NEL domain

structures from Salmonella SspH2 [38], Salmonella SlrP [39], Shigella

IpaH [40], and Yersinia pestis YopM, in addition to high correlation

of the PCAINs for these domains (Figure 6C). Given that these

patches constitute the NEL catalytic site [40] and the recently

characterized Salmonella NEL domain interaction sites with human

leukocyte antigen-DR (HLA-DR; a major histocompatibility

complex (MHC) class II receptor) and thioredoxin (TRX)

[38,39], it is likely that the YopM NEL domain functions as an

autoregulated E3 ubiquitin ligase and degrades human intracel-

lular proteins, similar to NEL domains from Salmonella and Shigella.

Such an ubiquitinase activity of YopM NEL has significant

implications for modulation of host adaptive and innate immune

response to plague (Figure 6D). The ubiquitination and subse-

quent degradation of HLA-DR by Salmonella effectors within

antigen presenting cells like macrophages, B-cells, and dendritic

cells, has been recently shown to diminish the surface expression of

MHC class II antigens [41]. It is conceivable that a similar

interaction of YopM NEL with HLA-DR could moderate the host

adaptive immune response (Figure 6D). Confirmation of the

proteolytic degradation of TRX by YopM will have important

implications in the regulation of mitogen-activated protein kinase

kinase kinase 5 (MAP3K5) signaling, for TRX interaction with

MAP3K5 [42] provides Y.pestis a plausible direct method to

modulate innate immunity (Figure 6D). More specifically, future

studies that biochemically characterize interactions of key host

intracellular molecules to the YopM molecule modeled herein, will

further our understanding of the specific mechanisms governing

bacterial subversion of human adaptive and innate immune

signaling pathways.

The Protein Fold Code
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The modeling of YopM NEL domain demonstrated in this

study amply highlights application of the PCAIN methodology to

derive biological insight into protein structure-function relation-

ships. Taken together with the previously described applications of

the PCAIN methodology such as sequence alignment, fold

identification, template selection, and structural modeling, our

Figure 5. PCAIN as a function of threshold interaction distance (r) and conserved solvent accessibility (v) parameters. (A.) Variation of
PCAIN potency (difference between averaged intra-fold and inter-fold PCAIN correlations) with threshold interaction distance r and conserved
solvent accessibility v. (B.) At fixed r= 4.25 angstroms, the variation of PCAIN potency with v. (C.) At fixed v= 25, the variation of PCAIN potency with
r. (D.) Implementation of adaptive tuning of r and v parameters for maximizing SNR.
doi:10.1371/journal.pone.0009391.g005
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Figure 6. Application of the PCAIN methodology to analyze potential structure-function relationships of the novel E3 ligase (NEL)
domain from the YopM effector protein of the plague-causative bacterium Yersinia Pestis. (A.) The YopM NEL domain structure was
modeled using the PCAIN methodology and the putative ubiquitin ligase catalytic site was characterized, based on the recent experimental
characterizations of Salmonella and Shigella NEL domains [38–41]. The likely hydrogen bonds that stabilize the active site (black lines) and the key a-
helices (H4, H7, and H9) are indicated. (B.) Vacuum electrostatics of the molecular surfaces from superposed NEL domains of YopM, SlrP, SspH2, and
ipaH were generated (see Methods) with negative, positive, and neutral patches colored red, blue, and white respectively. The finger-like extension
(pink line), globular domain (orange arc), and active site location (black arrow) are indicated. (C.) The solvent-unexposed residues that constitute the
PCAIN of the modeled YopM NEL domain structure (gray) are shown as sticks (brown). The molecular surface of the YopM NEL domain is also shown
alongside to highlight that the residues constituting the PCAIN (brown) are only very minimally solvent exposed. (D.) This is a pictorial depiction of
YopM in the intracellular context and the key structural implications for its modulation of human adaptive and innate immune signaling. Specifically,
YopM is known to interact with protein kinase C-like 2 (PRK2) and ribosomal S6 protein kinase 1 (RSK1) resulting in increased activity and mobility of
these kinases, in addition to potentiating natural killer (NK) cell depletion by suppressing expression of Interleukin-15 (IL-15) [37]. YopM has also been
shown to specifically interact with a1-antitrypsin (AAT) without affecting its anti-protease activity, due to which the biological significance of this
interaction remains unknown.[37] Also indicated by the question mark (?) symbols are hitherto unknown interactions for YopM, extrapolated based
on the functions of the related proteins. Specifically highlighted in this regard are the degradation of human leukocyte antigen-DR (HLA-DR) and
thioredoxin (TRX) that may cause suppression of adaptive immune response via moderation of antigen presentation and modulation of innate
immune signaling via the MAPK cascade, respectively. It remains to be seen what precise intracellular molecules are targeted by YopM NEL for
proteolytic degradation, considering the autoregulated ubiquitin ligase activity suggested by our PCAIN-based model and analysis.
doi:10.1371/journal.pone.0009391.g006

The Protein Fold Code

PLoS ONE | www.plosone.org 9 February 2010 | Volume 5 | Issue 2 | e9391



study confirms the PCAIN as a fundamental fold feature that will

be a valuable addition to the arsenal of protein modeling and

analysis tools. Additionally, the PCAINs computed as part of this

work (such as those from the database shown in Figure 2) are likely

to be useful resource for molecular engineering applications since

they provide a rigorous starting framework or scaffold upon which

rest of the protein design may be tailored based on the functions of

interest. PCAIN computation and analysis may also be valuable

for applications such as elucidating mechanisms of protein

evolution, stability, folding, unfolding, and misfolding, given the

central role of the protein core in governing these phenomena

[43–46].

It has recently been shown that two specific amino acid

sequences with overwhelming identity (,88%) adopt distinct folds,

thus postulating that for the specific protein pair considered, only

,12% of the amino acid sequence codes for sequence-to-structure

mapping [47]. PCAIN sheds light on a ‘‘fold code’’ that is

consistently encoded into residues that constitute the networks of

atomic interactions in solvent unexposed core regions of protein

native structures. This suggests that the fold code is a network

phenomenon along with sequence and structural phenomena, thus

providing rationale as to why merely sequence-based or structure-

based pattern analysis of proteins may not succeed in decoding

fold signatures. The cores of the protein domains of the same fold

as identified by our method can have low sequence identity and

poor secondary structure motif matching, but high conservation of

their PCAINs (Figure S8). Hence, defining protein cores based on

treatment of protein structures as atomic networks characterized

by the (r, v) plot and denoising of PCMs by recognition of

signature network patterns, distinguishes our PCAIN methodology

from the previously explored knowledge-based threading poten-

tials. Our finding that the atomic interactions between just 15–

20% of residues in native structures of each examined fold are

conserved, further suggests that the PCAIN is a minimalistic fold

code.

Finally, this study provides compelling evidence in support of

Anfinsen’s dogma [48] that information dictating the native

structural fold of protein domains is encoded in its amino acid

sequence. Herein we have shown that ‘‘a significant portion of the

fold-dictating information is encoded by the atomic interaction

network in the solvent-unexposed core of protein domains’’.

Materials and Methods

Automated Identification of ‘Core’ Residues and
Construction of a Core Composition Database
Characterizing All 1018 folds of the Protein Universe

At the time when this study was performed, the CATH database

[18] had 112,450 protein domains classified into 1,018 folds, from

which 8,698 protein domains representing the different homolo-

gous super families were used to seed our database. CATH defines

cores based on secondary structural element analysis, whereas in

our method the core can include non-secondary structural

elements. Taken together with several other methodology

distinctions, the cores identified by us are unique (as highlighted

for the illustrative domain in Figure S8 for which more than 75%

of CATH and PCAIN core residues are distinct). The structure-

based multiple sequence alignments were obtained from DHS [18]

(Figure S3) and the absolute solvent accessibility (ASA) factors

from DSSP/CATH-wolf [21] were obtained for the amino acids

of all 8,698 domains. The relative solvent accessibility (RSA) per

atom was computed for each residue. The mean solvent

accessibility (v) was then calculated for all columns of the seed

alignments and a threshold was used to identify the consistently

solvent-unexposed columns as shown (Figure S3). This set of

consistently solvent inaccessible columns was mapped back onto

the conserved residue positions thus defining the core for all the

seeded protein domains from each alignment. This was compiled

into a dataset of protein core residues, one corresponding to each

protein family and each considered value of parameter v. The

frequency of each amino acid at the core positions was also

consolidated into a dataset of family-specific protein core residue

propensities. The complete protein core characterization method,

right from CATH mining until the construction of the datasets was

automated with the implementation of a script in MATLAB 7.6.0

from The MathWorks, Inc. (Nattick, MA).

Automated Construction of the PCM and PCAIN
Databases for All 1018 Folds of the Protein Universe

A MATLAB script was written to automate the computation of

protein contact maps (PCMs) for all seeded domains of the 1018

folds at various threshold interaction distance parameter (r) values

(Figure S4). This was compiled into a database of PCMs on a fold-

by-fold basis. The previously identified core residues for each

domain of each fold at various v values was used to identify the

rows and columns of interest from PCMs at various r values and

these were concatenated into the corresponding PCAINs for each

domain of each fold at various (r, w) values, as depicted pictorially

(Figure 1). This step was automated with a MATLAB script, which

was also ultimately used to compile the generated PCAINs into an

integrated PCM-PCAIN database for various (r, w) values. A

simple python script was written and executed in PyMol for

visualization of all the protein cores and PCAINs shown in this

study (Figure 2). The pearson’s correlation coefficient was

computed to quantitatively contrast PCMs and PCAINs both

within and accross all 1018 folds (Figure S5) and accross 15

unselected folds for refined visualization purposes (Figure 3).

Automated Fold Classification of Randomly Selected
Domains from the Protein Universe

(Figure S6)–A general screen of 50,000 randomly selected

domains (obtained from the set of 112,450 domains excluding the

8,698 representative domains in the training set from which the

PCM and PCAIN databases were constructed) were considered

for testing the fold classification efficacy of PCAIN-based and

PCM-based scoring schemes. The effectiveness of the classification

approaches were then estimated (Figure 4A) using the actual folds

of the test sequences as reference. Variations of the classification

efficacies as a function of target-template sequence identity were

also computed (Figure 4B).

Template Selection Based on Target PCAIN Estimation
and Correlation with Protein Family PCAIN Signatures

An automated MATLAB script was written to compute the

secondary structures of the target amino acid sequences based on

secondary structure prediction consensus [49–51]. The type,

quantity and distribution of secondary structures are partially

characteristic of folds and offer a good first filter for the fold and

template selection process. Potential amino acids that correlate

with the propensity data for each core position of all the screened

folds are then identified for the target sequences, providing an

estimate of ‘core fit’ and serving as a second filter for fold and

template selection. The algorithm for this step is also implemented

in MATLAB 7.6.0 from The MathWorks, Inc (Natick, MA) and

accepts three inputs, namely, target amino acid sequences, the

corresponding secondary structural information, and the fold-

specific core residue propensity dataset. The target sequences for
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which all potential core residues are identifiable are deemed ‘core

fit’ with respect to the screened folds and the target PCAIN scores

for these are computed using the PCAIN database. For a majority

of cases, the identical residue pairs are present in the database and

hence their corresponding pairwise score is directly utilized. In

other cases, an average of pairwise interactions between the two

considered core positions from all other members of the screened

fold family is used in this step. The target PCAIN scores are

subsequently back-correlated with the averaged PCAIN score of

each family and the resulting correlation coefficients provide an

additional estimate of the degree of ‘core fit’. A simple threshold

step is used at this stage as the third and final filter to determine

the protein family, thus providing for selection of the optimal

template molecule.

Automated Anchored Sequence Alignment and
Comparative Structure Prediction for Randomly Selected
Protein Domains

The steps of this algorithm are depicted as a flowchart in Figure

S6. Briefly, a general screen of randomly selected domains were

obtained from the set of 112,450 domains (excluding the 8,698

representative domains for which PCM and PCAIN databases

were constructed) and their PCAINs were estimated as detailed

above. The computed target PCAIN scores were then correlated

with the PCAIN scores (from the seed database) of every

representative homologous superfamily member of the identified

fold family in order to compute the optimal template, based on

similarities at the level of evolutionary origin and function. The

corresponding scaffold residues of the target and template

sequences are then ‘anchored’ and pairwise sequence fragments

between subsequent anchors are aligned using standard functions

from the MATLAB bioinformatics toolbox with the BLOSUM62

scoring matrix and default gap penalties. The process involving

fold identification, template selection and anchored alignment is

maximally automated with the design of a MATLAB-based

model. The structure-based sequence alignments are correlated

with the PCAIN-based anchored alignments to estimate the

efficacy of the PCAIN approach to sequence alignment

(Figure 4C). Once the optimal anchored target-template align-

ments were computed, these were input to the automated

homology modeling script of Discovery Studio from Accelrys,

Inc. (San Diego, CA) that uses standard force fields to determine

the energy minimized 3-D structural coordinates for the test

sequences, including those from recent CASP experiments (as

illustrated by examples in Figure S7). Each modeled 3D structure

was then superposed onto the actual crystal structure obtained

from the PDB using an automated MATLAB function and the

root mean square deviations upon superposition were computed

(Figure 4D).

Modeling NEL Domain Structures with the PCAIN
Methodology and Analysis of Their Putative
Structure-Function Relationships

The molecular structures of NEL domains from Yersinia pestis

YopM (NCBI Reference Sequence: ZP_02316950.1) and Salmo-

nella typhimurium SlrP (GenBank: AAD39928.1) were modeled

using the described PCAIN methodology with the identified

optimal template structure of Shigella type III effector IpaH (PDB

ID: 3CKD). All structure-function relationship analysis, including

vacuum electrostatics generation for the modeled Yersinia pestis

YopM NEL, modeled Salmonella typhimurium SlrP NEL, crystal

structures from Shigella IpaH NEL (PDB ID: 3CKD), and salmonella

SspH2 NEL (PDB ID: 3G06), were performed with PyMol.

Supporting Information

Figure S1 Evolutionary sequence divergence of protein fami-

lies. More than 60% of protein families from the pfam database

were found to be significantly divergent in their sequences (High

range), around 30% of protein families were found to be

moderately divergenct in ther sequences (Medium range) and

less than 10% of protein families were found to be well conserved

in their sequences (Low range). This shows that evolutionary

tinkering and sequence divergence are rampant across the protein

universe.

Found at: doi:10.1371/journal.pone.0009391.s001 (0.14 MB JPG)

Figure S2 The diversity of protein folds. Representative protein

domains from CATH showcasing the fold diversity, classified

according to their class (mainly a/mainly b/ab) and architecture.

Found at: doi:10.1371/journal.pone.0009391.s002 (0.11 MB JPG)

Figure S3 Sample sets from fold family alignments highlighting

the solvent-unexposed (core) conserved positions (blue columns).

(A) Sample proteins from a family of the architecture - Orthogonal

bundle. (B) Sample proteins from a family of the architecture - Up-

down bundle. (C) Sample proteins from a family of the

architecture - Alpha-horseshoe. (D) Sample proteins from a family

of the architecture - Alpha-alpha Barrel. (E) Sample proteins from

a family of the architecture - Beta-Ribbon. (F) Sample proteins

from a family of the architecture - Beta-Barrel. (G) Sample

proteins from a family of the architecture - Beta-Trefoil. (H)

Sample proteins from a family of the architecture - Beta-Prism. (I)

Sample proteins from a family of the architecture - Beta-

Sandwich. (J) Sample proteins from a family of architecture -

Beta-Propeller. (K) Sample proteins from a family of architecture -

ab Roll. (L) Sample proteins from a family of architecture - ab
Box. (M) Sample proteins from a family of architecture - ab
Complex.

Found at: doi:10.1371/journal.pone.0009391.s003 (1.50 MB JPG)

Figure S4 A sample dataset from the protein contact maps

(PCM) database. The inter-residue contact maps at 5 angstroms

threshold distance are shown for representative domains from a

diverse set of topologies/folds spanning all natural architectures in

the protein universe.

Found at: doi:10.1371/journal.pone.0009391.s004 (0.19 MB JPG)

Figure S5 Protein contact maps (PCMs) versus protein core

atomic interaction networks (PCAINs) intra- and inter- fold family

correlations reveals striking specificity for PCAIN across the

universe of folds. Averaged intra-fold (diagonal) and inter-fold

(non-diagonal) correlation coefficients of (a.) PCMs and (b.)

PCAINs at 5 angstroms threshold, shows clears that the PCAIN

is highly fold-specific whereas the PCM shows no discernible fold

specificity.

Found at: doi:10.1371/journal.pone.0009391.s005 (0.43 MB JPG)

Figure S6 Flowchart governing PCAIN-based fold recognition

of target sequence, template selection, anchored target-template

alignment, and homology-based structure prediction. The detailed

procedures associated with each step are described in the methods

section. Briefly, a combination of secondary structure distribution

and PCAIN scores from the key interaction positions was used to

(i.) identify the fold of the target sequence, (ii.) compute the ideal

template structure based on the closest functional homolog

estimated from the superfamilies of the identified fold, (iii.)

converge on the set of ‘anchor’ positions between the target and

template sequences based on protein core amino acid frequencies

to compute the optimal anchored target-template alignments, and

(iv.) determine the target domain’s 3-D structural coordinates from
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the anchored alignments with an automated homology modeling

script.

Found at: doi:10.1371/journal.pone.0009391.s006 (0.05 MB JPG)

Figure S7 Superposition of structures predicted based on

PCAIN methodology for CASP (Critical Assessment of Structure

Prediction) target sequences (a.) TO203 and (b.) TO197, illustrates

PCAIN-based structure prediction. PCAIN-based structures

predicted (cyan) are superposed onto reference crystal structures

(pink) for (a.) TOP203 and (b.) TO197 from CASP-6 with RMSDs

of 0.91A (at 29% target-template sequence identity) and 0.87A (at

60% target-template sequence identity) respectively. The corre-

sponding results of structure prediction accuracy from the CASP

models shown as tables shows minimum RMSDs of 1.29A and

1.37A respectively.

Found at: doi:10.1371/journal.pone.0009391.s007 (0.26 MB JPG)

Figure S8 Defining protein cores and extracting their informa-

tion with the PCAIN methodology. (A.) Polar and charged

residues (yellow) are also part of the core of protein domain as

identified by our method, as shown with E.coli thioredoxin (cyan)

as an example. (B.) Only 7% identity (shaded green) is present in

the sequence of residues that constitute the core of glutaredoxin

and thioredoxin that adopt the same fold, whereas 93% of the core

residues are different in identity (shaded yellow). However, the

PCAINs of these two proteins are seen to have 98% correlation,

over the PCMs that have only 41% correlation. This example

further illustrates that the identity or hydrophobicity of residues

are poor tools for extracting information from protein cores,

whereas the PCAIN is optimal for extracting conserved informa-

tion from protein cores. Similarly, very poor overlap is seen

between residues used for CATH alignments (underlined) and the

residues that contribute to the PCAIN, thus illustrating the novelty

in determination of PCAIN residues.

Found at: doi:10.1371/journal.pone.0009391.s008 (0.07 MB JPG)
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