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Université Paris-Sud, Orsay, France

Abstract

Background: Long-range oscillations of the mammalian cell proliferation rate are commonly observed both in vivo and in
vitro. Such complicated dynamics are generally the result of a combination of stochastic events and deterministic
regulation. Assessing the role, if any, of chaotic regulation is difficult. However, unmasking chaotic dynamics is essential for
analysis of cellular processes related to proliferation rate, including metabolic activity, telomere homeostasis, gene
expression, and tumor growth.

Methodology/Principal Findings: Using a simple, original, nonlinear method based on return maps, we previously found a
geometrical deterministic structure coordinating such fluctuations in populations of various cell types. However,
nonlinearity and determinism are only necessary conditions for chaos; they do not by themselves constitute a proof of
chaotic dynamics. Therefore, we used the same analytical method to analyze the oscillations of four well-known, low-
dimensional, chaotic oscillators, originally designed in diverse settings and all possibly well-adapted to model the
fluctuations of cell populations: the Lorenz, Rössler, Verhulst and Duffing oscillators. All four systems also display this
geometrical structure, coordinating the oscillations of one or two variables of the oscillator. No such structure could be
observed in periodic or stochastic fluctuations.

Conclusion/Significance: Theoretical models predict various cell population dynamics, from stable through periodically
oscillating to a chaotic regime. Periodic and stochastic fluctuations were first described long ago in various mammalian cells,
but by contrast, chaotic regulation had not previously been evidenced. The findings with our nonlinear geometrical
approach are entirely consistent with the notion that fluctuations of cell populations can be chaotically controlled.
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Introduction

Fluctuations of cell proliferation have been observed in many

types of normal or tumoral mammalian cells in vitro as well as in vivo

[1–4], including blood and bone marrow cells [5,6]. Such

fluctuations are the result of a combination of deterministic

regulation, through feedback loops, and stochastic influences, both

internal (cell death) and external (environmental effects as well as

noise due to data determination). The resulting fluctuations may

be cyclic, as in so-called periodic diseases [7,8], but the most

frequent patterns are more or less irregular, both in frequency and

amplitude. Assessing the predominantly stochastic or determinis-

tic, possibly chaotic, nature of such short and irregular data sets is

a difficult task and the subject of methodological debate. R.M.

May’s theoretical work in 1974 showed that simple deterministic

rules may explain the complex fluctuations observed in population

time series, with a broad spectrum of dynamics, from erratic, to

periodic, to chaotic [9,10]. The well-known Mackey-Glass model

for the regulation of circulating white blood cell numbers also

predicts various dynamics from stable, through periodically

oscillating to a chaotic regime, depending on the duration of

delays for the feedback signals [11,12]. In fact, the various

observed dynamics of biological systems, stochastic, periodic or

chaotic, may be mixed or alternated in order to fulfill various

biological purposes. Thus, discerning how long-range cell

population fluctuations arise is a key issue for cell biologists,

because these fluctuations play a critical role in physiology. For

instance, they determine segmented embryo development [13,1],

episodic renewal of adult tissues, endocrine functions, tumor

growth and metabolism. Detection of their possible chaotic nature

may provide information about underlying feedback loops; it

appeared to us, however, that there was no simple way of detecting

chaos in small biological data sets. We previously designed a

nonlinear analysis method, based on the recurrent representation

of cell population data. Using this method, we detected a

deterministic structure, an attracting fixed-point, in various time-

series, both in vitro and in vivo. We detected such focal points in: i)

the cultured rat liver cancer cell line Fao, which is clonal in origin

[14]; ii) various series of primary cultures of mouse bone marrow

cells, and in their derived blood progenitors [15]; and iii)
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circulating human neutrophils in vivo, in a patient presenting with a

T-cell lymphoma [16]. In cultured cells, experimental culture

conditions were kept as constant as possible. However two

zeitgebers were clearly part of the dynamics, namely the medium

change every other day, and the passaging of the cells every fifth,

sixth, or seventh day (depending on the series) for hepatoma cells.

For the blood cells in vivo, the spontaneous fluctuations were

recorded at various time intervals, depending on the clinical

context. In all these series, only horizontal sampling was

considered. Our method of analysis showed that for some cell

types the fluctuations of cell number were deterministic. However,

nonlinearity and determinism are only necessary conditions for

chaos, they do not by themselves constitute a proof of chaotic

dynamics. Therefore, we used the same analytical method to

analyze four well-known chaotic attractors: the Lorenz attractor,

the Verhulst system, the Rössler system, and the Duffing oscillator.

We found there was a structure similar to that observed in cell

populations underlying the oscillations of certain coordinates of

these four systems.

Results

Brief Explanation of the Method (Figure 1) and
Experimental Background

The technical approach is explained here briefly (further details

can be found in Methods and Appendix S1): 1) we represented the

evolution of data by plotting xi (the data at the ith time-point) on

the x-axis, versus xi+1 (data at the i+1th time-point) on the y-axis. Let

Mi be a point of coordinates (xi, xi+1). Consecutive points are

joined. In this representation, if xi is a local minimum, i.e. if

xi,xi21 and xi,xi+1, then the segment MiMi+1 runs from the

south-east towards the north-west. Similarly, if xi is a local

maximum, i.e. if xi.xi21 and xi.xi+1, then the segment MiMi+1

runs from the north-west towards the south-east; 2) we then drew

the bisecting line (the line perpendicular to the vector, intersecting

at its midpoint) for each vector on the map, to compare the

orientation of the vectors illustrating the local minima (troughs)

and the local maxima (peaks). Note that the geometric pattern is

determined by only the numbers (xi, xi+1, xi+2…xn) and their order

of succession, the time dimension being embedded in the map.

The geometric pattern is thus independent of the regularity and

size of the time intervals. This method was initially designed for

analyses of long-term proliferation of various types of mammalian

cells; these analyses revealed a deterministic pattern and identified

how it depended on cell type. Briefly: in rat liver cancer cells, we

observed that the bisecting lines of trough vectors converged on a

high fixed point. However, in mouse blood progenitors the

bisecting lines of peak vectors converged on a low fixed point. We

found no regulation in proliferation data from dedifferentiated or

embryonic cells, and we observed a dual control in proliferation

data from normal mouse bone marrow cells, and from normal

human fibroblasts (however, the latter was a short series).

Calculation of means and variances for all scattered points

of intersection also confirmed that this convergence, i.e. the

distribution of ai when present, was deterministic in nature.

Monte-Carlo simulations were used to validate these initial

findings [14,15].

Behavior of Known Chaotic Systems
We examined the changes over time of four well-known low-

dimensional chaotic systems: Lorenz, Rössler, Verhulst, and

Duffing. The Lorenz system was designed for convection analysis

and is not generally used to study population data [17] (Figure 2).

The Rössler model was initially proposed in different settings, but

has also been used to model thermodynamics and changes in the

population [18,19] (Figure 3). The Verhulst model was specifically

designed to analyze and model biological populations [20]

(Figure 4). The Duffing oscillator has been found appropriate for

a wide variety of biological functions, when they include damping

and regular forcing of the dynamics (Figure 5). The constants of

the equations for each system were set at values resulting in typical

chaotic behavior, and the map was drawn for variables x, y and z.

The results were as follows: 1) Lorenz attractor: Considering

variable y, no coordination was noted for the bisecting lines of

local maxima and minima in the Lorenz system with this set of

parameters. However, focal concentration of maxima and minima

bisecting lines was clearly observed for variable z (Figure 6), and

also for variable x, albeit in a slightly more dispersed manner. 2)

Rössler system: we observed a characteristic convergence of the

bisecting lines of local maxima on the map for variable z only,

whereas the local minima of z were not coordinated. The local

maxima and minima of x and y were not coordinated. This

determinism of peaks for z was confirmed with two other sets of

values for the constants (b = 1.5 and 2, with a and c unchanged)

(Figure 7). 3) Verhulst system: we observed a convergence of bisecting

lines of local minima. The local maxima were not coordinated

with this set of parameters (Figure 8). 4) Duffing oscillator: It

displayed a dual control of local maxima and minima, with

convergence of bisecting lines of peaks on a low fixed-point and

convergence of local minima on a high-fixed point, for variable y,

with the damping coefficient d= 0.4; however, this coordination

disappeared when there was no damping of the system (d= 0).

There was no focalization of the bisecting lines for variable x

(Figure 9).

Comparison with Other Dynamics
Examples of sinusoidal, birhythmic, and stochastic dynamics

using the same analytical approach are illustrated in Figure 10. i)

In the case of sinusoidal oscillations (Figure 10 top), the vectors for

local minima and local maxima are superimposed on one line

perpendicular to the diagonal, and their bisecting lines are

superimposed on the diagonal, and oriented upward for the local

minima, and downward for the local maxima. ii) In the case of

birhythmic oscillations (Figure 10 middle), there are two vectors

representing all local maxima, the bisecting lines of which intersect

the diagonal at a low fixed point, and two vectors representing all

local minima, the bisecting lines of which intersect the diagonal at

a high fixed point. When a small amount of noise, such as the

variability due to sampling imprecision hampering the perfect

localization of a local maximum or minimum, is included in a

birhythmic system, the bisecting lines appear as two narrow

bundles of lines rather than two single lines, e.g. the birhythmic

Verhulst system in Figure 8, right. iii) When stochasticity

predominates (Figure 10 bottom), the bisecting lines of the vectors

are dispersed. Monte-Carlo analysis of previous experimental

series strengthened these findings (see Appendix S1), and

confirmed that the method could discriminate between chaotic

and nonchaotic dynamics.

Discussion

Analysis of the Topological Results
We found that convergence on a fixed point of the lines

bisecting maxima and minima vectors was a common character-

istic of low-dimensional chaotic oscillators. This is consistent with

our hypothesis that this converging structure in the phase-space

representation of certain cell proliferation time series indicates a

chaotic behavior. A seminal work in 1980 by Packard and co-

Chaos in Cell Populations
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Figure 1. Method of map construction and analysis. A: segment of a curve of the proliferation rate of rat liver cancer cell line Fao: 27
consecutive 6-day passages in culture. X-axis: passage number; Y-axis: proliferation rate, expressed as population doublings/passage (PD/passage). B:
the corresponding map is constructed by displaying the proliferation rate data in the recurrent form xi+1 versus xi (e.g. the green lines xi+1 to xi that
construct the point corresponding to the segment p13-p14). The successive points on the map are joined together, as a succession of vectors. When
xi is a local peak (i.e. if xi21,xi.xi+1), then the vector points south-east (highlighted in red). Whereas when xi is a trough, (i.e. if xi21.xi,xi+1), the
vector points north-west in the plane (highlighted in blue). The bisecting line, i.e. the line perpendicular to the mid-point of the vector, is drawn for
each trough (blue dotted arrows) and peak (red dotted arrows) vector. Coordination, if any, of the bisecting lines defines a fixed point, i.e. a point on
the diagonal where xi = xi+1 (which is therefore a stable level of cell growth), as shown here for convergence of the bisecting lines of trough vectors
on coordinates 6.25/6.25. Note that there is no such coordination of the peak vectors in these cancer cells. (The complete analysis of the cell line was
published in [14]).
doi:10.1371/journal.pone.0009346.g001
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workers demonstrated that reconstruction using a single coordi-

nate of a dynamic system provides an accurate image of the

attractor. Using the Rössler system, Packard and co-workers

showed that the state of the system at any given time could be

specified by measuring any three independent quantities, includ-

ing, for instance, the value of a coordinate at three successive times

[21]. Our construction of the map defining vectors for local

maxima and minima of cell population data follows this principle,

using the three consecutive data defining each local maximum and

each local minimum. As a second step, we added a projective

transformation using the bisecting lines of the vectors. In the

computer maps we generated, bisecting line focalization was

observed for at least one coordinate of each system. The reasons

for different coordinates being involved and for a selective

convergence on high (Verhulst) or low (Rössler) or both (Duffing)

fixed points are unclear at present and require further analysis.

Preliminary tests varying the equation parameters showed that the

pattern of convergence remained unaffected, except for the

Duffing oscillator which lost the converging pattern when the

damping coefficient was deleted from the equation.

The Problem of Discriminating Chaos and Noise
A critical issue is to be able to affirm that the observed

convergence of bisecting lines in various proliferation series is a

consequence solely of chaotic dynamics; this is particularly

important because there always are some stochastic components

in experimental data. In our previous experimental observations,

we checked the dispersion (means and sd) of the intersections,

and used the Monte-Carlo technique of surrogate data to help

distinguish between random and deterministic fluctuations

Figure 2. Lorenz oscillator: oscillatory patterns and phase-space representation. Lorenz attractor standard values for the constants were
set as follows:

_xx~{10xz10y

_yy~28x{y{xz

_zz~{
8

3
zzxy

Left panel: Ordinate: oscillatory behavior of variables x (top) and z (bottom). Abscissa: time. Right panel: phase-space representation of the attractor.
doi:10.1371/journal.pone.0009346.g002
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[14–16, and Appendix S1]. Mathematicians in the field exploit

various techniques of analysis involving either surrogate data

[22,23], or the forecasting error technique [24], or the confinement

technique [25], with extended series of data to affirm the chaotic or

stochastic nature of fluctuations. At this stage of our work, we are

unable to adapt these advanced techniques to our small exper-

imental samples. Instead, we focused on the fact that the bisecting

lines of the vectors of peaks and troughs displayed a similar structure

in known chaotic systems and in various experimental cell

population series; we interpreted this common behavior as indirect

evidence of common chaotic dynamics. We believe that this novel

approach has two advantages: it is a new simple method of analysis

applicable to small series and can therefore be exploited by cell

biologists; and it is a graphical empirical approach independent of

the stringent mathematical criteria of other methods. However, we

hope that the continuing dialogue between cell biologists and

mathematicians in the field of chaos 1) will allow comparison with

other methods of analysis, and 2) will clarify the mathematical basis

of the convergence of peak and trough bisecting lines in chaotic

models and in experimental series.

Relationship with Mammalian Cell Dynamics
Identifying the attractor for the dynamics of experimental data

concerning mammalian cell proliferation requires further study. It

may not be one of these four classical systems and may not even

be the same for all mammalian cell types. With the current state

of knowledge, the commitment of peaks and/or troughs of

mammalian cell proliferation to two fixed points, low and/or high

respectively, is evocative of a double-well control [26,27] around

two stable levels of growth, one minimum, one maximum. This

bipolar control of cell proliferation, the net result of coordinated

physiological regulators, presumably varies according to cell type.

There are numerous positive regulators of cell growth, including

growth factors, metabolic resources, oncogenes, and the telomere

repair system. There are also various negative factors, which

include contact inhibition, exhaustion of resources and cell

senescence. In cultured cells, additional driving forces, which are

also zeitgebers, are provided by periodic feeding and passaging of

the cells. Depending on so-called initial conditions, including the

net result of all regulatory factors and the cell type, the dynamics of

cell proliferation may highlight the predominance of a ground-

state/dampened level or a high/stimulated level, or both. We

previously observed a high fixed point coordinating the local

minima of growth of liver cancer cells, which are deregulated to

grow very rapidly. However, a low fixed point organized the

growth maxima of bone marrow progenitors, which must be

preserved as a reservoir of stem cells.

Various characteristics of chaotic dynamics -near-periodic

recurrence, adaptability, robustness, bounded amplitude and

synchronization- are required for the persistent growth of tumor

cells or to maintain blood progenitors. In contrast, dedifferentiated

liver cells and undifferentiated embryonic cells displayed no

coordination at all, consistent with their undetermined fate

[14,15]. The Mackey-Glass model fits all these cell behaviors

well, as it predicts various dynamics, from stable through per-

iodically oscillating to a chaotic regime, depending on the delays

for the feedback signal [6,11]. Observations by the Mackey group

[8] on chronic cyclical neutropenias and leukemia illustrate the

periodic regime. The occurrence of small stochastic fluctuations,

i.e. stability with noise or simple randomness, was described long

ago for various cells [3,5]. We believe that the feedback loops in

various cells can result in chaotic fluctuations of proliferation.

Figure 3. Rössler system: oscillatory patterns and phase-space representation. Rössler system standard values for the constants were set as
follows:

_xx~{ yzzð Þ
_yy~xzay

_zz~bzz(x{c)

with a = 0.398, b = 1, c = 3. Left panel: Ordinate: oscillatory behavior of variables x (top) and z (bottom). Abscissa: time. Right panel: phase-space
representation of the attractor.
doi:10.1371/journal.pone.0009346.g003

Chaos in Cell Populations

PLoS ONE | www.plosone.org 5 February 2010 | Volume 5 | Issue 2 | e9346



Conclusions
For cell biologists, analysis of the regulatory loops which regulate

cell proliferation is always fragmentary. There are three major

advantages of the topological analysis we describe: i) the phase-space

portrait provides an image of the long-term evolution of the cell

population, ii) the bisecting lines of maxima and minima vectors

help differentiate chaotically controlled or stochastic dynamics, and

iii) the identification of the fixed level of growth governing the

system. This graphical approach is very easy to use with

experimental data from cell proliferation, and remains accurate

even when intervals of data determination vary moderately, as the

time dimension is embedded in the representation of the data.

We show here that the oscillations of four classical low-dimensional

chaotic oscillators: Lorenz, Rössler, Verhulst and Duffing displayed a

similar focal structure for the maxima and minima of oscillations on

their phase space representation. This structure was also similar to the

focal structure previously observed for various cell proliferation time-

series. In the absence of direct classical proof of chaotic characteristics

in small experimental series, we believe that this similar behavior

confirms the validity of the approach to detect chaotic behavior in cell

proliferation data. However, further mathematical studies are

required to determine 1) why this convergence of the bisecting lines

occurs in chaotic settings, and 2) the statistical limitations of the

sampling in this analytical approach. From a practical point of view,

knowledge of underlying chaotic dynamics is critical to the analysis of

various mammalian cell functions related to proliferation rate,

including metabolic pathway activity, telomere homeostasis [28,29],

and gene expression [13]. It is also of use in appraisal of tumor growth

rate and prediction of anticancer drug efficiency [30,31]. It may

provide a basis for developing new ways of controlling the long-term

dynamics of cell populations.

Methods

Construction of the Map and Bisecting Line Analysis
(Figure 1)

Step 1: The map was constructed by displaying the cell

proliferation data [in this figure we used the derivative cell

Figure 4. Verhulst system: oscillatory pattern and phase-space representation. Verhulst system standard values for the constants were set
as follows:

xnz1~rxn 1{xnð Þ

with r = 3.72. Left panel: Ordinate: oscillatory behavior of variable x. Abscissa: time. Right panel: phase-space representation of the attractor. Chaotic
(top) and birhythmic (bottom) conditions are compared.
doi:10.1371/journal.pone.0009346.g004
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proliferation rate, expressed as population doublings/passage

(week)] in the recurrent form xi+1 versus xi. The complete analysis

of the dynamics of this rat liver cancer cell line Fao can be found in

[14]. In this representation, each segment of the corresponding

proliferation curve (Figure 1 top), from one value to the next, is

thus defined as a point on the map, with the value on the x-axis

being xi, and on the y-axis, xi+1. Step 2: The successive points

were joined together (Figure 1 bottom), showing the long-term

changes over time of the cell population as a succession of orbits.

The successive phases of the proliferation curve: ascending, local

maximum (peak), descending, local minimum (trough), are further

defined on this map as vectors. If xi is a local peak [i.e.

xi21,xi.xi+1], then the vector points south-east. Likewise, if xi

is a trough, [i.e. xi21. xi ,xi+1], then the vector points north-west.

Step 3: the bisecting line (i.e. the perpendicular line crossing the

mid-point of the vector) for each vector was drawn, to compare the

orientation of the vectors illustrating all local minima, or local

maxima, or ascending and descending segments. This paper

analyzes the characteristic patterns that were obtained for the local

maxima and minima. Step 4: the deterministic structure, if

present, appears as the convergence of all bisecting lines of either

the local minima, or the local maxima, on a fixed point, i.e. a point

on the diagonal of the map where coordinates xi and xi+1 are equal

(this determinism for proliferation data of the rat liver cancer cell

line (Fao), over twenty-seven weekly passages in culture, is shown

in Figure 1). The fixed-point may be considered as a center of

rotation of the attractor. The coordinates (a, a) of the fixed point,

by construction, correspond to the mean of the xi21 and xi+1

values which define all local minima (for high fixed point) or local

maxima (for low fixed point).

Proof: let xi be a local minimum. As the distances from the first

point and the last point defining each vector to the fixed point on

Figure 5. Duffing oscillator: oscillatory patterns and phase-space representation. Duffing oscillator standard values for the constants were
set as follows:

_xx~y

_yy~x{ex3{dyzc cos (vt)

with d~0:4; e~0:25; c~2:5; v~1:5. Left panel: Ordinate: oscillatory behavior of variables x (top) and y (bottom). Abscissa: time. Right panel: phase-
space representation of the attractor.
doi:10.1371/journal.pone.0009346.g005
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the diagonal are equal, we have:

xi{1{að Þ2z xi{að Þ2~ xi{að Þ2z xiz1{að Þ2

from which we derive the mathematical law of the fixed point

value:

xi{1zxiz1ð Þ=2 ~ a ~ constant

Characteristics of the Method
The sampling was done at local extrema only for the

continuous systems, in these theoretical computer-made time-

series. In these series, which fluctuate from peak to trough

without intermediate values, the level of the fixed point, if

present, is equal to the mean of local maxima (for low fixed point)

or local minima (for high fixed point). For the experimental data

from living cell proliferation time-series, the sampling frequency

corresponded to the full development of a batch of cells (e.g. about

six days for cultured cancer cells), and therefore our estimate was

that the frequency of the measured fluctuations was close to the

frequency of the underlying fluctuations. In fact, we observed

much more variation in the amplitude of the fluctuations of cell

proliferation than in their frequency. However, there were some

intermediate data between peaks and troughs, which appeared

on the map as vectors pointing either north-east (ascending

segments of the proliferation curve) or south-west (descend-

ing segments of the proliferation curve). These intermediate

Figure 6. Lorenz oscillator: analysis of the map xi vs xi+1. Left panel: the bisecting lines of the trough vectors (top, red lines) and of the peak
vectors (bottom, green lines) for variable x. Right panel: the bisecting lines of the trough vectors (top, red lines) and of the peak vectors (bottom,
green lines) for variable z. Note the focal concentration of maxima bisecting lines (at coordinates 12.5/12.5) and minima bisecting lines (at coordinates
40/40) for variable z The focal concentration of bisecting lines for the variable x is slightly less precise.
doi:10.1371/journal.pone.0009346.g006

Chaos in Cell Populations
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Figure 7. Rössler system: analysis of the map xi vs xi+1. Top: bisecting lines (red) for the trough vectors. Bottom: bisecting lines for the peak
vectors (green lines). There is a characteristic convergence of the bisecting lines of local maxima on the map. In contrast, the local minima are not
coordinated.
doi:10.1371/journal.pone.0009346.g007

Chaos in Cell Populations
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segments were analyzed separately. Therefore, in the experi-

mental series, the value of the fixed point may be more or less

close to the means of local extrema, depending on the number of

intermediate data points between the local maximum and

minimum values.

Cell biologists generally have to analyze small and sometimes

irregular data sets for studies of the proliferation of living cells. Our

previous experimental studies included 25–50 data series (corre-

sponding to up to one year of weekly determinations) with data

collected under strictly controlled experimental conditions for in

vitro series; for in vivo series data is uneven and collected in

uncontrolled conditions, with sampling being horizontal. Using

preliminary empirical conditions, we selected series including at

least eight peaks and eight troughs, without missing points, and

considered that there was convergence if eighty to one hundred

percent bisecting lines converged on the diagonal of the map for

cell number peaks or troughs or both [12–14]. Clearly, further

mathematical analysis is required to determine whether these

preliminary conditions are optimal for such analyses.

Supporting Information

Appendix S1

Found at: doi:10.1371/journal.pone.0009346.s001 (0.03 MB

DOC)
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Figure 8. Verhulst system: analysis of the map xi vs xi+1. Left panel displays the maps for chaotic conditions. Top: bisecting lines of the peak
vectors (red lines). Bottom: bisecting lines of the trough vectors (green lines). Note the convergence of bisecting lines of local minima. The local
maxima were not coordinated with this set of parameters. Right panel: maps for birhythmic dynamics. Top: note the two narrow bundles of
superimposed bisecting lines of the two types of peak vectors (red lines). Bottom: note the two narrow bundles of the superimposed bisecting lines
of the two types of peak vectors (green lines).
doi:10.1371/journal.pone.0009346.g008
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Figure 9. Duffing oscillator: analysis of the map xi vs xi+1. Top: map for the variable y. Bottom: map for the variable x. Bisecting lines for the
vectors of peaks are in green, bisecting lines for the vectors of troughs are in red. Note dual control of local maxima and minima for the variable y,
with convergence of bisecting lines of peaks on a low fixed-point (coordinates about 22/22) and convergence of local minima on a high-fixed point
(coordinates about 2/2). In contrast the bisecting lines of the peak and trough vectors of the variable x are disordered.
doi:10.1371/journal.pone.0009346.g009
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Figure 10. Comparison with other dynamics. Left panel: return maps, Right panel: oscillatory behaviors. Top: sinusoidal oscillations. The vectors
for local minima and local maxima are superimposed on one line perpendicular to the diagonal, and their bisecting lines are superimposed on the
diagonal, and oriented upward for the local minima, and downward for the local maxima. Middle: birhythmic oscillations. There are two vectors
representing all local maxima, the bisecting lines of which intersect the diagonal at a low fixed point, and two vectors representing all local minima,
the bisecting lines of which intersect the diagonal at a high fixed point. Bottom: random numbers; the bisecting lines of the vectors are dispersed.
doi:10.1371/journal.pone.0009346.g010
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