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Abstract

Due to growing throughput and shrinking cost, massively parallel sequencing is rapidly becoming an attractive alternative
to microarrays for the genome-wide study of gene expression and copy number alterations in primary tumors. The
sequencing of transcripts (RNA-Seq) should offer several advantages over microarray-based methods, including the ability
to detect somatic mutations and accurately measure allele-specific expression. To investigate these advantages we have
applied a novel, strand-specific RNA-Seq method to tumors and matched normal tissue from three patients with oral
squamous cell carcinomas. Additionally, to better understand the genomic determinants of the gene expression changes
observed, we have sequenced the tumor and normal genomes of one of these patients. We demonstrate here that our RNA-
Seq method accurately measures allelic imbalance and that measurement on the genome-wide scale yields novel insights
into cancer etiology. As expected, the set of genes differentially expressed in the tumors is enriched for cell adhesion and
differentiation functions, but, unexpectedly, the set of allelically imbalanced genes is also enriched for these same cancer-
related functions. By comparing the transcriptomic perturbations observed in one patient to his underlying normal and
tumor genomes, we find that allelic imbalance in the tumor is associated with copy number mutations and that copy
number mutations are, in turn, strongly associated with changes in transcript abundance. These results support a model in
which allele-specific deletions and duplications drive allele-specific changes in gene expression in the developing tumor.
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Introduction

The development of tools for measuring gene expression and

structural variation across the entire genome has revolutionized

our ability to characterize cancers at the molecular level. However,

such tools have typically relied on microarray hybridization, which

has limited sensitivity and is susceptible to the effects of cross-

hybridization between homologous DNA fragments. The recent

advent of massively parallel sequencing has provided a more

powerful tool to study changes in transcriptomes and genomes,

through what is termed RNA sequencing (RNA-Seq) [1] and

genome re-sequencing [2], respectively. By sequencing the whole

transcriptomes of a tumor and matched normal tissue, we can

compare not only the relative abundance of annotated transcripts,

but also that of non-annotated transcripts, transcript isoforms and

different alleles [3,4,5]. With sufficient sequencing depth, tumor-

specific mutations, which may contribute to pathogenesis, can be

detected. Similarly, by sequencing the genomes of a tumor and

matched normal tissue, structural and point mutations associated

with tumor development can be discovered [6,7,8,9].

Cancers of the head and neck are the sixth most commonly

observed cancers worldwide [10]. Most are squamous cell

carcinomas that commonly occur in the oropharynx and oral

cavity. At the advanced stage, these cancers are highly invasive

and metastatic, with an associated five year survival in the United

States of only 50% [11]. Microarray studies of oral cavity tumors

have revealed genes that are consistently mis-expressed

[12,13,14,15,16], but have not yet led to a panel of genes that

can be used effectively to make informed clinical decisions.

Here we have paired a new strand-specific whole transcriptome

library preparation method with massively parallel ligation

sequencing to study the transcriptomes of three oral squamous
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cell carcinoma (OSCC) tumors and three matched normal tissues.

With the resulting 60 Gb of sequence we performed two types of

analyses. First, we examined differential expression of genes

between tumor and normal tissue across the three patients and

compared these results to those produced by microarray and RT-

qPCR. The comparison reveals strong concordance between the

methods, with RNA-Seq outperforming microarrays at measure-

ment of the low abundance transcripts. Second, we investigated

the extent and types of allelic imbalance (AI) observed between the

tumor and normal tissues of the three patients. Here we focus on

relative AI, which compares the ratio of the expression of two

alleles in one sample (e.g., tumor tissue) to that in another sample

(e.g., matched normal tissue). AI represents a convolution of

genotype and expression level that can arise due to a number of

different processes. Our analysis demonstrates the ability of RNA-

Seq to accurately measure AI and the utility of AI for

understanding cancer development. Unlike other methods, our

RNA-Seq approach surveys strand-specific expression across the

entire length of transcripts, allowing us to observe bidirectional

promoter usage and improving our chances of covering the rare

heterozygous SNPs needed for AI analysis.

We have also sequenced the tumor and normal genomes of one

of the three patients and determined copy number changes present

in the tumor genome. By comparing genomic and transcriptomic

data from this patient, we observe that changes in gene dosage are

strongly associated with changes in gene expression and allelic

imbalance in this tumor. These data are consistent with a model in

which allele-specific duplication and deletion drive allele-specific

changes in gene expression [17,18,19].

Results

Measurement of Gene Expression in OSCC and Normal
Tissue by RNA-Seq

We sequenced rRNA-depleted total RNA extracted from tumor

and matched normal tissue from three patients with oral squamous

cell carcinoma (OSCC) (Methods and Figure S1), yielding 129–

256 million 50 bp long sequence reads per sample. Reads were

aligned first to a filter database (containing, e.g., rDNA sequences)

and then to the human genome (Methods and Figure S2) and an

overview of the results is displayed in Figure 1. The majority of

reads from each sample (57–79%) were successfully aligned; those

that did not align are likely to be polyclonal, low quality or have

origins outside the reference human genome. A large fraction of

the reads from each sample (21–48%) aligned to rDNA, suggesting

that our rRNA depletion efficiency was low, which is most likely

because the RNA isolated from these tumors was partially

degraded (Figure S3). Nevertheless, between 21 and 56 million

reads per sample were uniquely aligned to the human genome

outside of rDNA and over 100,000 of the 195,148 RefSeq-

annotated exons were detected in each sample (Figure 1 and Text

S1). On the whole, we have an unprecedented depth of uniquely

aligned sequence from these tumor and matched-normal RNA

samples.

Given that RNA-Seq is still an emerging methodology, we

wanted to ensure that our method provides gene expression

measurements that are consistent with orthogonal technologies

(e.g., RT-qPCR and microarray). We assessed concordance with

these other methods at the level of differential gene expression

between tumor and normal tissue samples (Methods). The same

six RNA samples used for RNA-Seq were prepared and

hybridized to microarrays that have one probe designed to target

each of the RefSeq transcripts (Methods). The two gene expression

platforms are strongly concordant in the measurement of

differential gene expression between tumor and normal tissue

(r= 0.73-0.81; Figure S4 and Tables S1 and S2). However, it is

apparent that the two platforms diverge at low expression levels,

where RNA-Seq often indicates differential expression and the

microarray does not. We randomly selected sixteen of these

divergent genes for validation by RT-qPCR, eight that were up-

regulated and eight that were down-regulated in the tumor relative

to normal tissue, and found that the measurements provided by

RT-qPCR are more highly correlated to those provided by RNA-

Seq (r= 0.84), than to those provided by microarray (r= 0.71)

Figure 1. Alignment statistics for transcriptome reads from the six clinical samples. Read counts listed in the middle section are expressed
in millions (left column) or as a percentage of the total reads processed (right column) for each sample.
doi:10.1371/journal.pone.0009317.g001
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(Methods and Figure S4e,f). More strikingly, the slope of the

regression line for the RNA-Seq comparison is 1.0, while that for

the microarray comparison is 0.15, suggesting that the fold-

changes measured by microarray for these genes are strongly

compressed relative to the true fold-changes and helping to explain

the observed discrepancies between the RNA-Seq and microarray

data. These results demonstrate that our RNA-Seq method can

reliably measure gene expression differences in human tissue and

further suggest that RNA-Seq is better at making such measure-

ments when expression levels are low.

A Common Set of Genes Is Differentially Expressed in
OSCC

We next investigated the biological significance of the tumor

versus normal (TvN) expression profiles. First, by hierarchically

clustering the log-transformed transcript expression levels in the

six samples, we established that the same types of tissue from

different patients are more similar than different types of tissue

from the same patient (Figure 2a). Furthermore, we observed

strong correlations (r= 0.46–0.62) between the log-transformed

TvN expression profiles between patients (Figure 2b), confirming

that there is a common gene expression perturbation associated

with this disease in different individuals. Close examination of the

relationship between the TvN profiles of different patients

(Figure 2c), revealed that the correlation extends across the entire

range of fold-changes (e.g., r= 0.36 for genes with | log2 T/N |,

2.0).

To isolate the set of genes commonly mis-regulated in the

development of OSCC, we took a rank-order approach (Methods

and Tables S1 and S3). We note that an approach employing a

likelihood ratio test [20] yielded similar results (Table S1) that do

not alter any of the conclusion made here. A survey of the genes

most strongly differentially expressed across the three patients,

reveals four particularly interesting genes (Figure 3a–d): (1)

MMP1, which encodes a secreted matrix metalloproteinase that

breaks down interstitial collagens, ranks third amongst the set of

up-regulated genes. MMP1 is part of a family of matrix

metalloproteinases with known roles in invasion and metastasis

[21] and several family members are amongst our most up-

regulated genes (MMP3/10/11/12/15). Unlike microarrays,

which typically measure gene expression in only one or a few

regions of a gene specifically targeted by probes, our RNA-Seq

method measures strand-specific expression across the entire gene,

as can clearly be seen for MMP1 (Figure 3a). (2) INHBA, the

fourth most up-regulated gene across the patients, similarly shows

strand-specific expression spanning its locus (Figure 3b). INHBA

encodes the beta A subunit that, together with an alpha subunit

encoded by INHA, forms inhibin. Inhibin is a pituitary FSH

secretion inhibitor that has been shown to regulate gonadal

stromal cell proliferation negatively and to have tumor-suppressor

Figure 2. A common set of genes is differentially expressed in the tumors of three patients with oral carcinoma. (A) Transcript
expression levels in each of the six samples were hierarchically clustered and, as expected, the normal and tumor tissues form tight clusters. Shades of
blue indicate lowered expression, relative to the mean across samples, whereas shades of yellow indicate higher expression relative to the mean. (B)
For each patient, gene expression in the tumor was compared to that in matched normal tissue. Pearson correlations indicate strong and significant
(P,10216) similarity of differential transcript expression across the three patients. (C) A scatterplot, comparing differential transcript expression
between patients 8 and 33.
doi:10.1371/journal.pone.0009317.g002
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Figure 3. The genes commonly mis-regulated across the three cases of oral carcinoma function in cell differentiation, adhesion,
extracellular matrix digestion and muscle contraction. (A–D) Examples of gene expression at four loci. Plotted across each locus is the
normalized sequence coverage on both the plus (colored red) and minus (colored orange) strands, for the tumor and normal tissue of a particular
patient. (A) MMP1 in patient 51; y-axis scale is 10 to 2000. (B) INHBA in patient 8; y-axis scale is 10 to 150. (C) HMGA2 and RPSAS52 in patient 8; y-axis
scale is 10 to 300 for the plus strand and 10 to 100 for the minus strand. (D) CASQ1 in patient 33; y-axis scale is 10 to 100. (E–F) The most up-regulated
(E) and down-regulated (F) genes in the tumors of the three patients were submitted for gene ontology (GO) analysis [29] to identify biological
processes and components that are typically mis-regulated in oral cancer. Redundant GO categories were filtered. ‘‘Count in category’’ indicates the
total number of genes assigned to a given GO category and ‘‘count in overlap’’ indicates the number of up- or down- regulated genes that are also
assigned to the given GO category.
doi:10.1371/journal.pone.0009317.g003
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activity [22]. However, INHBA’s increased expression levels in

these patients’ tumors more likely reflect its product’s ability to

homodimerize and form activin A, an FSH secretion activator and

putative oncogene in esophageal carcinoma [23]. This is consistent

with the apparent lack of expression of INHA in the normal and

tumor tissues of all three patients and implicates INHBA as a

potential oncogene in OSCC. (3) HMGA2 is the eleventh most

up-regulated gene across the patients and is of considerable

interest as a known oncogene [24,25,26], containing an HMG

DNA-binding domain. HMGA2 was not frequently featured in

previous microarray studies of OSCC, possibly due to the low

overall expression of its exons (HMGA2’s expression, as judged by

transcript length-normalized read counts, ranks in the bottom 2%

of all transcripts). In our microarray experiments, we find only

very modest TvN changes in HMGA2’s expression (0.9-, 1.1- and

1.5-fold), compared to those changes measured by RNA-Seq (2.0-,

15.2- and 206-fold). However, as Figure 3c clearly illustrates,

HMGA2’s exonic and intronic regions are strongly up-regulated in

the tumor. Furthermore, we validated HMGA2’s differential

expression by RT-qPCR (Figure S4e, discussed in the previous

section). Interestingly, the up-regulation of HMGA2 coincides

with the up-regulation of a pseudogene for ribosomal protein SA

(RPSAP52), whose expression runs in the opposite direction and

overlaps HMGA2 by roughly 2 kb in patient 8, suggesting that

these two genes share a bi-directional promoter [27,28]. (4)

CASQ1, the sixth most down-regulated gene across the patients

(Figure 3d), encodes calsequestrin, a calcium binding glycoprotein

that localizes to the sarcoplasmic reticulum and may act to store

calcium. The functions of CASQ1 and the three other genes are

emblematic of the functions encoded by the entire set of

differentially expressed genes.

To more systematically assess the biological functions of

commonly mis-regulated genes, we performed gene ontology

(GO) analysis [29]. A selection of the results is displayed in

Figure 3e,f. The process of cell adhesion and components of the

extra-cellular matrix (ECM) feature prominently amongst both the

up- and down-regulated gene sets (shaded blue in Figure 3e,f), of

which MMP1 is a prime example (Figure 3a). The altered

regulation of these genes is consistent with the model that cancer

development involves restructuring of the external environment,

including breakdown of the ECM [30,31], and is also consistent

with previous microarray studies of oral cancer (e.g., [32]). Also

featured in both gene sets are functions related to development

and differentiation (shaded green in Figure 3e,f). Whereas the

down-regulated genes tend to function in epidermal development,

the up-regulated genes more often function in cell motility and

nervous system development, as might be expected for OSCC

[33,34]. Perhaps the strongest trend though, is the massive over-

representation of muscle contraction functions amongst the down-

regulated genes (shaded gray in Figure 3f). Several actins, myosins

and related components of the cytoskeleton are strongly down-

regulated, possibly reflecting a de-differentiation of the muscle

phenotype during oral cancer development. Alternatively, this

may simply reflect the choice of normal tongue tissue as our

control. Alterations to cell adhesion, development, differentiation,

and the ECM are consistent with what is known about this disease.

The results presented here are also consistent with existing

knowledge of gene expression changes in OSCC development. For

example, a meta-analysis of 41 head and neck squamous cell

carcinoma (HNSCC; OSCC is one type of HNSCC) expression

profiling studies identified 25 genes that were differentially

expressed between tumor and normal tissue in nine or more of

these studies [16]. Of these 25 genes, 15 are also in our set of 600

mis-regulated genes, which is much greater than the roughly 1.4

genes expected by chance (hypergeometric P-value,10212; 15 of

25, from 10,542 total genes detected) and also much greater than

the mean of 6.8 genes for any given study in the meta-analysis.

Thus, it is evident that the examination of a relatively small

number of OSCC cases by RNA-Seq recapitulates much of the

accumulated knowledge of gene expression alterations in the

development of this cancer, including the mis-regulation of genes

functioning in cell adhesion, development, differentiation, muscle

contraction and the ECM.

There Is Widespread Allelic Imbalance between Tumor
and Normal Tissues

One advantage of our RNA-Seq method is that it allows us to

address questions that were previously inaccessible on the genome-

wide scale. An example is allelic imbalance (AI), which we define

here as a difference in the nucleotide frequencies at a given

transcriptome position between two tissues/conditions (Figure 4a).

AI can arise through one, or a combination of, several processes

acting in one tissue relative to the other: (1) cis mutations that

impact the underlying genomic position directly in one of the two

haplotypes (e.g., a point mutation or a deletion/duplication that

changes the copy number of one allele relative to the other), (2)

indirect cis mutations (e.g., a point mutation in an upstream cis-

regulatory element affecting expression of only that allele), (3)

differences in trans (e.g., mutations to other components of the

transcriptional network that differently affect expression of the

alleles), (4) differences in RNA editing. More simply, AI represents

a convolution of genotype and expression level. Here we

demonstrate that RNA-Seq can be employed to successfully

interrogate AI in tumors, relative to matched normal tissue, across

the whole transcriptome. Although, in general, we will not be able

to differentiate between the four possible underlying causes from

RNA-Seq data alone, we show here that the presence of AI itself is

informative and that straightforward follow-up experiments can be

utilized to identify the root cause.

In principle, our depth of sequencing is sufficient to detect AI in

a large number of exons (Figure 4b); the average per base exon

coverage varies between 5x and 16x, depending on the sample

(Figure 1). However, it is unknown whether the nucleotide counts

accurately reflect the underlying expression of each allele. To

ensure this is the case, we examined the distribution of allelic

ratios. For a given genomic coordinate, the ‘‘allelic ratio’’ is the

number of reads aligned across that position that indicate the

reference nucleotide divided by the number of reads that indicate

the first non-reference nucleotide in dbSNP [35]. Thus we only

concern ourselves here with the subset of genomic positions for

which an allele is listed in dbSNP and to which at least 15 reads

are aligned. If alleles tend to be expressed at equal levels, then we

expect to see a trimodal distribution of allelic ratios, representing

the three possible genotypes: homozygous reference, heterozygous

and homozygous non-reference. However, if our technology does

not accurately quantify the two alleles or if alleles tend to vary

greatly in their expression, then we would expect to see a more

uniform distribution. In fact, clear trimodal distributions are

observed in all six samples (Figure S5) with peaks likely

representing the three genotypes. Thus we are confident that the

nucleotide counts accurately portray the expression levels of the

different alleles.

We next developed a method to detect relative AI between

samples (Methods) and applied it to the three paired samples. Here

we analyze further only those genomic positions having, (1) at least

15x coverage in the tumor and normal samples, (2) significant AI

with x2 P-value less than 1023 (Figure S5), and (3) not more than

90% of covering reads supporting each nucleotide aligned to

RNA-Seq of Oral Carcinomas
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Figure 4. A common set of genes, functioning in cell adhesion and development, exhibits allelic imbalance in the tumor
transcriptomes of three patients with oral carcinoma. Allelic imbalance (AI) at the RNA level can arise in a number of ways, including through
point mutation and changes in the relative expression of alleles (aka, allele-specific expression). (A) Illustrated is an example of two pre-existing alleles
(G and T), one of which undergoes a linked promoter mutation (red asterisk) in the tumor, relative to the normal tissue. If, for example, the mutation
alters a cis-regulatory element, then the balance of the two alelles (G and T) may change. (B) In principle, there is enough sequence coverage to
discover AI for a large number of exons. For example, more than 25,000 exons have at least 10x coverage (averaged across all sites in the exon). (C)
Genes with one or more instances of allelic imbalance in the tumors of two or more patients were submitted for GO analysis [29] to identify biological
processes and components that are typically allelically imbalanced in oral cancer. Redundant GO categories were filtered. (D) A selection of genes
with allelic imbalance in two or more patients is listed, along with the log2 differential expression of each gene and regions of gene structure
impacted. Also noted is whether or not the gene is involved in cell adhesion or is a component of the ECM. Key: 3 = 39 UTR, I = Intronic, NSS = Near
Splice Site, Syn = Synonymous, R = Non-Synonymous.
doi:10.1371/journal.pone.0009317.g004
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identical positions in the genome (see Methods for full explana-

tion). Presence in dbSNP is not a requirement, thus in theory we

can detect imbalances due to either de novo point mutation or

altered expression of preexisting variants. 1316, 991, and 3221

genomic positions meet these criteria in patients 8, 33, and 51,

respectively, demonstrating that widespread allelic imbalance is

associated with the development of these tumors. In what follows,

we further narrowed our focus to those positions with a greater

than 10% change in the absolute frequency of at least one

nucleotide between the two samples, surmising that these positions

would be of greatest biological interest. After applying this filter,

we are left with 229, 185, and 345 genomic positions from 121,

134, and 209 unique genes in patients 8, 33, and 51, respectively

(Table S4). The sets of genes allelically imbalanced in the three

patients overlap significantly; 20 to 26 genes overlap by pair-wise

comparison (hypergeometric P-values ranging from 1027 to 10211)

and seven genes are common to all three patients.

To assess whether or not the allelically imbalanced genes are

biologically meaningful and related to the development of this

cancer, we performed GO analysis[29]. Interestingly, the functions

enriched in the set of 52 genes allelically imbalanced in more than

one patient (Table S5) are largely the same as those enriched in the

set of differentially expressed genes (Figure 4c; compare to

Figure 3e,f). Despite this functional overlap, the actual genes in

these two sets overlap very little (only 4 of these 52 genes are also

in the list of commonly mis-regulated genes from the previous

section; 8% observed versus 12% expected, P-value = 0.88),

indicating that allelic imbalance may offer a new avenue for

discovering genes involved in cancer development. This lack of

significant overlap between AI genes and differentially expressed

genes holds true even when the cutoffs used to define the set of

differentially expressed genes are varied substantially (not shown),

which indicates that it would not be possible to detect the AI genes

from differential gene expression data alone. Nevertheless the

functions of these genes indicate they are probably of relevance to

tumorigenesis. To test this further we employed the NextBio

Professional system [36] to search for studies and diseases in which

the set of AI genes were differentially expressed. We found that

most of the top hits were from cancer-related studies and diseases,

such as melanoma [37], follicular lymphoma [38], and squamous

cell lung cancer [39], further demonstrating the relevance of AI to

studies of cancer development.

Of these 52 genes with AI in two or more patients, 23 appeared

particularly interesting and are highlighted in Figure 4d. Among

these 23 we detect two cases of apparent non-synonymous point

mutations (within DST and GJB2), where only one nucleotide was

sequenced in the normal tissue and two were sequenced in the

tumor (and the second is not present in dbSNP). Similarly, we

observe one case of point mutation in the 39 UTR of a gene (for

KRT1) and a couple cases of apparent point mutations within 10

bp of a splice site (for DST and S100A2). Changes that apparently

reflect a loss of heterozygosity or complete silencing of one allele in

the tumor are even more frequent. In several cases, these result in

higher expression of an allele that has a non-synonymous or 39

UTR mutation relative to the other allele (e.g., DST, CCND1,

DSP, PKP1, KRT6A, ALDH3A1, DSC3, FAT2 and GJB2). We

have performed extensive validation of our AI results as described

in the Methods section and depicted in Figure S6. Among those

genes with validated AI is DST, a member of the plakin protein

family of adhesion junction plaque proteins. While the expression

of DST in tumor versus normal changes only very modestly across

patients (less than 2-fold), DST is among the small set of genes that

are allelically imbalanced in all three patients. Furthermore, DST

has been shown to be perturbed in studies of other cancers, such as

squamous cell carcinoma of the lung [40], making it an interesting

target of further study.

One particularly convincing example of AI is observed for

transcripts of the adjacent IGF2 and H19 genes (Figure 5), which

are implicated in carcinogenesis and encode an insulin-like growth

factor and a non-coding RNA, respectively [41,42,43,44]. There

are seven genomic positions in these two genes that are allelically

imbalanced in patient 8. The seven positions are located within a

135 kb window on chromosome 11 and all are polymorphic in the

human population, increasing the likelihood that patient 8 may be

heterozygous at these sites. All seven sites show a striking pattern:

while one nucleotide is sequenced in the normal tissue, it is

primarily another nucleotide that is sequenced in the tumor tissue.

We tested and verified that patient 8 is indeed heterozygous at five

of these seven sites by allele-specific qPCR (as-qPCR) of normal

and tumor genomic DNA (the other two sites were not tested;

Methods and Figure S6a). We also validated the observed changes

in allele-specific expression by allele-specific reverse transcription

qPCR (as-RT-qPCR) of normal and tumor cDNA (Figure S6a).

Interestingly, H19 and IGF2 are imprinted in the germline by

methylation and are normally only expressed in somatic tissues

from the maternal and paternal alleles, respectively [43,45]. Thus,

the simplest explanation for these observations is that there was

mono-allelic expression of H19/IGF2 in the normal tissue, which

was subsequently lost or allelically switched during tumor

development. Loss of imprinting is frequently observed in the

Figure 5. A switch in the genomic imprinting of H19 and IGF2. There are six sites in H19 (shaded orange) and one in IGF2 (shaded blue) on
chromosome 11 that are apparently heterozygous in patient 8 (five were validated by as-qPCR). In normal tissue, most detectable expression of H19 is
from one allele, as expected for this imprinted, maternally expressed gene. Unexpectedly, in the tumor, nearly all detected expression is from the
other, presumably paternal, allele. Observed nucleotides are from dbSNP[35].
doi:10.1371/journal.pone.0009317.g005
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development of some cancers [42,46,47,48] and can lead to

tumorigenesis [49]. However, this is the first time, to our

knowledge, that expression has been observed to flip from one

allele to the other.

In summary, our whole transcriptome sequencing approach

allows detection of AI across a large number of genes. AI is a

widespread phenomenon in oral cancer development, impacting

genes known or likely to be involved in cancer etiology. AI’s

presence can be used effectively to identify key cancer develop-

ment events, such as non-synonymous point mutations, loss of

imprinting, loss of heterozygosity, and copy number changes

resulting in up-regulation of one allele relative to the other.

However, resolving ambiguity between these possible underlying

causes currently requires follow-up experiments.

Structural Variation Underlies the Gene Expression
Changes Observed in One Patient

There is abundant copy number variation (CNV) in mamma-

lian populations [50,51], which can sometimes be associated with

changes in the expression of overlapping and nearby genes [52,53]

and also with human traits and diseases [54,55]. We sought to

understand whether copy number (CN) mutations in OSCC

development were driving the changes in gene expression we

observed. We therefore sequenced the tumor and normal genomes

of patient 8, to obtain sequence coverage of ,0.8x (Methods). We

applied a recently developed CNV segmentation algorithm [56],

designed for paired-sample next-generation sequence data, to the

resulting read sequence alignments (Methods). This produced 328

genomic segments, with TvN copy number changes (CNCs)

ranging from 0.4 to 8.8 (Table S6). An array comparative genomic

hybridization (aCGH) experiment was performed on the same

tumor sample, resulting in highly concordant CN segments

(Methods and Figure S7b). CNCs were also validated at 23

particularly interesting genes by qPCR on the samples of patient 8

and across a panel of OSCC tumors obtained from 13 additional

patients. For patient 8, 22 of 23 CNCs were successfully validated

(Figure S7a). Across the panel of other patients, CNCs at these 23

genes ranged in prevalence from 7% to 43%, with a mean of 24%

(Figure S7c).

To compare the CNCs observed between normal and tumor

tissue to changes in gene expression, we calculated the differential

expression of each genomic segment (Methods). The log2-

transformed CNC and log2-transformed normalized gene expres-

sion ratio for each CN segment were then plotted (Figure 6a),

revealing a strong relationship between CNCs and changes in gene

expression (r= 0.73).

One particularly remarkable example of concordant change in

CN and gene expression involves the 9x amplification of a 1.5 Mb

segment of chromosome 11 (Figure 6b). Two immediately

adjacent segments, roughly 0.3 Mb and 1.0 Mb in length, are

also amplified (4x and 3x, respectively), suggesting that multiple,

nested duplications gave rise to the amplified state observed in the

tumor. Contained within the three amplified regions are ,20

genes, several of which have been highlighted for their functional

relevance and frequent amplification in OSCCs [57]: Cyclin D1

(CCND1) is an oncogene previously implicated in several cancers

[58] and is 13-fold up-regulated in the tumor. Cortactin (CTTN),

which is often over-expressed in HNSCCs [59] and helps organize

the cytoskeleton and cell adhesion structures of epithelia and

carcinoma cells, is 14-fold up-regulated. Finally, SH3 and multiple

ankyrin repeat domains 2 (SHANK2), which binds the SH3

domain of cortactin and is thereby thought to promote cell motility

at growth cones of neurons [60], is 51-fold up-regulated in the

tumor. Copy number changes in CTTN and SHANK2 were

strongly and equally prevalent across our panel of 14 patients

assayed by qPCR (43%; Figure S7c).

Another striking example of concordant copy number and gene

expression change occurs on chromosome 9, where a 90 kb

genomic segment, containing two genes, has apparently been

deleted in the tumor (Figure 6c). One gene, cyclin-dependent

kinase inhibitor 2B (CDKN2B), falls completely within the deleted

region. CDKN2B controls G1 cell cycle progression by inhibiting

Cdk4 or Cdk6 [61]. Its cell growth regulation function and 120-

fold down-regulation in the tumor make it a strong candidate for a

tumor suppressor [62]. Copy number changes at CDKNB were

prevalent across our panel of 14 patients (29%; Figure S7c).

CDKN2B’s neighbor, cyclin-dependent kinase inhibitor 2A

(CDKN2A), functions similarly to inhibit Cdk4 and is a known

tumor suppressor [63], but is not detectably expressed in either

normal or tumor tissue.

It is also worth noting the amplification of Wnt inhibitory factor

1 (WIF1), which encodes an extracellular component of the Wnt

pathway that plays a critical role in regulating cell adhesion,

proliferation and differentiation [64,65]. Despite its amplification,

WIF1’s expression is strongly down-regulated across the three

tumors for which RNA was sequenced, demonstrating that

amplification does not always imply increased expression. Down-

regulation of WIF1 has been reported in prostate, breast, lung,

bladder, salivary gland and esophageal cancers [66,67] and

evidence of promoter hypermethylation in Barrett’s esophagus

cases that progress to esophageal adenocarcinoma suggests that

loss of expression likely represents an early event in carcinogenesis

[66]. Copy number change at WIF1 was 36% prevalent across the

14 tumors for which we measured CNC, but interestingly the

direction of change was not consistent: two of the tumors had

WIF1 amplifications and three others had deletions. This suggests

that the down regulation of WIF1 can arise not only from

epigenetic alterations, but also from deletion and rearrangement

events and that loss of WIF1 expression may be involved with

carcinogenesis of OSCC.

Finally, we examined the relationship between allelic imbalance

and copy number change. Given that gene dosage changes are

strongly associated with gene expression changes, it is expected

that heterozygous amplifications and deletions will be associated

with the allelic imbalance of transcripts. For example, if one allele

of a genomic region is amplified 10-fold relative to the other allele,

then we might expect to see a 10-fold imbalance of heterozygous

SNPs that fall within the region (depending on the exact

mechanism of amplification). We grouped each copy number

segment into one of three log2-transformed CNC categories,

disregarding the direction of change: low or no CNC

(|CNC|,1.2), moderate CNC (1.2,|CNC|,1.8), and large

CNC (|CNC|.1.8). We then considered the distributions of AI

for genomic regions in each of those CNC categories (Figure 6d).

Here we consider only genomic positions, (1) with at least one

allele in dbSNP, and (2) at which the two nucleotides (reference

and first dbSBP allele) are present in at least four reads in the

normal tissue sample. These two criteria ensure that the patient is

very likely to be heterozygous at such positions in his normal

tissue. Because we do not know a priori which allele has changed in

copy number, we consider only the absolute value of AI. As

depicted in Figure 6d, the moderate and large CNC categories are

significantly shifted to higher levels of AI, relative to the low/no

CNC category (Mann-Whitney P-values 10210 and 1023,

respectively). Thus, CNC is associated with increased AI in this

patient’s tumor. For example, the region of chromosome 11

mentioned above for its 9-fold amplification in the tumor, harbors

two expressed heterozygous SNPs within one gene, CCND1. As
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Figure 6. Large structural mutations are strongly correlated with the changes in gene expression observed in one patient’s tumor.
(A) A strong correlation (r= 0.73) is observed between changes in copy number and changes in gene expression for patient 8. The correlation is
stronger (r= 0.84) if only copy number changes greater than 1.4-fold are considered. (B) The most strongly amplified region (9-fold more copies in
the tumor than normal; chr11:68,503,204-69,987,273) contains several differentially expressed (red and orange tracks) genes, highlighted in the text.
(C) One region (chr9:21,973,361-22,061,522) that is likely to have been deleted in the tumor contains two genes of interest: cyclin-dependent kinase
inhibitor 2B (CDKN2B) and cyclin-dependent kinase inhibitor 2A (CDKN2A). (D) Given that gene dosage changes are strongly associated with gene
expression changes, it is expected that heterozygous amplifications and deletions will be associated with the allelic imbalance of transcripts. Shown
are the distributions of allelic imbalance for genomic regions that fall into one of three categories of log-transformed copy number change (CNC): low
or no CNC (blue; |CNC|,1.2), moderate CNC (red; 1.2,|CNC|,1.8), and large CNC (yellow; |CNC|.1.8). The moderate and large CNC distributions are
shifted to significantly higher values of allelic imbalance compared to the no CNC distribution (Mann-Whitney P-values of 10210 and 1023,
respectively).
doi:10.1371/journal.pone.0009317.g006
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expected if the region is amplified in one of the two homologous

chromosomes and not the other, the sites are more than 16-fold

imbalanced in the tumor compared to the normal tissue, a result

which we validated by as-qPCR of genomic DNA and cDNA

(Figure S6).

Taken together, these results show a strong relationship between

structural mutations and changes in gene expression in this

patient’s tumor. Increased gene dosage is associated with increased

gene expression and decreased gene dosage is typically associated

with decreased gene expression. Furthermore, gene dosage

changes are linked with changes in the relative expression of

alleles. The simplest interpretation is that the allele-specific

structural mutations in this patient’s tumor have driven the

observed changes in gene expression.

Discussion

By sequencing the tumor and normal transcriptomes of three

individuals with OSCC, we have characterized, in depth, the

changes in gene expression associated with development of this

cancer. We have demonstrated that our RNA-Seq method can be

successfully applied to profile gene expression in tumor and

matched normal tissues, in much the same way that microarrays

have been applied to this task in the past. The gene expression

profiling results we produced by sequencing are largely concordant

with those we produced from hybridizing the same samples to

microarrays (Figure S4). However, as we have shown here by RT-

qPCR, sequencing is a superior approach for measuring

differential expression of genes expressed at low levels, at least

for samples of imperfect quality, such as the clinical tissue samples

studied here. For example, the 206-fold up-regulation of the

transcriptional regulator and oncogene HMGA2 in one tumor

would have been missed if only assayed by microarray (Figure 3c

and Figure S4e). In general, we expect that deep sequencing

methods will better detect perturbations in the expression of genes

encoding transcription factors and signaling proteins, which tend

to be expressed at lower levels than other genes in the cell [68].

HMGA2 also has a transcriptional coverage profile that indicates

it shares a bi-directional promoter with RPSAP52 (Figure 3c),

neatly demonstrating the added insights possible with a strand-

specific, whole transcriptome approach to RNA-Seq.

Not only have we demonstrated the overall similarity of results

obtained by deep sequencing and microarray hybridization of the

same samples, but we have also shown that both sets of results are

in strong agreement with existing knowledge of this cancer.

Development of OSCC involves perturbed regulation of genes

functioning in interaction with the external environment, such as

those functioning in cell adhesion and encoding components of the

extra-cellular matrix (Figure 3a,e,f). Our functional analysis also

indicates extensive down-regulation, in the tumors, of genes

functioning in epidermal development and up-regulation of genes

functioning in cell motility. The strongest gene expression

signature observed is the down-regulation in tumors of many

genes with muscle contraction functions (Figure 3e,f), indicating

that the development of this cancer may involve the reversal of

muscle cell differentiation found in the oral tongue. In addition, we

have now identified specific genes (e.g, INHBA and WIF1), which

while previously implicated in other cancer types, to our

knowledge have not previously been implicated in carcinogenesis

of OSCC.

Although deep sequencing, like microarray hybridization, is well

suited to the task of profiling gene expression across tissues and

individuals, it is also capable of interrogating aspects of gene

expression that have typically eluded microarrays (e.g., detecting

the presence of novel, alternative splice forms [4]). Here we have

studied allelic imbalance, another aspect of gene expression that is

difficult to study by microarray. The detection of imbalanced

expression of alleles in cancer samples is a new and potentially

powerful way to gain insights into cancer biology. Deletions,

amplifications, point mutations and changes in the cis regulation of

genes should all be reflected in the relative expression of alleles.

We have scanned each normal and tumor transcriptome and

assessed at each position the relative frequencies of the nucleotides

sequenced. We conclude there is widespread allelic imbalance

between normal and tumor samples: 185 to 345 sites from 121 to

209 unique genes passed our very conservative criteria. Interest-

ingly, the three patients studied share many more allelically

imbalanced genes than expected by chance, but the specific sites at

which AI was detected typically differ between patients. It is

remarkable that the set of genes allelically imbalanced in more

than one patient is enriched for the same cancer-related functions

as the set of differentially expressed genes (compare Figure 4c to

Figure 3e,f), despite the fact that most of the AI genes are not

themselves differentially expressed (Figure 4d). This latter

observation may indicate that perturbation of the most differen-

tially expressed genes tends to occur through trans regulatory

mechanisms affecting both alleles. It also suggests that among the

vast number of genes with changed expression in a tumor, some of

the most causally relevant are those that change very little. For

example, it is easy to imagine how a small perturbation to a central

signaling protein may have large downstream effects. The

observation that these genes are frequently perturbed in other

cancers further argues for the relevancy of the AI genes. Overall,

these results suggest that allelic imbalance may play a broad role in

cancer biology and that its detection may provide a fruitful and

novel avenue towards the discovery of new cancer genes. The

development of more sophisticated algorithms for detecting and

classifying AI along with the integration of complementary

genotypic data, should allow greater insights into the mechanisms

underlying AI and thus the genetic and epigenetic bases for

development of various cancers. However, even with our

rudimentary approach we have already observed changes that

deserve further study, such as the allelic imbalance of DST and the

possible imprinting switch at the IGF2/H19 locus (Figure 5). The

possibility that imprinting was not only lost, but actually reset in

development of this cancer, is intriguing and analogous to the

phenomenon of epigenetic reprogramming that occurs during

germ line development [69].

Finally, the combination of transcriptome sequencing and

genome sequencing affords the opportunity to characterize the

genomic mutations underlying alterations in gene expression in a

tumor. We sequenced the tumor and normal genomes of one

patient and used these data to determine copy number changes

(CNCs) between the two samples. Highly concordant results were

obtained by other methodologies (qPCR and aCGH; Figure S2),

thereby validating the use of deep sequencing to measure CNC in

primary tumors. We directly compared the CNCs identified in this

tumor to changes in the tumor’s transcriptome across the same

genomic regions and thereby observed a strong correlation

between changes in copy number and changes in gene expression

(Figure 6a,b,c), an association that has been observed for other

cancers in the past [70,71]. Thus, much of the up- and down-

regulation of genes observed in this tumor is likely to be driven by

direct amplifications and deletions of the genomic regions

containing these mis-regulated genes. Consistent with this model

and the idea that deletions and amplifications in the tumor will

tend to be allele-specific, we observe that the expression of

heterozygous SNPs falling within CNV regions is significantly
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more imbalanced than the expression of heterozygous SNPs

outside of CNV regions (Figure 6d). Although the number of

samples examined here is low and thus the wider biological

conclusions only preliminary, we believe the experimental and

analytical methods developed and combined here offer a first

glimpse at the power of pairing genomic and transcriptomic

sequencing to understand the genetic basis of cancer development.

Materials and Methods

Ethics Statement
This study was conducted according to the principles expressed

in the Declaration of Helsinki. The study was approved by the

Institutional Review Board of the Mayo Clinic. All patients

provided written informed consent for the collection of samples

and subsequent analysis.

Collection and Processing of Tissues
All tissues used in this study were collected from patients

undergoing treatment at Mayo Clinic, Rochester, MN. Tumor

samples were obtained from patients undergoing surgical treat-

ment for oral squamous cell carcinoma (OSSC). Normal samples

were collected from the negative surgical margins. Following

surgical excision, a portion of the tissue was immediately processed

and snap-frozen in liquid nitrogen for storage and future use. The

remainder was processed for clinical examination and long-term

storage in the tissue archives of Mayo Clinic, Rochester MN,

according to standard clinical protocols. All patients consented to

the use of their tissue for research and this study was approved by

the Mayo Clinic Institutional Review Board. Each collected

sample was frozen sectioned, changing the blade between samples,

and mounted on positively charged glass slides that were stained

with haematoxylin and eosin (H&E) by the Mayo Tissue and Cell

Molecular Analysis Core facility. These slides were then evaluated

by a qualified Mayo Pathologist (J. Lewis) to confirm the presence

or absence of tumor in each sample. Appropriate tumor was

circled and extreme care was taken to obtain only tumor-

containing sections for subsequent isolation of DNA or RNA.

DNA and RNA Extraction
Frozen tissues were compared to corresponding H&E slides

following evaluation by pathology to verify classification of tumor

or normal tissue status. Portions of tissue were removed for nucleic

acid extraction, using disposable scalpels, in quantities ,30mg.

DNA was extracted from frozen tissue using the Invitrogen

PureLink Genomic DNA Mini kit (Carlsbad, CA) according to the

manufacturer’s protocol. Total RNA was extracted from portions

of the frozen tissue samples using the Qiagen RNAeasy Plus Kit

(Valencia, CA) according to the manufacturer’s protocol. Isolated

DNA and RNA were quantified by NanoDrop ND1000 (Thermo-

Fisher Scientific, Waltham, MA). RNA samples were further

assessed for quality using the Agilent 2100 Bioanalyzer (Santa

Clara, CA) prior to library construction.

RNA Library Preparation
To construct libraries suitable for SOLiDTM System sequenc-

ing, 5 ug of total RNA was depleted of 18S and 28S rRNA using

GLOBINclearTM (Ambion) buffers and reagents supplemented

with biotinylated capture probes designed against these rRNAs

and following the given protocol. The rRNA depleted samples

(,1 ug) were then fragmented by incubation with 1 unit of RNase

III (Ambion) for 10 minutes in a 10 ul reaction volume containing

1X RNase III buffer supplied with the enzyme. The samples were

then mixed with formamide gel loading dye and denatured for

10 min at 95uC and then separated on a flashPAGETM gel

apparatus using a modified procedure. The flashPAGETM gel was

first run for 15 minutes as per the given procedure and conditions.

The lower running buffer was then removed and the lower

chamber rinsed with nuclease-free water 2 times. The lower

chamber was then replenished with fresh buffer and the gel was

run for an additional 45 minutes. The lower running buffer was

then removed and the RNA was purified using the flashPAGETM

clean up kit, producing RNA fragments ranging from ,50–150 nt

in size. This RNA was then used with the SOLiD Small RNA

Expression Kit (Ambion) as per the given protocol, except the size

range of products purified from the 6% native PAGE step was

,140–200 bp in size. The final purified products were quantitated

using a nanodrop and the size range of the products was confirmed

by bioanalyzer analysis. The samples were then diluted and used

for emulsion PCR.

DNA Library Preparation
10 ug of each DNA sample was used to generate mate-paired

libraries with a 2.5 kb insert size using standard manufacturer

protocols. Briefly, DNA was sheared to a target size of 2.5 kb using

a HydroShearH (Genomic Solutions). The resulting fragments

were end repaired using the End-ItTM (Epicentre) kit, methylated

to protect EcoP151 sites, and ligated to CAP adapters. The DNA

was then size selected by electrophoresis on a 1% agarose gel, and

a band 2 kb to 3 kb was excised from the gel using a scalpel blade.

DNA was recovered from the gel using QIAquick Gel Extraction

Kit (Qiagen). The resulting DNA fragments were circularized by

ligation to an internal adapter, and 25–27 bp ‘mates’ created by

digestion with the type III restriction enzyme EcoP151. Double

stranded P1 and P2 sequencing adapters were then ligated to the

library and nick translated before final amplification using 14–15

cycles of PCR. Libraries were again purified by electrophoresis on

a 3% agarose gel, excising the appropriate library band and

recovering the DNA using the QIAquick Gel Extraction Kit

(Qiagen). The size, quantity and quality of the resulting libraries

were confirmed by analysis on a 2100 Bioanalyzer (Agilent) using a

DNA 1000 chip before the library was diluted and used for

emulsion PCR.

Emulsion PCR
Templated beads were generated for sequencing using standard

manufacturers’ protocols. Briefly, an aqueous phase was prepared

from the SOLiD ePCR kit containing AmpliTaq Gold DNA

Polymerase UP, buffer, MgCl2, dNTP’s, amplification primers and

library template. The aqueous phase was then introduced to a

whirling oil phase in an ULTRA-TURRAXH Turbo Drive (IKA)

to create a water-in-oil emulsion. The emulsion was then

transferred to a 96 well plate and thermocycled using the

recommended PCR conditions. After PCR amplification, emul-

sions were broken using butanol, and the beads were washed,

enriched, and terminal transferased before quantification and

deposition onto a slide for sequencing.

Whole Transcriptome Sequencing
Templated beads were deposited onto one full slide per sample.

Massively parallel ligation sequencing was carried out to 50 bases

using Applied Biosystems SOLiD System (V3 chemistry) and

following the manufacturer’s instructions.

Mate-Pair Genome Sequencing
Templated beads for the normal and tumor samples were

deposited across two sequencing slides, three quadrants per
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sample. Both forward and reverse tags from the mate-paired

libraries were sequenced to 25 bases, using Applied Biosystems

SOLiD System (V3 chemistry) and following the manufacturer’s

instructions.

Alignment of Transcriptome Fragment Reads
Whole transcriptome reads were aligned using AB’s SOLiD

Whole Transcriptome Pipeline [72]. This software is open-source

and freely available (http://solidsoftwaretools.com/gf/project/

transcriptome/). An overview of the alignment strategy is

presented in Figure S2. In all the analyses of gene expression

presented here, only uniquely aligned reads were considered. A

‘‘uniquely aligned’’ read is defined as a read with a max scoring

alignment to the genome scoring (1) at least 24 and (2) at least four

higher than any of the other alignments of that read to the

genome. Exon locations described in the text were taken from the

alignments of RefSeq transcripts to version 18 of the human

genome sequence (hg18), and are available at the UCSC Genome

Browser website (http://genome.ucsc.edu/). All sequence data has

been deposited at the MIAME compliant Gene Expression

Omnibus (GEO) database at National Center for Biotechnology

Information (http://www.ncbi.nlm.nih.gov/geo) and is accessible

through accession number GSE20116.

Alignment of Genomic Mate-Pair Reads
Mapping and pairing were performed with Applied Biosystems’

alignment and pairing package (corona_lite, http://solidsoftwaretools.

com/gf/project/corona/). The AB SOLiD alignment tool, mapreads,

translates the reference sequence to dibase encoding (color space) and

aligns reads in color space. The program guarantees finding all

alignments between a read and the reference sequence with up to M

mismatches (a user specified parameter, which was set to two here).

Mapreads uses multiple spaced seeds (discontinuous word patterns) to

achieve a rapid running time (Zhang et al., in preparation). Reads that

align to the color space reference in only one location with up to two

mismatches are referred to as ‘‘uniquely aligned’’. Mate-pair reads

were aligned individually and subsequently a pairing process was

conducted to pair the individual reads. Pairing rescue was also

performed, which uses one aligned tag as an anchor and searches for

the other tag in a nearby window (of 1.4–3.7 kb, either upstream or

downstream, depending on orientation of the anchored tag) with more

relaxed criteria.

Quantification of RefSeq Transcripts from RNA-Seq Data
For each of the 18,095 RefSeq transcripts, reads uniquely

aligned within its genome-mapped exons were summed. One

pseudo-count was added to this sum and the resulting modified

raw transcript count was divided by the total number of uniquely

aligned reads for the sample, yielding normalized transcript counts

for each RefSeq transcript in each sample. Normalized transcript

counts and TvN fold-changes can be found in Table S1. Because it

is not yet clear whether genes expressed at the very lowest levels in

a tissue are accurately measured by these methods, we applied a

conservative raw count filter throughout our analysis of the RNA-

Seq data, requiring that a transcript have at least fifty uniquely

aligned reads in at least one tissue (tumor or normal) in all three

patients. We did not normalize for transcript length because all

further analyses focused on fold-changes between two conditions.

Defining the Sets of Genes Mis-Regulated Across the
Patients

To isolate the set of genes commonly mis-regulated in the

development of OSCC, we rank ordered the TvN fold-changes for

each patient. We then ranked transcripts by their median TvN

rank across patients, considering further only the three hundred

highest and three hundred lowest ranking genes as the sets of genes

commonly up-regulated and down-regulated in OSCC develop-

ment, respectively. Gene sets can be found in Table S3. The three

hundred most up-regulated and down-regulated genes have

median fold-change cutoffs of at least 3-fold, though typically

the median fold changes are much higher, with a mean of 6-fold

for the up-regulated genes and 33-fold for down-regulated set. A

simulation, in which the pairing of transcripts and expression levels

is randomly shuffled, indicates that less than 10% of our down-

regulated and 20% of our up-regulated genes would have as

extreme a median rank if there was no similarity in TvN

expression profiles between patients (not shown). Thus, we

estimate that these sets contain relatively few false positive genes,

which are not truly differentially expressed across these three

patients.

Although rank ordering was our original approach, we have also

employed a recently proposed likelihood ratio test combined with

a fold-change cutoff to define sets of mis-regulated genes [20]

(Table S1). Using this statistical test (specifically, an FDR cutoff of

1024 and 4-fold change requirement) results in very similar lists of

up- and down-regulated genes. We performed GO analysis on the

sets of up- and down-regulated genes defined in this manner and

found that the resulting enriched biological functions are also very

similar to before, changing none of our conclusions.

Gene Expression Validation by Microarray
mRNA samples were reverse transcribed by priming off the

polyA tail, producing cDNA pools. Each cDNA pool was

amplified by in vitro transcription, generating biotin-labeled cRNA

that was then hybridized to an Illumina HumanHT-12 v3

BeadChip array. Arrays were subsequently stained with Strepta-

vidin-Cy3 and scanned with a high resolution Illumina scanner to

determine fluorescence intensities. The raw intensity files from the

arrays were pre-processed using Illumina’s BeadStudio software

for background subtraction and quantile normalization, producing

normalized intensity values for each gene. Differential gene

expression values, between the tumor and normal tissues of a

particular patient, were compared with the corresponding values

from RNA-Seq data (Table S2). The differential expression of a

gene was calculated by applying a log2 transform to the ratio of

modified, normalized intensities in the tumor and normal samples

of a patient. The modified, normalized intensity for a gene was

derived from its normalized intensity by subtracting the minimum

normalized signal intensity across all genes in the sample and

adding a value of one (to avoid dividing by zero). All microarray

data is MIAME compliant and the raw data has been deposited at

the MIAME compliant Gene Expression Omnibus (GEO)

database at National Center for Biotechnology Information

(http://www.ncbi.nlm.nih.gov/geo) and are accessible through

accession number GSE19089.

Gene Expression Validation by Reverse Transcription
Quantitative PCR (RT-qPCR)

cDNA was produced using 2 ug of isolated RNA and the High

Capacity cDNA Reverse Transcription Kit with RNase Inhibitor

(P/N 4374966, Applied Biosystems, Foster City, CA). A total of

250 ng of the cDNA product was preamplified using the Applied

Biosystems TaqManH PreAmp Master Mix Kit according to

standard protocol (P/N 4391128). Briefly, 250 ng of cDNA was

amplified for 14 cycles with a pool of 20X TaqMan Gene

Expression Assays specific to the target genes (P/Ns 4331182 and

4351372, Applied Biosystems). Following preamplification, the
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product was diluted 1:20 in 1 X TE buffer. The diluted

preamplified cDNA was used in individual quantitative PCR

reactions including TaqMan gene expression assays to measure

the expression levels of target genes. To normalize the expression

levels of each target gene, the cycle threshold (CT) of an

abundantly-expressed control gene (GADPH, GUSB, PGK1,

TBP; P/Ns 4333764F, 4333767F, 4333765F and 4333769F) was

subtracted from the CT for each target gene of interest. This value

was then used to calculate log gene expression changes across

samples/conditions (ddCT).

Allelic Imbalance Analysis and Validation
Allelic imbalance (AI) is a difference in the nucleotide

frequencies at a given genomic position between two RNA

samples. To quantify AI at each position in the genome, our

method first tallies di-colors from reads aligned to that position

that represent either a reference nucleotide or a single nucleotide

substitution, filtering from further analysis invalid di-colors, which

likely represent sequencing errors or more complex mutations.

The nucleotide frequencies are then compared between samples

and the significance of the AI is determined by applying a x2 test of

independence (on a 264 contingency table).

In our first attempt to investigate AI we only required that each

genomic position have: (1) at least 15x coverage in the tumor and

normal samples, (2) significant AI with x2 P-value less than 1023,

and (3) more than a 10% change in absolute frequency of at least

one allele. Using these criteria, our first round validation of 27

genomic positions by allele-specific PCR (as-PCR) yielded a 67%

false positive rate (Figure S6), 72% of which could be attributed to

false heterozygous genotypes (i.e., as-PCR of genomic DNA

showed only one allele was present, whereas RNA-Seq found two).

Upon careful examination we realized that two characteristics

were prevalent amongst the false positives and not amongst the

true positives. The first characteristic of false positives is that most

have more than 90% of the reads supporting at least one

nucleotide aligned to identical positions in the genome. In many of

these cases a non-reference nucleotide was observed in only one of

the two samples (normal or tumor) and that nucleotide was not

present in dbSNP. We think these cases are likely attributable to

errors introduced during reverse transcription that are subse-

quently amplified and over-sampled in later steps of the

experimental protocol. Thus, in our second attempt to investigate

allelic imbalance we added another criterion, requiring that at

each genomic position, (4) less than 90% of the reads supporting

each nucleotide can be aligned to identical positions in the

genome. The second characteristic of false positives is that some

tend to occur towards the end of alignments where there is some

uncertainty about the pairing of read and genomic sequence. This

mis-pairing can arise at a splice junction boundary when there is

sequence similarity between the 59 end of the intron and the 59

end of the downstream exon. Thus in our second attempt to

investigate allelic imbalance we conservatively discarded the last

five colors of each read alignment. Employing this added criterion

and filter reduced the false positive rate to 7%, while generating

only one false negative (false negative rate is 4%) on the first round

data. A second round of validation was also undertaken on a new

set of 34 genomic positions, chosen prospectively with these

revised criteria. For this second validation round we saw the false

positive rate drop to 43%, only 27% of which could be attributed

to false heterozygous genotypes from RNA-Seq. Thus these

revised criteria have considerably improved our specificity and

reduced artifacts likely arising from errors in reverse transcription

that are subsequently over-sampled during sequencing.

Allelic Imbalance Validation by Allele-Specific qPCR
(as-qPCR) and Allele-Specific Reverse Transcription qPCR
(as-RT-qPCR)

cDNA was produced by reverse transcription using the High

Capacity Reverse Transcription Kit (P/N 4322171, Applied

Biosystems) and manufacturer’s instructions. as-qPCR and as-

RT-qPCR were performed on an Applied Biosystems 7900HT

Sequence Detection System. The 10 ml PCR mixture contains

diluted RT products (for as-RT-qPCR) or 3 ng genomic DNA (for

as-qPCR), 1x TaqManH Genotyping Master Mixture (P/N

4371357, Applied Biosystems), 0.3 mM allele-specific forward

primer, 0.2 mm TaqManH probe, and 0.9 mm reverse primer.

The reactions were incubated in 384-well plate at 95uC for 10

minutes, followed by 2 cycles of 95uC for 15 seconds and 58uC for

1 minute, and 48 cycles of 95uC for 15 seconds and 60uC for 1

minute. All allele-specific forward primers, TanManH probes and

reverse primers were manufactured at Applied Biosystems. For

each genomic coordinate of interest, each allele was quantified (in

each gDNA and cDNA sample) by obtaining CT values from at

least two (and typically three) replicate reactions. The mean across

reactions was computed and a dCT value calculated by

subtracting the mean CT value for the second allele from the

mean CT value for the first allele. Genomic coordinates with

gDNA assays yielding absolute dCT values greater than 4.0 were

deemed to be homozygous for the allele with lower CT value,

while all others were assigned a heterozygous genotype (Figure

S6a). Allelic imbalance of RNA between tumor and normal

samples was estimated by calculating a ddCT value for each

genomic coordinate assayed, by simply subtracting the dCT value

of the normal cDNA sample from the corresponding dCT of the

tumor cDNA sample. ddCT values were then compared to allelic

imbalance measurements made by RNA-Seq (Figure S6).

Analysis of Copy Number Variation (CNV)
The ratio of the number of uniquely aligned reads in paired

tumor and normal samples for any given genomic sequence

window is an estimate of the copy number change in the window.

We modified Segseq [56], a recently developed CNV calling and

segmentation algorithm that is based on this principle, to handle

SOLiD system sequencing reads. The SegSeq implementation can

not effectively handle the large volumes of data produced here due

to memory limitations, so we divided our original datasets (,50M

reads per sample, ,0.8x sequence coverage) into random subsets

(,12M reads each, ,0.2x sequence coverage). We then applied

the modified algorithm to each subset of the mate-pair reads from

the normal and tumor samples of Patient 8. Reassuringly, the

algorithm produced very similar results on the random subsets of

data (not shown). Default parameters for Segseq were used: the

size of local windows (-W) = 400; the size of alignable windows

(-d, -e) = 100 kb. The P-value cutoffs, pinit and pmerge, that control

genome wide false positive CNV segments, were set such that we

generated 1 false positive segment from about 20–30 false positive

initial break points (see Chiang et al. [56] for details). Segments are

listed in Table S6.

Calculation of Differential Gene Expression Across Copy-
Number Segments

To compare the CN changes observed between normal and

tumor tissue to changes in gene expression, we calculated the

differential expression of each genomic segment simply by

summing the number of reads uniquely aligned to this region in

the tumor sample and dividing it by the number of uniquely

aligned reads to this region in the normal tissue sample. The
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resulting ratio was normalized by the ratio of the total reads

uniquely aligned for each sample.

Copy Number Validation by qPCR
TaqMan Copy Number (CN) Assays were performed according

to the manufacturer’s instructions (P/Ns 4400293 and 4400296,

Applied Biosystems, Foster City, CA). In all, the copy numbers of

23 genes of interest were measured across 23 samples, derived

from six normal tissues, 14 tumors, and two Coriell Institute for

Medical Research (Camden, NJ) gDNA controls (see Table S7 for

assay details). For each gene of interest, four replicate CT values

were obtained per sample with FAMTM-labeled and VICH-labeled

probes, assaying the gene of interest and a control gene,

respectively. Both RNaseP and TERT were used as controls in

separate assays (P/Ns 4403328 and 4403315, Applied Biosystems).

Four dCT values were calculated by subtracting each VIC CT

from the corresponding FAM CT. A single ddCT value,

estimating the CN fold-change in a particular tumor sample,

was calculated by subtracting the median of median dCTs of the

six normal samples from the median dCT value for that particular

tumor sample. The null hypothesis that the CN fold-change is zero

was tested by a t-test in which variance was estimated by pooling

the 24 dCT values from normal samples. This hypothesis was

rejected and the CN fold-change deemed significant for p,0.05.

Genes with significant CN fold-changes in two separate assays (one

using the RNaseP locus as a control and the other using TERT)

are highlighted in Figure S7.

Copy Number Validation by Microarray (aCGH)
aCGH was performed using the Agilent Human Genome

Microarray Kit 244K (Agilent Technologies, Santa Clara, CA)

which contains ,244,000 60-mer oligonucleotide probes spanning

coding and non-coding genomic sequences with median spacing of

7.4 and 16.5 kb respectively. Arrays were analyzed using the

Genepix 4200A scanner (Axon Instruments, Union City, CA) and

the Agilent Feature Extraction software (v9.1). Copy number

segments were obtained with the Agilent CGH Analytics software

(v.3.4), using the ADM-1 algorithm and default settings [73].

Supporting Information

Figure S1 Whole transcriptome (WT) experimental protocol.

The protocol used to prepare total RNA for SOLiD sequencing is

diagrammed above. This approach achieves strand-specificity by

employing end-specific ligation of sequencing adapters to RNA,

prior to the cDNA synthesis step. The P1 sequencing adapter is an

RNA/DNA complex that contains a 6 bp 39 single-strand DNA

overhang allowing it to hybridize only to the 59 end of an RNA

fragment/molecule and, likewise, the P2 adapter will hybridize

only to the 39 end. The ligase used is engineered specifically to

prefer the types of double-stranded substrates produced by these

hybridizations, effectively making proper hybridization a prereq-

uisite for efficient ligation. So, when cDNA is sequenced off the P1

adapter we expect the read sequence to represent the underlying

RNA in the 59-.39 orientation and thus, after alignment, we can

work out the genomic strand from which the RNA originated.

Also, because RNA is fragmented prior to cDNA synthesis, the

protocol is less biased with respect to the positional origin of inserts

within transcripts.

Found at: doi:10.1371/journal.pone.0009317.s001 (0.98 MB TIF)

Figure S2 Whole transcriptome (WT) alignment strategy. WT

sequencing reads were analyzed using Applied Biosystems whole

transcriptome software tools (http://solidsoftwaretools.com/gf/

project/transcriptome/). Briefly, the reads generated from each

sample are aligned to the human genome (hg18, NCBI Build

36.1). Given the size of our 50-base reads relative to average exon

length (150 bases), we anticipated that a substantial fraction of

reads (up to one third) will cover a splice junction. Hence, these

reads will not align contiguously to the genome and standard read

mapping methods (e.g., MAQ) will fail. Making the assumption

that at least half of each read sequence originates from a

contiguous region of the genome, we circumvented this problem

by splitting each read into two 25 base non-overlapping halves and

then mapping each read split to the genome independently using

Applied Biosystems’ color mapping tool (http://solidsoftwaretools.

com/gf/project/mapreads/). During this mapping phase we

allowed up to two mismatches and removed reads that align to

more than 10 locations. The mapping of each half was extended

along the mapped genomic region using colors from the other half

until a maximal score was reached (+1 for a match and 21 for a

mismatch). In cases where the read splits aligned to the same

genomic location (i.e., cases where the read likely originated from

a segment of RNA that did not contain a splice junction), the

results from the two halves were merged. Alignment locations were

subsequently used to generate counts for annotated exons,

transcripts, and genes, as well as genomic coverage plots (WIG

files) that were displayed in the UCSC Genome Browser.

Found at: doi:10.1371/journal.pone.0009317.s002 (7.97 MB TIF)

Figure S3 RNA degradation and rRNA removal. An aliquot (1

ml; ranging from ,15–100 ng) of each of the indicated RNA

samples was processed on an Agilent Bioanalzer using a standard

RNA nano chip. A good quality RNA sample should primarily

show two distinct products representing the 18S and 28S rRNAs

and produce RIN values of ,9 using the standard bioanalyzer

conditions. While these two distinct products are visible in these

samples a large number of additional products are observed

migrating at various sizes, indicating that these samples are

compromised by degradation to varying degrees. The N8, T8 and

N33 samples showed the greatest amount of degradation (RIN

values 3.2, 4.4 and 3, respectively) while T33, N51 and T51

demonstrated less degraded RNA (RIN values 5.9, 6 and 6.1,

respectively). The degree of fragmentation has a negative impact

on the level of rRNA that can be removed from the sample using

biotinylated capture probes. Any RNA fragments that lie outside

the regions covered by the capture probes will not be effectively

removed and can be captured and sequenced. Therefore,

degraded RNA samples are expected to produce a higher number

of tags representing rRNA than high quality intact RNA samples.

Found at: doi:10.1371/journal.pone.0009317.s003 (7.99 MB TIF)

Figure S4 Validation of SOLiD whole transcriptome analysis

with other gene expression measurement platforms. (A) Compar-

ison of log2 (Tumor/Normal) values measured by the BeadArray

microarray and SOLiD sequencing platforms. Pearson correla-

tions are shown between the platforms, both within and between

patients. (B–D) For each patient, a scatterplot of log2 (Tumor/

Normal) values as measured by the BeadArray microarray and

SOLiD sequencing platforms is shown. Points are colored by

transcript abundance (blue indicating low and red indicating high

abundance; there are roughly 5000 genes in each bin), revealing

greater discordance for genes with low expression. (E–F) Eight

down-regulated and eight up-regulated genes with expression

measurements that were discordant between the SOLiD and

BeadArray platforms were chosen for validation with TaqMan

gene expression assays. Displayed are scatterplot comparisons of

log2 (Tumor/Normal) expression as measured by (E) SOLiD and

TaqMan (r= 0.84), and (F) BeadArray and TaqMan (r= 0.71).

Found at: doi:10.1371/journal.pone.0009317.s004 (9.79 MB TIF)
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Figure S5 Overview of allelic imbalance analysis. The top row

contains histograms of allelic ratios for genomic positions in

patients 8, 33, and 51 (as labeled). For a given genomic coordinate,

the ‘‘allelic ratio’’ is the log2 of the number of reads aligned across

that position that indicate the reference nucleotide divided by the

number of reads that indicate the first non-reference nucleotide in

dbSNP. Thus we only concern ourselves here with the subset of

genomic positions for which an allele is listed in dbSNP and to

which at least 15 reads are aligned. As expected if alleles tend to be

expressed at equal levels, we see a trimodal distribution of allelic

ratios, representing the three possible genotypes: homozygous

reference, heterozygous and homozygous non-reference. Allelic

ratio distributions for normal tissue samples and tumors are shown

in red and blue, respectively. The bottom row contains histograms

of x2 allelic imbalance P-values for genomic positions in patients 8,

33, and 51 (as labeled). The P-values indicate the extent of allelic

imbalance at a transcriptomic position and are calculated in the

following manner: First di-colors from reads aligned to that

position that represent either a reference nucleotide or a single

nucleotide substitution are tallied. Invalid di-colors, which likely

represent sequencing errors or more complex mutations, are

filtered from further analysis. The nucleotide frequencies are then

compared between samples (normal and tumor) by applying a x2

test of independence (on a 264 contingency table). The true and

simulated x2 allelic imbalance P-value distributions are shown in

red and blue, respectively. The true distribution is shifted to the

right relative to the simulated distribution, signifying that many

transcriptomic positions differ in nucleotide frequencies between

normal and tumor samples more than expected by sampling alone.

Found at: doi:10.1371/journal.pone.0009317.s005 (1.65 MB TIF)

Figure S6 Validation of allelic imbalance. In our first round of

validation, 27 transcriptomic positions identified by SOLiD

sequencing to have AI were selected for genotyping and validation

by allele-specific PCR (as-RT-qPCR). (A) The 27 positions and

various associated statistics are listed, one position per row. The

‘‘p-value’’ indicates the significance of relative AI between

conditions and is calculated from a x2 test of independence on

the read counts (Methods). A ‘‘read count’’ is simply the number of

reads aligned across the transcriptomic position that indicate the

given nucleotide. Because our fragment sequence read length is

50, it is theoretically possible that reads aligned across a given

transcriptomic position could have as many as 50 ‘‘unique read

start positions’’ in the transcriptome (due to alternative splicing,

the number could actually be higher in some cases). The rows are

ordered by validation success (first 9 rows represent validated

positions and the last 18 rows represent positions that did not

validate) and a clear pattern emerges: most of our false positives,

but not our true positives, have one nucleotide in one biological

sample that is supported only by reads with the same alignment

start in the transcriptome. That particular nucleotide tends not to

be present in dbSNP and is not present according to as-qPCR of

genomic DNA. One scenario that would lead to this phenomenon

is an error introduced during reverse transcription that subse-

quently gets amplified in library preparation and later over-

sampled during sequencing. Please see the Methods section for our

refined strategy, which reduces the false positive rate retrospec-

tively from 67% to 7% on the first round validation data.

N = normal and T = tumor. (B) On a second round validation of

32 additional sites chosen prospectively with the revised strategy

the false positive rate dropped to 43%. The fraction of sites falsely

ascribed heterozygous genotypes based on RNA-Seq dropped

from 49% in the first round to 7% in the second round of

valdiation. (C) A scatter plot of relative AI values produced by

SOLiD sequencing (X-axis) and as-RT-qPCR (Y-axis). Here, we

combine all transcriptomic positions assayed in the first and

second rounds of validation that passed the revised criteria and

had genotypes that were concordant between RNA-Seq and as-

qPCR of genomic DNA (N = 37).

Found at: doi:10.1371/journal.pone.0009317.s006 (3.96 MB TIF)

Figure S7 Validation of SOLiD CNV analysis with other CNV

measurement platforms and across a panel of tumor samples.

Comparison of SOLiD results to results from (A) TaqMan CNV

assays and (B) Agilent 244K CNV microarrays. (A) There is strong

concordance of copy number changes as measured by TaqMan

and SOLiD across 23 assayed genes (r= 0.99). (B) Only high

confidence results from the microarray platform (colored red)

compare favorably with the SOLiD results (r= 0.97). Most of the

low confidence microarray results (colored blue) are measured by a

single probe, rather than multiple probes, on the array. (C) In

addition to the tumor and matched normal samples of patient 8

(labeled ‘‘8_1’’), the 23 TaqMan CNV assays (interrogating 23

genes of interest) were applied to a panel of 13 other tumor

samples and a second section of normal/tumor tissue from patient

8 (labeled ‘‘8_2’’). Two negative control gDNAs from Coriell were

also assayed. Shaded in blue and yellow are genes with significant

copy number decreases and increases, respectively (t-test; p-

value,0.05 for two separate assays, using either the RNAseP

or TERT loci as controls). Values listed are log2 (Tumor/

Normalmedian). Matched normal tissues were only available for 5 of

the 13 tumors, thus the median of the normal samples was used as

the ‘‘normal sample’’ for each tumor/normal comparison and the

variance for each t-test was estimated from the pool of normals. In

general, the variance among normal samples is low; for patients

where matched normal tissue is available, using the median

normal rather than the true matched normal provides very similar

measurements of copy number change.

Found at: doi:10.1371/journal.pone.0009317.s007 (9.41 MB TIF)

Text S1 Coverage of annotated exons, transcripts and genes.

Found at: doi:10.1371/journal.pone.0009317.s008 (0.03 MB

DOC)

Table S1 Normalized transcript counts and differential (tumor

versus normal) transcript expression values measured by RNA-Seq.

Found at: doi:10.1371/journal.pone.0009317.s009 (7.66 MB

XLS)

Table S2 Differential (tumor versus normal) gene expression

values measured by microarray hybridization and RNA-Seq.

Found at: doi:10.1371/journal.pone.0009317.s010 (5.96 MB

XLS)

Table S3 The three hundred most up-regulated and down-

regulated genes in a comparison of tumor to normal tissue across

the three patients.

Found at: doi:10.1371/journal.pone.0009317.s011 (0.04 MB

XLS)

Table S4 Genes that are allelically imbalanced in tumor versus

normal comparisons of at least one patient.

Found at: doi:10.1371/journal.pone.0009317.s012 (0.05 MB

XLS)

Table S5 Genes that are allelically imbalanced in tumor versus

normal comparisons of at least two patients. Genomic positions

examined and other details provided.

Found at: doi:10.1371/journal.pone.0009317.s013 (0.09 MB

PDF)

Table S6 Copy number changes of genomic segments in patient

8.
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Found at: doi:10.1371/journal.pone.0009317.s014 (0.05 MB

XLS)

Table S7 Copy number assay details.

Found at: doi:10.1371/journal.pone.0009317.s015 (0.02 MB

XLS)
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