
On the Genetic Interpretation of Disease Data
Stephen C. Bishop*, John A. Woolliams

The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, United Kingdom

Abstract

Background: The understanding of host genetic variation in disease resistance increasingly requires the use of field data to
obtain sufficient numbers of phenotypes. We introduce concepts necessary for a genetic interpretation of field disease data,
for diseases caused by microparasites such as bacteria or viruses. Our focus is on variance component estimation and we
introduce epidemiological concepts to quantitative genetics.

Methodology/Principal Findings: We have derived simple deterministic formulae to predict the impacts of incomplete
exposure to infection, or imperfect diagnostic test sensitivity and specificity on heritabilities for disease resistance. We show
that these factors all reduce the estimable heritabilities. The impacts of incomplete exposure depend on disease prevalence
but are relatively linear with the exposure probability. For prevalences less than 0.5, imperfect diagnostic test sensitivity
results in a small underestimation of heritability, whereas imperfect specificity leads to a much greater underestimation,
with the impact increasing as prevalence declines. These impacts are reversed for prevalences greater than 0.5. Incomplete
data recording in which infected or diseased individuals are not observed, e.g. data recording for too short a period, has
impacts analogous to imperfect sensitivity.

Conclusions/Significance: These results help to explain the often low disease resistance heritabilities observed under
field conditions. They also demonstrate that incomplete exposure to infection, or suboptimal diagnoses, are not fatal
flaws for demonstrating host genetic differences in resistance, they merely reduce the power of datasets. Lastly, they
provide a tool for inferring the true extent of genetic variation in disease resistance given knowledge of the disease
biology.
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Introduction

Genetic variation in host resistance to infectious disease is

ubiquitous [1,2,3]. The increasing realization of this phenomenon

has led to disease biology becoming a major focus of ecology and

population or quantitative genetic research for human and animal

geneticists alike. Further, the ready availability of dense single

nucleotide polymorphism arrays (i.e. SNP chips) has given rise to

hitherto unforeseen opportunities to dissect this between-host

variation and identify possible genes contributing to this variation

using genome wide association studies [4]. This, coupled with

more traditional quantitative genetic variance-partitioning ap-

proaches [5], enables detailed descriptions of genetic aspects

of disease resistance and the identification of individuals with

extreme (high or low) risk of infection or disease [6]. Such

techniques can be applied equally to human, natural animal

populations or farmed livestock.

To have the requisite power to meaningfully quantify genetic

variation or perform a genome scan using a dense SNP chip it is

necessary to have datasets comprising observations on several

thousands of individuals [e.g. 7]. For studies of infectious diseases

this usually necessitates utilizing field data because challenge

experiments of a sufficient scale will not be possible, possibly

excepting studies with aquacultural species [e.g. 8]. For example,

in the livestock context, data may be captured from a population

undergoing an epidemic such as bovine tuberculosis [9], or from

an endemic disease such as mastitis [see 10], where the herd-level

prevalence is largely predictable. However, such field data is very

‘noisy’: diagnosis of infection or disease may be imprecise; it can be

difficult to determine when infection of an individual occurred;

and it is often unclear whether or not apparently healthy

individuals have been exposed to the infection. These factors will

add environmental noise to the epidemiological data.

Issues such as exposure and diagnostic test sensitivity or

specificity are fundamental concepts to epidemiologists when

studying the spread of disease in a population [11], yet their

intrinsic importance is currently ignored in quantitative genetic

theory [5]. Quantifying and accounting for the impact of

environmental factors is an integral part of identifying and

measuring true host genetic variation in resistance to the disease

under study. Consequently, there is an unrecognised risk of

biases in genetic parameter estimates and lost opportunities for

identifying individuals with extreme genetic risk. This paper

proposes advances in quantitative genetic theory using concepts

borrowed from epidemiology and provides predictive equations

for the impact of epidemiological factors on heritability estimation.

The theory is developed specifically for microparasitic infections,

such as those caused by viruses or bacteria.
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Analysis

General Framework
Consider a generic microparasitic disease in which individuals

may move between infection states as illustrated in Figure 1. Upon

exposure to infection a susceptible (i.e. not yet infected) individual

may become infected and infectious, after which it may either

recover or die. For simplicity, the states of diseased and infectious are

considered equivalent in this study. The term susceptible does not

indicate an individual’s liability to infection; rather, it denotes that

it is not immunologically resistant and can become infected. If

susceptible individuals are replenished, either through loss of

immunity of recovered individuals or through immigration of new

individuals, then an endemic equilibrium may be reached in which

the expected disease prevalence is constant. Otherwise, under

assumptions of homogeneous random mixing the number of

infected individuals will ultimately go to zero, and the epidemic

will die out with the expected proportion of individuals ever

infected during the course of the epidemic (I*) satisfying the

equation I�~1{e({R0I�) [12], where R0 is the basic reproductive

ratio of the disease. Therefore, assuming no disease-independent

mortality, the expected proportion of susceptible individuals

remaining in the population at the completion of the epidemic

is 1{I�.
Inferences about host genetic resistance are generally made by

comparing diseased and healthy individuals. The diseased category will

include infected and/or dead individuals, and the healthy category

will include susceptible individuals, i.e. not yet infected, and possibly

recovered individuals. In more complex models, individuals with

latent infection that have yet to display detectable signs of infection

may also be included in the healthy category. Heritabilities are

determined by estimating to what degree the expected genetic

relationships predict the classification of individuals into healthy and

diseased, whereas individual SNP associations are inferred from

departures of SNP allele frequencies from their expectations within

the two categories. The genetic associations uncovered by such

analyses will indicate host genetic variation in ‘disease resistance’,

where the term ‘disease resistance’ is used generically to cover any

of the processes shown Figure 1 that may influence the probability

of an individual being diagnosed as diseased.

Several sources of uncertainty in field disease data can be

identified from Figure 1. Firstly, for an individual to move from

the susceptible to the latently infected or infectious category, it is

necessary for it to be exposed to infection. A lack of exposure

simply means that individuals do not have the opportunity to

express their genotype for resistance, with potentially highly

susceptible individuals being classified as healthy. In a group of

individuals one might quantify exposure by e, the probability that

an individual is exposed to infection. Secondly, the diagnostic test

used to classify individuals as healthy or diseased may be imperfect,

with individuals misclassified. Specificity (Sp) measures the

probability that a healthy individual is classified as healthy by the

diagnostic test, whereas sensitivity (Se) measures the probability

that a diseased individual is classified as diseased by the test [11].

Thirdly, it is apparent from Figure 1 that an epidemic is a dynamic

process. When data are collected over any time period which is less

than the duration of the epidemic, the outcomes may differ from

the outcomes that would have been obtained if the data were

to have been collected over the entire epidemic, again through

misclassifications.

These three phenomena whilst distinct are not independent, i.e.

they are interrelated outcomes of the properties of the epidemic. For

example, exposure probabilities may depend on the duration of data

recording, with the probability of exposure increasing with time.

However, for development of quantitative theory, their impacts are

described and interpreted separately. The impacts of incomplete

exposure and diagnostic test sensitivity and specificity can be

explored independent of the epidemic dynamics, and hence are

termed static disease properties. The impacts of time-dependent

measurements require dynamic disease epidemic models.

Static Disease Properties
(a) Incomplete Exposure to Infection. When there is

incomplete exposure to infection the observed prevalence, the

fraction of the whole population that is identified as diseased is a

function of two factors: (i) the proportion of individuals that have

been exposed to the pathogen (e), and (ii) the virtual prevalence (p),

which is defined as the proportion of individuals that have been

exposed to the pathogen that become infected. Assuming that

exposure is random and independent of host genotype, then the

observed prevalence is ep. Of the 1{ep proportion of individuals

that are healthy, e 1{pð Þ are exposed and apparently resistant,

whilst 1{eð Þ have not yet been exposed and have not expressed

any genotype related to ‘disease resistance’. The phenotypic

variance of observed ‘disease resistance’ is given by the binomial

variance ep 1{epð Þ.
Firstly, consider the epidemic among the exposed, with virtual

prevalence p. Suppose that on the underlying liability scale the

heritability is h2 for true disease resistance, i.e. resistance following

actual exposure, and the total liability has variance 1. Then using

the linear approximation often used in the genetic analyses of

binary traits [13], the genetic variance expressed on the binomial

0/1 scale is given by w xp

� �2
h2 where xp is the truncation point of

the Normal distribution corresponding to upper-tail probability p,

and w xp

� �
is the corresponding Normal density. Now consider the

case of incomplete exposure and let D9u and D9w be the observed

states (either healthy, 0, or diseased, 1) of individuals u and w with

numerator relationship auw, and let Z be an indicator trait with

Z~1 if both u and w are exposed and Z~0, otherwise. Assum-

ing exposure is independent of the numerator relationship then

cov D
0

u,D
0

wjZ~1
� �

~auww xp

� �2
h2 and cov D

0

u,D
0

wjZ~0
� �

~0, so

cov D
0

u,D
0

wjZ
� �

~auww xp

� �2
h2Z; when Z = 0 the covariance is not

expressed since at least one individual is not exposed, and there

is only one outcome for that individual, D9 = 0. Then using the

general formula for unconditional covariances: cov D
0
u,D

0
w

� �
~

E cov D
0

u,D
0

wjZ
� �� �

zcov E D
0

ujZ
� �

,E D
0

wjZ
� �� �

and noting (i) the

latter term is 0, and (ii) E Zð Þ~e2 the probability of both being

exposed, the result emerges: cov D
0
u,D

0
w

� �
~auwe2w xp

� �2
h2.

Therefore on the 0/1 scale the true heritability of disease

resistance is w xp

� �2
h2p{1 1{pð Þ{1

whilst the observed herita-

bility is ew xp

� �2
h2p{1 1{epð Þ{1

. This differs by a factor e 1{pð Þ=
1{epð Þ. This will always be #1 since both e#1 and 1{pð Þ=
1{epð Þƒ1. Furthermore, this biased heritability is transformed

back to the liability scale as kh2, where k~e2w xp

� �2
=w xep

� �2
. The

Figure 1. Model for transmission of bacterial or viral infections.
doi:10.1371/journal.pone.0008940.g001
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bias on the liability scale is less than that on the observed scale

since the reduced prevalence that is observed due to incomplete

exposure leads to a greater scaling of the observed heritability back

to the liability scale. For small ep, the under-prediction on the 0/1

scale is close to a linear function of e. The bias is greater if p is

moderate or large.

Impacts of differing exposure probabilities and differing virtual

prevalences are illustrated in Figures 2a and 2b where observed

and virtual prevalences are varied, respectively. In both cases the

exposure probability has a close to linear impact on the bias

parameter. The bias is more severe when considering the

relationship as a function of observed prevalence, because when

the exposure probability drops towards the observed prevalence, it

implies the healthy population is dominated by individuals that have

not been exposed to infection.

(b) Incomplete Sensitivity and Specificity of Diagnostic

Tests. Individuals will be classified into healthy and diseased

categories by means of a diagnostic test for the disease of interest.

Fundamental to any diagnostic test are the concepts of specificity

and sensitivity. As described above, specificity (Sp) is the probability

that a truly healthy individual is classified by the diagnostic test as

healthy and sensitivity (Se) is the probability that a truly diseased

individual is classified by the diagnostic test as diseased. The

implications of sensitivity and specificity on the proportions of

individuals diagnosed as healthy or diseased are shown in Table 1.

The true prevalence is given as p, and the prevalence observed

from the diagnostic test is p9.

Insight into the column margins can be gained by observing that

SpzSe{1
� �

is the regression coefficient of the classification based

upon the diagnostic test on the true state where disease is scored 1 and

healthy 0. The regression line is D0~p0z SpzSe{1
� �

D. As above,

let Du and Dw be the true classification of individuals u and w with

numerator relationship auw. The impact of imperfect Se and Sp on

estimates of heritability can be deduced assuming that the classifica-

tion errors are independent for u and w, and unrelated to Du or Dw.

The covariance between the observed classification D9u and D9w

can be obtained from cov D
0

u, D
0

w

� �
~E cov D

0

u, D
0

wjDu, Dw

� �� �
z

cov E D
0

ujDu, Dw

� �
, E D

0

wjDu, Dw

� �� �
. The first of these terms

is identically zero given the assumption made. The second

term is then the covariance of the terms in Table 2, which

can be derived from the regression line above. This gives

the result cov D
0

u,D
0

w

� �
~ SpzSe{1
� �2

cov Du,Dwð Þ. It then fol-

lows directly that if u and w have a genetic covariance of auwh2

on the liability scale then cov Du,Dwð Þ~auww xp

� �2
h2 and

cov D
0
u,D

0
w

� �
~auww xp

� �2
h2 SpzSe{1
� �2

with observed preva-

lence p9. Thus, the observed heritability on the 0/1 scale is

h02~w xp

� �2
h2 SpzSe{1
� �2

p0{1 1{p0ð Þ{1
and when transformed

back to the liability scale it is w xp

� �2
h2 SpzSe{1
� �2

w xp0
� �{2

.

Impacts of various specificities and sensitivities on estimated

heritability values are illustrated in Figures 3a and 3b, where only

sensitivity and specificity, respectively, are varied and 3c, in which

they are varied jointly. For all prevalences, imperfect sensitivity

and specificity both result in underestimated heritabilities on the

liability scale. However the impact of poor specificities is much

greater, for true prevalence less than 0.5. The reason for this

difference is that when decreasing Se, the term SpzSe{1
� �

decreases, and the observed prevalence p9 decreases also, so

although SpzSe{1
� �2

v1, this is partially compensated by

w xp

� �2
w xp0
� �{2

w1. In contrast, when Sp decreases, the observed

prevalence p9 increases, and so both SpzSe{1
� �2

v1 and

w xp

� �2
w xp0
� �{2

v1. When both sensitivity and specificity are

imperfect, then liability-scale heritabilities are considerably under-

estimated. This is likely to be the case in many practical situations,

indicating that true genetic variation in disease resistance is likely to

be much greater than indicated by analyses of field data.

Figure 2. Ratio of estimated to true heritability on the liability
scale for incomplete exposure. Results are shown for (A) differing
observed prevalences or (B) differing virtual prevalences.
doi:10.1371/journal.pone.0008940.g002

Table 1. Proportions of individuals classified as Healthy or Diseased, as a function of Specificity (Sp) or Sensitivity (Se).

Classification by diagnostic test:

Healthy Diseased Total

True State: Healthy 1{pð ÞSp 1{pð Þ 1{Sp

� �
1{p

Diseased p 1{Seð Þ pSe p

Total 1{p0~Sp{p SpzSe{1
� �

p0~ 1{Sp

� �
zp SpzSe{1
� �

doi:10.1371/journal.pone.0008940.t001
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Dynamic Disease Properties
The principle of dynamic epidemic models is that individuals

move between infection state categories, as shown in Figure 1. At

different points during the epidemic it may be different individuals

that are observably diseased, and the efficiency with which all

potentially diseased individuals (I*) are observed as diseased depends

on the duration of the data collection period in relation to the

dynamics of the epidemic. In most data recording scenarios lasting

for a time period Dt, i.e. temporally incomplete data recording,

only a proportion of individuals ever transiting through the

infectious/diseased categories will be observed. Let the total number

of individuals observed to be infectious/diseased in the interval t to

tzDt be defined as I t,Dtð Þ therefore the proportion of all

individuals ever diseased that are observed is I t,Dtð Þ=I�. This is

analogous to imperfect diagnostic test sensitivity. Therefore, the

impact of temporally incomplete data recording on estimated

heritabilities is the same as for imperfect sensitivity.

As an illustration of the impact of dynamic disease properties,

consider a simple SIR model [12]. Let S(u) and I(u) be the

instantaneous number of susceptible and infectious animals at time

u, and b be the transmission coefficient for the disease. For a

recording period starting at time u = t, and lasting for time period

Dt, then I t,Dtð Þ~I tð Þz
ÐtzDt

t

bS uð ÞI uð Þdu. Therefore, the ratio

I t,Dtð Þ=I� will depend not only on the duration of the recording

period Dt, but also when recording commenced in relation to the

epidemic. This ratio will be termed the ‘epidemic sensitivity’.

As an illustration, consider an SIR model with parameters

b = 0.00015, c = 0.1, where c is the recovery rate, R0 = 1.5 and

hence I* = 0.59. For this parameterization, and starting with one

infected individual, it will take approximately 180 days for 95% of

all individuals potentially infected during an epidemic to become

diseased. It is assumed that recording starts when the disease

prevalence reaches 5% and that the diagnostic test is perfect, i.e.

sensitivity and specificity are both unity. Two scenarios are

considered, (i) where only infectious/diseased individuals are

observed, and (ii) where recovered/removed, e.g. dead, individuals

are also observed. Plotted in Figure 4 are the proportions of

individuals ever diseased during the course of the epidemic that are

observed during the observation period, i.e. the epidemic

sensitivity I t,Dtð Þ=I�. Observations taken only at one time point

will result in a low epidemic sensitivity, hence underestimated

heritabilities, and observations taken at different start points will

also vary. If both diseased and recovered/removed individuals are

observable, then the epidemic sensitivity becomes high with an

extended observation period, since individuals that are infected

and recover or removed prior to recording are also observed.

However, if recovered individuals are not observable, i.e. they are

healthy and no longer show any symptoms or clinical signs, then

the epidemic sensitivity remains low and heritabilities remain

underestimated.

Discussion

This paper has provided a framework to assist in the

interpretation of field disease data, with extensions to quantitative

genetics theory being presented to account for the effects of various

forms of environmental noise on genetic parameters for disease

resistance. The factors considered, viz. incomplete recording,

incomplete exposure, imperfect sensitivity and specificity of

diagnosis are all typical of the non-genetic influences encountered

with field disease data. We demonstrate in this paper that the likely

impacts of these factors on genetic parameters for disease

resistance are largely predictable, provided ball park figures can

be obtained for specificity, sensitivity or exposure probabilities. In

summary, estimable heritabilities are biased downwards by each of

these factors. Conversely, the presence of detectable genetic

variation in field disease data implies that the true heritability for

disease resistance, were it to be measured under ideal circum-

stances, is likely to be much higher.

A further significance of the theory presented in this paper is

that it can reconcile our observation that whilst traits describ-

ing immune responses to infection are often highly heritable,

the disease outcomes that these traits influence tend to be lowly

Table 2. Covariance expectations between animals with
different disease classification status.

Du Dw Probability E D
0
ujDu,Dw

� �
E D

0
wjDu,Dw

� �

1 1 p2zcov Du,Dwð Þ Se Se

1 0 p 1{pð Þ{cov Du,Dwð Þ Se 1{Sp

0 1 1{pð Þp{cov Du,Dwð Þ 1{Sp Se

0 0 1{pð Þ2zcov Du,Dwð Þ 1{Sp 1{Sp

doi:10.1371/journal.pone.0008940.t002

Figure 3. Ratio of estimated to true heritability on the liability scale for differing true prevalences. Results are shown for (A) incomplete
sensitivity, where specificity = 1, (B) incomplete specificity, where sensitivity = 1 or (C) for incomplete specificity and sensitivity, where the two
parameters equal.
doi:10.1371/journal.pone.0008940.g003
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heritable. This is best illustrated from extensive datasets collected

in farmed livestock. For example, components of innate and

adaptive immunity are often moderately to highly heritable in

commercial pig populations [14,15], whereas the heritability of

observable disease in such animals is low to moderate at best

[16,17]. Whilst true presence or absence of disease, given exposure

to infection, will be largely a function of the immune response, we

have demonstrated that the actual prevalence of disease and the

estimable genetic variation between animals will be influenced by

variable exposure and the sensitivity of diagnosis. Similarly, in

commercial dairy cattle, many studies have demonstrated that the

occurrence of clinical mastitis invariably has a heritability less

than 0.1 [10], whereas underlying immune responses to infec-

tion display heritabilities which though variable are often high

[e.g. 18].

Published field data are available which supports the concepts

developed in this paper. For example, predicted impacts of

exposure to infection on estimable heritabilities may be inferred

from data recently published on resistance to infectious pancreatic

necrosis (IPN), a viral disease affecting farmed salmon. Heritabil-

ities for IPN-related survival of salmon located in seawater

localities containing the IPN virus were estimated and presented

for seven independent cohorts of fish [19]. Of these seven cohorts,

five fulfilled criteria of comprising populations unselected for IPN

resistance and having heritability values consistent with the

observed prevalence, i.e. heritabilities transformed to the liability

scale [13] remained within the parameter space. For these five

cohorts, the observed prevalences were 0.10, 0.12, 0.14, 0.19 and

0.30 and the corresponding heritabilities on the observed (0,1)

scale were 0.11, 0.20, 0.16, 0.28 and 0.56, respectively, showing

the expected strong relationship between prevalence and herita-

bility for this scale. In principle, transformation to the liability scale

should remove the relationship between prevalence and heritabil-

ity, but the values obtained (0.32, 0.53, 0.39, 0.59 and 0.97)

continue to show a significant linear relationship with prevalence.

Because these five cohorts may be regarded as subpopulations

sampled at random in relation to IPN resistance from the same

overall population, it may be hypothesized that the differences in

prevalence simply reflect differences in exposure rates. Relative

exposure probabilities in each cohort may therefore be estimated

as the ratio of observed prevalence to that seen in the cohort

with the highest prevalence. Estimating exposure probability in

this way, and using the above theory to rescale the heritability for

liability, resulted in the heritabilities displayed in Figure 5, along

with the regression of these heritabilities on observed prevalence.

The strong linear relationship between prevalence and the

heritability of liability to IPN disappeared when differences in

relative exposure probabilities were hypothesized and the induced

biases were removed. Furthermore it suggests that the heritability

is large and important.

The heritability of resistance to bovine tuberculosis in dairy

cattle provides an example of the potential impact of diagnostic

test sensitivity and specificity on observable genetic variation. A

recent publication provided convincing evidence of moderate

genetic variation in tuberculosis resistance in dairy cattle, with an

average heritability of liability of 0.12 in a dataset with a

prevalence of 0.10 [9]; further, this paper speculated that

imperfect sensitivity and specificity may have resulted in an

underestimation of the true heritability. At this prevalence,

imperfect specificity has a large impact on the estimated

heritability, however the specificity of this diagnostic test is likely

to be high. Sensitivity may be lower, possibly closer to 0.8 [20].

Exploring scenarios for specificities of 0.98 or 0.99, and

sensitivities varying between 0.7 and 0.9, leads to the conclusion

that the observed heritability is possibly underestimated by 20 to

40%. Therefore, the true heritability in this population is likely to

be in the range 0.15 to 0.20.

Sometimes, particularly in an animal breeding context, an

indicator trait is used to describe the impact of infection or disease

upon an individual, for example somatic cell count in the milk of

lactating ruminants with mastitis [10]. Hence, the measurements

comprise a mixture distribution, i.e. those taken on both healthy

and diseased individuals. These data may be analysed ignoring the

fact that some individuals are healthy and others diseased, however

this potentially leads to misleading results if the statistical pro-

perties of the trait (variance, heritability, etc) differ between the

two subpopulations, or if the biological interpretation of the

indicator trait differs between the two subpopulations. For

example, dairy cattle breeders may wish to select on somatic cell

count to reduce the incidence of mastitis, but they may not wish to

alter mean somatic cell count in healthy cows [10]. Ideally, the data

could be split into healthy and diseased subpopulations, and analysed

separately. Various methods based on the properties of the data

distribution have been proposed to achieve this [21]; alternatively

an independent diagnostic of infection may be used, such as the

presence of mastitis-causing microorganisms in the milk. Whatever

approach is used, the concepts of diagnostic test accuracy still

apply and biases may occur if these are ignored. For example the

Figure 4. An example of the proportion of individuals recorded
as infectious/diseased relative to those ever infectious/diseased
during an SIR epidemic, as a function of recording period. Two
cases are shown, with only I individuals observable or with both I and R
observable. In this example, recording is triggered when prevalence
reaches 5%. Parameters in this model are: b = 0.00015, c = 0.1 and
R0 = 1.5.
doi:10.1371/journal.pone.0008940.g004

Figure 5. Heritabilities for liability to death from infectious
pancreatic necrosis in five cohorts of Atlantic salmon, before
and after correction for inferred relative exposure levels. The
data are from Guy et al. 2009 [19]. Shown are heritability values and
linear regression trend lines.
doi:10.1371/journal.pone.0008940.g005
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true difference in the indicator trait between the subpopulations

will be underestimated for imperfect sensitivity or specificity, as

animals will be misclassified.

We now determine the impact of imperfect sensitivity and

specificity on the properties of indicator traits such as somatic cell

count. If Hi and Di are indicator trait observations in truly healthy or

diseased subpopulations, and H9i and D9i are indicator trait

observations in an imperfectly classified population in which the

observed prevalence is p9, then the estimated true difference between

diseased and healthy individuals D~mD{mHð Þ is, after simplifi-

cation, D~ mD0{mH 0ð Þ SpzSe{1
� �

p 1{pð Þ= p0 1{p0ð Þ½ �
� �{1

. For

plausible Sp and Se values, D is always greater than mD0{mH 0ð Þ.
Similarly, properties of the variances of the observed subpopulations

can be estimated from the properties of mixture distributions, and

they contain an upwards bias proportional to D2. We have applied

these concepts to mastitis in sheep (Riggio, Bishop and coworkers,

unpublished data), using a dataset where diagnoses were available for

the mastitis infection status of every ewe on every occasion that

somatic cell count measurements were taken. These data demon-

strated that specificity and sensitivity of diagnosis must have been

high, as poor values would have led to implausible D values. Given

high but plausible specificity and sensitivity (.0.9), inferred genetic

correlations between the indicator trait measured in healthy and

diseased animals were moderate (ca. 0.6) and insensitive to small

changes in either parameter.

The theory presented in this paper does contain a number of

simplifying assumptions, most notably that exposure probability or

diagnostic test sensitivity and specificity are independent of host

genotype. These assumptions may sometimes be violated. As an

example, related individuals may be more likely to be co-exposed to

infection, e.g. family members in the same household or animals in

the same litter, and this potentially introduces a bias into heritability

estimation. An issue may also arise with diagnostic tests in which

animal immune responses are measured, such as skin test measure-

ments used to infer exposure to bovine tuberculosis [20]. If aspects of

these immune responses are genetic in origin, as seems plausible, this

may impact on diagnostic test sensitivity. We have yet to fully explore

the impact of these factors on expected genetic parameter values.

Many disease genetic studies now bypass the step of estimating

variance components to quantify genetic variation and move

directly to SNP association studies, unfortunately ignoring the

design information that may give an objective assessment of the

plausibility of both the design and the outcomes of the study.

Nevertheless, the principles and consequences of noisy field data

for the estimation of SNP effects are analogous to those for

variance component estimation. For example, with incomplete

exposure a fraction 1{eð Þ= 1{epð Þ of individuals that are healthy

have not been exposed and hence do not contribute information.

Therefore, the effective size of the control population is smaller by

this proportion. Furthermore, with imperfect sensitivity and

specificity, there is a reduction in the estimable SNP effect size

by SpzSe{1
� �

due to the regression coefficient of the diagnostic

classification on the true state, with a consequent reduction in the

experimental power for detecting SNP associations.

In summary, we believe that the results presented in this paper

add clarity to the interpretation of field disease data, and reduce

the risk that incorrect inferences are made regarding the extent of

genetic variation. We have considered the different aspects of field

data separately, but the underlying theory is clear and the

potential exists to combine the different factors to match specific

scenarios. We suggest that published estimates of heritabilities for

resistance to microparasitic diseases, corresponding SNP effects

and study design should be re-appraised given knowledge of the

disease biology, i.e. likely exposure to infection, properties of the

diagnostic tests and duration of data recording.
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