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Abstract

Background: Models for complex biological systems may involve a large number of parameters. It may well be that some of
these parameters cannot be derived from observed data via regression techniques. Such parameters are said to be
unidentifiable, the remaining parameters being identifiable. Closely related to this idea is that of redundancy, that a set of
parameters can be expressed in terms of some smaller set. Before data is analysed it is critical to determine which model
parameters are identifiable or redundant to avoid ill-defined and poorly convergent regression.

Methodology/Principal Findings: In this paper we outline general considerations on parameter identifiability, and
introduce the notion of weak local identifiability and gradient weak local identifiability. These are based on local properties
of the likelihood, in particular the rank of the Hessian matrix. We relate these to the notions of parameter identifiability and
redundancy previously introduced by Rothenberg (Econometrica 39 (1971) 577–591) and Catchpole and Morgan (Biometrika
84 (1997) 187–196). Within the widely used exponential family, parameter irredundancy, local identifiability, gradient weak
local identifiability and weak local identifiability are shown to be largely equivalent. We consider applications to a recently
developed class of cancer models of Little and Wright (Math Biosciences 183 (2003) 111–134) and Little et al. (J Theoret Biol
254 (2008) 229–238) that generalize a large number of other recently used quasi-biological cancer models.

Conclusions/Significance: We have shown that the previously developed concepts of parameter local identifiability and
redundancy are closely related to the apparently weaker properties of weak local identifiability and gradient weak local
identifiability—within the widely used exponential family these concepts largely coincide.
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Introduction

Models for complex biological systems may involve a large

number of parameters. It may well be that some of these parameters

cannot be derived from observed data via regression techniques.

Such parameters are said to be unidentifiable or non-identifiable,

the remaining parameters being identifiable. Closely related to this

idea is that of redundancy, that a set of parameters can be expressed

in terms of some smaller set. Before data is analysed it is critical to

determine which model parameters are identifiable or redundant to

avoid ill-defined and poorly convergent regression.

Identifiability in stochastic models has been considered previously

in various contexts. Rothenberg [1] and Silvey [2] (pp. 50, 81)

defined a set of parameters for a model to be identifiable if no two

sets of parameter values yield the same distribution of the data.

Catchpole and Morgan [3] considered identifiability and parameter

redundancy and the relations between them in a general class of

(exponential family) models. Rothenberg [1], Jacquez and Perry [4]

and Catchpole and Morgan [3] also defined a notion of local

identifiability, which we shall extend in the Analysis Section. [There

is also a large literature on identifability in deterministic (rather than

stochastic) models, for example the papers of Audoly et al. [5], and

Bellu [6], which we shall not consider further.] Catchpole et al. [7]

and Gimenez et al. [8] outlined use of computer algebra techniques

to determine numbers of identifiable parameters in the exponential

family. Viallefont et al. [9] considered parameter identifiability issues

in a general setting, and outlined a method based on considering the

rank of the Hessian for determining identifiable parameters;

however, some of their claimed results are incorrect (as we outline

briefly later). Gimenez et al. [8] used Hessian-based techniques, as

well as a number of purely numerical techniques, for determining

the number of identifiable parameters. Further general observations

on parameter identifiability and its relation to properties of sufficient

statistics are given by Picci [10], and a more recent review of the

literature is given by Paulino and de Bragança Pereira [11].

In this paper we outline some general considerations on

parameter identifiability. We shall demonstrate that the concepts

of parameter local identifiability and redundancy are closely

related to apparently weaker properties of weak local identifiability

and gradient weak local identifiability that we introduce in the

Analysis Section. These latter properties relate to the uniqueness of

likelihood maxima and likelihood turning points within the vicinity

of sets of parameter values, and are shown to be based on local

properties of the likelihood, in particular the rank of the Hessian
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matrix. Within the widely-used exponential family we demonstrate

that these concepts (local identifiability, redundancy, weak local

identifiability, gradient weak local identifiability) largely coincide.

We briefly consider applications of all these ideas to a recently

developed general class of carcinogenesis models [12,13,14],

presenting results that generalize those of Heidenreich [15] and

Heidenreich et al. [16] in the context of the two-mutation cancer

model [17]. These are outlined in the later parts of the Analysis

and the Discussion, and in more detail in a companion paper [12].

Analysis

General Considerations on Parameter Identifiability
As outlined in the Introduction, a general criterion for parameter

identifiability has been set out by Jacquez and Perry [4]. They

proposed a simple linearization of the problem, in the context of

models with normal error. They defined a notion of local

identifiability, which is that in a local region of the parameter

space, there is a unique h0 that fits some specified body of data,

xi,yið Þni~1, i.e. for which the model predicted mean h xjhð Þ is such

that the residual sum of squares:

S~
Xn

l~1

yl{h xl jhð Þ½ �2 ð1Þ

has a unique minimum. We present here a straightforward

generalization of this to other error structures. If the model

prediction h xð Þ~h xjhð Þ for the observed data y is a function of

some vector parameters h~ hj

� �p

j~1
then in general it can be

assumed, under the general equivalence of likelihood maximization

and iteratively reweighted least squares for generalized linear

models [18](chapter 2) that one is trying to minimize:

S~
Xn

l~1

1

vl

yl{h xl jh0ð Þ{
Xp

j~1

Lh xl jhð Þ
Lhj

����
h~h0

:Dhj

" #2

ð2Þ

where yl 1ƒlƒnð Þ n§pð Þ is the observed measurement (e.g., the

numbers of observed cases in the case of binomial or Poisson models)

at point l and the vl 1ƒlƒnð Þ are the current estimates of variance

at each point. This has a unique minimum in the perturbing

Dh~ Dhj

� �p

j~1
(h~h0zDh) given by HT DHDh~HT Dd, where

dlð Þnl~1~ yl{h xl jh0ð Þð Þnl~1, Hlj

� �n, p

l~1, j~1
~

Lh xl jhð Þ
Lhj

����
h~h0

 !n, p

l~1, j~1

,

D~diag 1=v1,1=v2,:::,1=vn½ �, whenever HT DH has full rank ( = p).

More generally, suppose that the likelihood associated with

observation xl is l(xl jh) and let L xl jhð Þ~ln l xl jhð Þ½ �. Then

generalizing the least squares criterion (1) we now extend the

definition of local identifiability to mean that there is at most one

maximum of:

L~L xjhð Þ~
Xn

l~1

L xl jhð Þ ð3Þ

in the neighborhood of any given h [ V5R
p
. More formally:

Definitions 1. A set of parameters hið Þpi~1 is identifiable if

for any h [ V there are no d [ V\fhg for which L xjdð Þ~L xjhð Þ
x almost everywhere a:e:ð Þð Þ. A set of parameters hið Þpi~1 is locally

identifiable if there exists a neighborhood N[Qh such that for no

d [ N \ hf g is L xjdð Þ~L xjhð Þ x a:e:ð Þ. A set of parameters hið Þpi~1

is weakly locally identifiable if there exists a neighborhood

N[ Qh and data x~ x1,:::,xnð Þ [ Sn such that the log-likelihood

L~L xjhð Þ~
Pn
l~1

L xl jhð Þ is maximized by at most one set of h
_

[N.

If L~L xjhð Þ is C1 as a function of h[V a set of parameters

hið Þpi~1 [ int Vð Þ is gradient weakly locally identifiable if there

exists a neighborhood N [ Qh and data x~ x1,:::,xnð Þ [ Sn such

that
LL xjh

_
� �
Lh
_

i

0
B@

1
CA

p

i~1

~0 (i.e., h
_

is a turning point of L(xjh)) for at

most one set of h
_

[ N.

Our definitions of identifiability and local identifiability coincide

with those of Rothenberg [1], Silvey [2](pp. 50, 81) and Catchpole

and Morgan [3]. Rothenberg [1] proved that if the Fisher

information matrix, I~I(h), in a neighborhood of h [ int Vð Þ is of

constant rank and satisfies various other more minor regularity

conditions, then h [ int Vð Þ is locally identifiable if and only if I(h)
is non-singular. Clearly identifiability implies local identifiability,

which in turn implies weak local identifiability. By the Mean Value

Theorem [19](p. 107) gradient weak local identifiability implies

weak local identifiability. Heuristically, (gradient) weak local

identifiability happens when:

0~
LL

Lhi

~
Xn

l~1

LL(xl jh)

Lhi

~
Xn

l~1

LL(xl jh0)

Lhi

z
Xp

j~1

L2L(xl jh0)

LhiLhj

:Dhj

" #

zO(jDhj2), 1ƒiƒp

ð4Þ

and in general this system of p equations has a unique solution in

Dh~ Dhj

� �p

j~1
in the neighborhood of h0 (assumed [ int Vð Þ)

whenever
Pn
l~1

L2L(xl jh0)

LhiLhj

 !p

i, j~1

has full rank (= p). This turns out

to be (nearly) the case, and will be proved later (Corollary 2). More

rigorously, we have the following result.

Theorem 1. Suppose that the log-likelihood L (xjh) is

C2 as a function of the parameter vector h [ V 5R
p
, for all

x~(x1, :::, xn) [ Sn.

(i) Suppose that for some x and h [ int(V) it is the case that

rk
L2L(xjh)

LhiLhj

 !p

i, j~1

2
4

3
5~p. Then turning points of the

likelihood in the neighborhood of h are isolated, i.e., there

is an open neighborhood N [ Qh 5V for which there is at

most one h
_

[ N that satisfies
LL(xjh)

Lhi

� �p

i~1

����
h~h

_
~0.

(ii) Suppose that for some x and h [ int(V) it is the case that

rk
L2L(xjh)

LhiLhj

 !p

i, j~1

2
4

3
5~p then local maxima of the likeli-

hood in the neighborhood of h are isolated, i.e., there is an

open neighborhood N [ Qh 5V for which there is at most

one h
_

[N that is a local maximum of L (xjh).

(iii) Suppose that for some x and all h[ int(V) it is the case that

rk
L2L(xjh)

LhiLhj

 !p

i, j~1

2
4

3
5~rvp then all local maxima of the

likelihood in int(V) are not isolated, as indeed are all

h [ int(V) for which
LL(xjh)

Lhi

� �p

i~1

~0.
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We prove this result in Text S1 Section A. As an immediate

consequence we have the following result.

Corollary 1. For a given x~(x1,:::,xn)[ Sn, a sufficient

condition for the likelihood (3) to have at most one maxi-

mum and one turning point in the neighborhood of a given

h~(h1,:::,hp) [ int(V) is that rk
L2L(xjh)

LhiLhj

 !p

i, j~1

2
4

3
5~p. In

particular, if this condition is satisfied h is gradient weakly

locally identifiable (and therefore weakly locally identifiable).

(V5R
p

is the parameter space.)

That this condition is not necessary is seen by consideration

of the likelihood l(xjh)~C:exp {
Pp
i~1

½xi{hi�4
� �

, where C is

chosen so that this has unit mass. Then
L2L(xjh)

LhiLhj

~{12:½xi{hi�2:dij

which has rank 0 at h~x and a unique maximum there. In

particular, this shows that the result claimed by Viallefont et al.

[9](proposition 2, p. 322) is incorrect.

Definitions 2. A subset of parameters hp(i)

� �k

i~1
(for some per-

mutation p : f1,2,:::,pg?f1,2,:::,pg) is weakly maximal (respectively

weakly gradient maximal) if for any permissible fixed hp(i)

� �p

i~kz1

(such that V
(hp(i) )

p

i~kz1

k,p ~ hp(i)

� �k

i~1
: h1, ::: ,hk, hkz1, ::: ,hp

� �
[ V

n o
=1)

hp(i)

� �k

i~1
is weakly locally identifiable (respectively gradient

weakly locally identifiable) at that point, but that this is not the

case for any larger number of parameters. A subset of parameters

hp(i)

� �k

i~1
is strongly maximal (respectively strongly gradient

maximal) if for any permissible fixed hp(i)

� �p

i~kz1
and any

open U5V
(hp(i))

p

i~kz1

k,p , hp(i)

� �k

i~1
restricted to the set U is

weakly maximal (respectively weakly gradient maximal), i.e., all

h0p(i)

� �k

i~1
[U are weakly maximal (respectively weakly gradient

maximal).

From this it easily follows that a strongly (gradient) maximal set

of parameters hp(i)

� �k

i~1
is a fortiori weakly (gradient) maximal at

all points h0p(i)

� �k

i~1
[V

(hp(i))
p

i~kz1

k,p for any permissible hp(i)

� �p

i~kz1
.

Assume now that k of the p hi are a weakly maximal set of parame-

ters. So for some permutation p : f1,2,:::,pg?f1,2,:::,pg and for

any permissible fixed (hp(i))
p
i~kz1 and any (hp(i))

k
i~1[ V

(hp(i) )
p

i~kz1

k,p 5

Rk there is an open neighborhood N[Q(hp(i))
k
i~1

5V
(hp(i))

p

i~kz1

k,p and

some data x~(x1,:::,xn)[ Sn for which L(hp(i) )
p

i~kz1
xj hp(i)

� �k

i~1

� �
is

maximized by at most one set of (h
_

p(i))
k
i~1[N, but that this is not

the case for any larger number of parameters. Assume that r~

max rk
L2L(hp(i))

p

i~kz1
(xj(hp(i))

k
i~1)

Lhp(i)Lhp(j)

 !k

i, j~1

2
4

3
5 : (hp(i))

k
i~1[N

8<
:

9=
;vk. If

L is C2 as a function of h then it follows easily that Vk,r~

(hp(i))
k
i~1[N : rk

L2L(hp(i))
p

i~kz1
(xj(hp(i))

k
i~1)

Lhp(i)Lhp(j)

 !k

i, j~1

2
4

3
5~r

8<
:

9=
; must

be an open non-empty subset of N. By Theorem 1 (iii) any h
_

[ Vk,r

which maximizes L(hp(i))
p

i~kz1
in Vk,r cannot be isolated, a contradic-

tion (unless there are no maximizing h
_

[Vk,r). Therefore, either there

are no maximizing h
_

[Vk,r or for at least one h
_

[N

rk
L2L(hp(i) )

p

i~kz1
(xj(hp(i))

k
i~1)

Lhp(i)Lhp(j)

 !k

i, j~1

������
(hp(i))

k
i~1~h

_

2
64

3
75~k. This implies

that rk
L2L(xjh)

LhiLhj

 !p

i, j~1

������
h~h

_ 0

2
4

3
5§k, where h

_ 0~(h
_

)|(hp(i))
p
i~kz1

in the obvious sense.

Assume now that the (hp(i))
k
i~1 are strongly maximal. Suppose that

for some h1~ h1ið Þpi~1 [ V and some x~(x1,:::,xn) [ Sn it is the case

that rk
L2L(xjh)

LhiLhj

 !p

i, j~1

������
h~h1

2
4

3
5wk. Because

L2L(xjh)

LhiLhj

 !p

i, j~1

������
h~h1

is symmetric, there is a permutation p0 : f1,:::,pg?f1,:::,pg for

which rk
L2L(xjh)

Lhp0(i)Lhp0(i)

 !kz1

i, j~1

������
h~h1

2
4

3
5~kz1 [20](p. 79). If L is C2

as a function of h this will be the case in some open neighborhood

N 0[Q(h1p0 (i) )
kz1
i~1

5Rkz1. By Theorem 1 (ii) this implies that the

parameters hp0(i)

� �kz1

i~1
have at most one maximum in N 0, so that

hp(i)

� �k

i~1
is not a strongly maximal set of parameters in N 0. With

small changes everything above also goes through with ‘‘weakly

gradient maximal’’ substituted for ‘‘weakly maximal’’ and ‘‘strongly

gradient maximal’’ substituted for ‘‘strongly maximal’’. Therefore we

have proved the following result.

Theorem 2. Let L(xjh) be C2 as a function of h [ V5R
p

for

all x [
Pn

.

(i) If there is a weakly maximal (respectively weakly gradient

maximal) subset of k parameters, (hp(1),hp(2),:::,hp(k)) (for

some permutation p : f1,2,:::,pg?f1,2,:::,pg), and for

fixed (hp(i))
p
i~kz1 and some x~(x1,:::,xn)[S n L(hp(i))

p

i~kz1

(xj(hp(i))
k
i~1) has a maximum (respectively turning point)

on the set of h where rk
L2L(hp(i))

p

i~kz1
(xj(hp(i))

k
i~1)

Lhp(i)Lhp(j)

 !k

i, j~1

2
4

3
5 is

maximal then max rk
L2L(hp(i))

p

i~kz1
(xj(hp(i))

k
i~1)

Lhp(i)Lhp(j)

 !k

i, j~1

2
4

3
5 :

8<
:

(hp(i))
k
i~1 [ V

(hp(i))
p

i~kz1

k,p

9=
;~k and max rk

L2L(xjh)

LhiLhj

 !p

i, j~1

2
4

3
5 :

8<
:

h [ V

9=
;§k.

(ii) If there is a strongly maximal (respectively strongly gra-

dient maximal) subset of k parameters, (hp(1),hp(2),:::,hp(k))
(for some permutation p : f1,2,:::,pg?f1,2,:::,pg) then

rk
L2L(xjh)

Lhp(i)Lhp(j)

 !k

i, j~1

2
4

3
5ƒk Vh[V.

All further results in this Section assume that the model is a

member of the exponential family, so that if the observed data

x~(xl)
n
l~1[

Pn
then the log-likelihood is given by L(xjh)~Pn

l~1

xlzl{b(zl)

a(w)
zc(xl ,w)

� 	
for some functions a(w), b(z), c(x, w).

We assume that the natural parameters zl~zl hið Þpi~1,zl


 �
are

functions of the model parameters (hi)
p
i~1 and some auxiliary data

zl , but that the scaling parameter w is not. Let ml~b0(zl)~E½xl �,
so that ml~b0(zl ½(hi)

p
i~1,zl �). In all that follows we shall assume

that the function b(z) is C2. The following definition was

introduced by Catchpole and Morgan [3].

Definition 3. With the above notation, a set of parameters

(hi)
p
i~1[V is parameter redundant for an exponential family model

if ml~b0(zl ½(ri)
q
i~1,zl �) can be expressed in terms of some strictly
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smaller parameter vector (ri)
q
i~1 (qvp). Otherwise, the set of

parameters (hi)
p
i~1 is parameter irredundant or full rank.

Catchpole and Morgan [3] proved (their Theorem 1) that a

set of parameters is parameter redundant if and only if

rk
Lml

Lhi

� �n p

l~1, i~1

" #
vp. They defined full rank models to be

essentially full rank if rk
Lml

Lhi

� �n p

l~1, i~1

" #
~p for every (hi)

p
i~1 [ V;

if rk
Lml

Lhi

� �n p

l~1, i~1

" #
~p only for some (hi)

p
i~1 [ V then the

parameter set is conditionally full rank. They also showed (their

Theorem 3) that if I~I(h) is the Fisher information matrix then

rk
Lml

Lhi

� �n p

l~1, i~1

" #
~rk½I(h)�, and that parameter redundancy

implies lack of local identifiability; indeed their proof of Theorems

2 and 4 showed that there is also lack of weak local identifiability

(respectively gradient weak local identifiability) for all (hi
0)p

i~1[V
which for some x~(xl)

n
l~1[

Pn
are local maxima (respectively

turning points) of the likelihood.

Assume that h~(hi)
p
i~1 are an essentially full rank set of

parameters for the model. From the above result for every

h~(hi)
p
i~1 [ V rk

Lml

Lhi

� �n p

l~1, i~1

" #
~rk(I(h))~p. Therefore,

since E
L2L(xjh)

LhiLhj

" #
~{E

LL(xjh)

Lhi

LL(xjh)

Lhj

� 	
~{I(h) is of full

rank and so negative definite, so by the strong law of large numbers

we can choose x~(xl)
n
l~1 [

Pn
so that the same is true of

L2L(xjh)

LhiLhj

~
Xn

l~1

xl{b0(zl)

a(w)

� 	
L2zl

LhiLhj

{
b00(zl)

a(w)

Lzl

Lhi

Lzl

Lhj

( )
. This implies

that on some N[Qh5R
p L2L(xjh)

LhiLhj

~
Xn

l~1

xl{b0(zl)

a(w)

� 	
L2zl

LhiLhj

{

(

b00(zl)

a(w)

Lzl

Lhi

Lzl

Lhj

9=
; is of full rank, and therefore by Corollary 1

h~(hi)
p
i~1 is (gradient) weakly locally identifiable. Furthermore,

the above argument shows that if h~(hi)
p
i~1 are a condi-

tionally full rank set of parameters then on the (open) set

Vp~ h~ hið Þpi~1[V : rk
Lml

Lhi

� �n p

l~1, i~1

" #
~p

( )
h~(hi)

p
i~1 is gra-

dient weakly locally identifiable. We have therefore proved:

Theorem 3. Let L(xjh) belong to the exponential family and

be C2 as a function of h [ V5R
p

for all x [
Pn

.

(i) If the parameter set h~(hi)
p
i~1 is parameter redundant then

it is not locally identifiable, and is not weakly locally

identifiable (respectively gradient weakly locally identifiable)

for all (hi
0)p

i~1 [ V which for some x~(xl)
n
l~1 [

Pn
are

local maxima (respectively turning points) of the likelihood.

(ii) If the parameter set h~(hi)
p
i~1 is of essentially full rank

then for some x~(xl)
n
l~1[

Pn L2L(xjh)

LhiLhj

is of full rank

and therefore h~ (hi )
p
i~1 is gradient weakly locally

identifiable (and so weakly locally identifiable) for all

h~(hi)
p
i~1 [ V.

(iii) If the parameter set h~(hi)
p
i~1 is of conditionally full rank

then it is gradient weakly locally identifiable on the open set

Vp~ h~ hið Þpi~1 [ V : rk
Lml

Lhi

� �n p

l~1, i~1

" #
~p

( )
.

Remarks: It should be noted that part (i) of this generalizes part

(i) of Theorem 4 of Catchpole and Morgan [3], who proved that if

a model is parameter redundant then it is not locally identifiable.

However, some components of part (ii) (that being essentially full

rank implies gradient weak local identifiability) is weaker than the

other result, proved in part (ii) of Theorem 4 of Catchpole and

Morgan [3], namely that if a model is of essentially full rank it is

locally identifiable. As noted by Catchpole and Morgan [3]

(pp. 193–4), there are exponential-family models that are

conditionally full rank, but not locally identifiable, so part (iii) is

about as strong a result as can be hoped for.

From Theorem 3 we deduce the following.

Corollary 2. Let L(xjh) belong to the exponential family and

be C2 as a function of h [ V 5R
p

for all x [
Pn

. Then

(i) If for some subset of parameters (hp(i))
k
i~1 and some

x~(x1,:::,xn)[Sn it is the case that rk
L2L(xjh)

Lhp(i)Lhp(j)

 !k

i, j~1

2
4

3
5

~k then this subset is gradient weakly locally identifiable at

this point.

(ii) If a subset of parameters (hp(i))
k
i~1 is weakly locally

identifiable and for some x [
Pn

this point is a local

maximum of the likelihood then it is parameter irredundant,

i.e., of full rank, so rk½I(h)�~k, so that for some x0[
Pn0

rk
L2L(x0jh)

Lhp(i)Lhp(j)

 !k

i, j~1

2
4

3
5~k. In particular, if this holds for all

h [ V then parameter irredundancy, local identifiability,

gradient weak local identifiability and weak local identifia-

bility are all equivalent.

Proof. This is an immediate consequence of the remarks after

Definition 1, Corollary 1, Theorem 3 (i) and Theorems 1 and 3 of

Catchpole and Morgan [3]. QED.

Remarks: (i) By the remarks preceding Theorem 3 the conditions

of part (i) (that for some x~(x1,:::,xn)[Sn it is the case that

rk
L2L(xjh)

LhiLhj

 !k

i, j~1

2
4

3
5~k) are automatically satisfied if h~(hi)

k
i~1

are an essentially full rank set of parameters for the model.

(ii) Assume the model is constructed from a stochastic cancer

model embedded in the exponential family, in the sense outlined

in Text S1 Section B, so that the natural parameters

zl~zl ½(hi)
p
i~1,zl � are functions of the model parameters (hi)

p
i~1

and some auxiliary data (zl)
n
l~1, and the means are given by

ml~b0(zl ½(hi)
p
i~1,zl �)~zl

:h½(hi)
p
i~1,yl �, where h½(hi)

p
i~1,yl � is the

cancer hazard function. In this case, as shown in Text S1 Section B,

L2L(xjh)

LhiLhj

~
Xn

l~1

½xl{b 0(zl )�zl

a(w)b 00(zl)

L2h(h,yl )

LhiLhj

{
zl

2

a(w)

Lh(h,yl)

Lhi

Lh(h,yl)

Lhj

½b 00(zl)�2zb 000(zl)½xl{b0(zl )�
½b 00(zl )�3

( )
2
6664

3
7775.

The second term inside the summation {
zl

2

a(w)

Lh(h,yl)

Lhi

Lh(h,yl)

Lhj

�

½b 00(zl)�2zb 000((zl)½xl{b 0(zl)�
½b 00(zl)�3

( ) 1A
p

i, j~1

is a rank 1 matrix and can

be made small in relation to the first term, e.g., by making zl small.

Therefore finding data (x,y,z)~(x1,:::,xn,y1,:::,yn,z1,:::,zn)[Sn for

which rk
L2L(xjh)

Lhp(i)Lhp(j)

 !k

i, j~1

2
4

3
5~k is equivalent to finding data for
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which rk
L2h(h,yl)

Lhp(i)Lhp(j)

 !k

i, j~1

2
4

3
5~k, or by the result of Dickson

[20](p. 79) for which rk
L2h(h,yl)

LhiLhj

 !p

i, j~1

2
4

3
5~k.

Hessian vs Fisher Information Matrix as a Method of
Determining Redundancy and Identifiability in
Generalised Linear Models

We, as with Catchpole and Morgan [3], emphasise use of the

Hessian of the likelihood rather than the Fisher informa-

tion matrix considered by Rothenberg [1]. In the context of

GLMs, we have L(xjh)~
Pn
l~1

xlzl{b(zl)

a(w)
zc(xl ,w)

� 	
and g(mi)~

g(b 0(zi))~
Pp
j~1

Aijhj for some link function g() and fixed matrix

A. We define Dij~
Lmj

Lhi

~
1

g 0((mj)Aji~ AT G{1ð Þij
where G~

diag g 0(m1),g 0(m2),:::,g 0(mn)Þð . Theorem 1 of Catchpole and Morgan

[3] states that a model is parameter irredundant if and

only if rk½D�~p. The score vector is given by Ui~
LL(xjh)

Lhi

~

Pn
l~1

½xl{ml �
a(w)

Lzl

Lhi

~
Xn

l~1

½xl{ml �
b 00(zl)a(w)

Lml

Lhi

~
1

a(w)
DD(x{m)ð Þi where

D~diag
1

b 00(z1)
,

1

b 00(z2)
,:::,

1

b 00(zn)

� �
. The Fisher information is

therefore given by I(h)~E UUT½ �~ 1

a(w)2
DDVDDT where V~

E xi{mi½ � xj{mj


 �
 �� �
i, j

is the data variance. Theorem 1 of

Rothenberg [1] states that a model is locally identifiable if and

only if rk½I(h)�~p. As above (Corollary 2 (ii)), heuristically

parameter irredundancy, local identifiability, gradient weak local

identifiability and weak local identifiability are all equivalent and

occur whenever rk(DDVDDT )~rk(D)~p. Clearly evaluating the

rank of D is generally much easier than that of DDVDDT .

Catchpole and Morgan [3] demonstrate use of Hessian-based

methods to estimate parameter redundancy in a class of capture-

recapture models.

However, for certain applications, both the Fisher information

and the Hessian must be employed, as we now outline. Assume that

the model is constructed from a stochastic cancer model embedded

in an exponential family model in the sense outlined in Text S1

Section B. The key to showing that such an embedded model has no

more than N irredundant parameters is to construct (as is done in

Little et al. [12]) some scalar functions G1(:),G2(:),:::,GN (:) such

that the cancer hazard function h(h) can be written as

h(G1(h),G2(h),:::,GN (h)). Since the cancer model is embedded in

a member of the exponential family (in the sense outlined in Text S1

Section B) the same will be true of the total log-likelihood

L(xjh)~L(xjG1(h),G2(h),:::,GN (h)). By means of the Chain

Rule we obtain
L2L(xjh)

LhiLhj

~
XN

l,k~1

L2L(xjG1,:::,GN )

LGlLGk

LGl

Lhi

LGk

Lhj

z

PN
l~1

LL(xjG1,:::,GN )

LGl

L2Gl

LhiLhj

, so that the Fisher information matrix

is given by:

I(h)~{Eh
L2L(xjh)

LhiLhj

" #
~{E

XN

l,k~1

L2L(xjG1,:::,GN )

LGlLGk

LGl

Lhi

LGk

Lhj

" #

~{
XN

l,k~1

LGl

Lhi

E
L2L(xjG1,:::,GN )

LGlLGk

" #
LGk

Lhj

ð5Þ

which therefore has rank at most N . Therefore by Corollary 2 there

can be at most N irredundant parameters, or indeed (gradient) weak

locally identifiable parameters. [A similar argument shows that if

one were to reparameterise (via some invertible C2 mapping

h~f (v)) then the embedded log-likelihood L(xjf {1(h))~L(xjv)

associated with h(f {1(h))~h(v) must also have Fisher information

matrix of rank at most N .] By remark (ii) after Corollary 2, to show

that a subset of cardinality N of the parameters (hi)
p
i~1 is (gradient)

weak locally identifiable parameters, requires that one show that

L2h(h,yl)

LhiLhj

" #p

i, j~1

has rank at least N for some (h,yl). This is the

approach adopted in the paper of Little et al. [12].

Discussion

In this paper we have introduced the notions of weak local

identifiability and gradient weak local identifiability, which we have

related to the notions of parameter identifiability and redundancy

previously introduced by Rothenberg [1] and Catchpole and

Morgan [3]. In particular we have shown that within the

exponential family models parameter irredundancy, local identifia-

bility, gradient weak local identifiability and weak local identifia-

bility are largely equivalent.

The slight novelty of our approach is that the notions of weak

local identifiability and gradient weak local identifiability that we

introduce are related much more to the Hessian of the likelihood

rather than the Fisher information matrix that was considered by

Rothenberg [1]. However, in practice, the two approaches are

very similar; Catchpole and Morgan [3] used the Hessian of the

likelihood, as do we, because of its greater analytic tractability.

The use of this approach is motivated by the application, namely

to determine identifiable parameter combinations in a large class

of stochastic cancer models, as we outline at the end of the

Analysis Section. In certain applications the Fisher information

may be best for estimating the upper bound to the number of

irredundant parameters, but the Hessian may be best for

estimating the lower bound of this quantity.

In the companion paper of Little et al. [12] we consider the

problem of parameter identifiability in a particular class of

stochastic cancer models, those of Little and Wright [13] and

Little et al. [14]. These models generalize a large number of other

quasi-biological cancer models, in particular those of Armitage

and Doll [21], the two-mutation model [17], the generalized

multistage model of Little [22], and a recently developed cancer

model of Nowak et al. [23] that incorporates genomic instability.

These and other cancer models are generally embedded in an

exponential family model in the sense outlined in Text S1 Section

B, in particular when cohort data are analysed using Poisson

regression models, e.g., as in Little et al. [13,14,24]. As we show at

the end of the Analysis Section, proving (gradient) weak local

identifiability of a subset of cardinality k of the parameters (hi)
p
i~1

can be done by showing that for this subset of parameters

rk
L2h(h,y)

LhiLhj

 !p

i, j~1

2
4

3
5~k where h is the cancer hazard function.

Little et al. [12] demonstrate (by exhibiting a particular

parameterization) that there is redundancy in the parameteriza-

tion for this model: the number of theoretically estimable

parameters in the models of Little and Wright [13] and Little

et al. [14] is at most two less than the number that are theoretically

available, demonstrating (by Corollary 2) that there can be no

more than this number of irredundant parameters. Two numerical

examples suggest that this bound is sharp – we show that the rank
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of the Hessian, rk
L2h(h,y)

LhiLhj

 !p

i, j~1

2
4

3
5, is two less than the row

dimension of this matrix. This result generalizes previously derived

results of Heidenreich and others [15,16] relating to the two-

mutation model.
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Found at: doi:10.1371/journal.pone.0008915.s001 (0.33 MB
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