
Timing Robustness in the Budding and Fission Yeast Cell
Cycles
Karan Mangla1, David L. Dill1*, Mark A. Horowitz2

1 Department of Computer Science, Stanford University, Stanford, California, United States of America, 2 Department of Electrical Engineering, Stanford University,

Stanford, California, United States of America

Abstract

Robustness of biological models has emerged as an important principle in systems biology. Many past analyses of Boolean
models update all pending changes in signals simultaneously (i.e., synchronously), making it impossible to consider
robustness to variations in timing that result from noise and different environmental conditions. We checked previously
published mathematical models of the cell cycles of budding and fission yeast for robustness to timing variations by
constructing Boolean models and analyzing them using model-checking software for the property of speed independence.
Surprisingly, the models are nearly, but not totally, speed-independent. In some cases, examination of timing problems
discovered in the analysis exposes apparent inaccuracies in the model. Biologically justified revisions to the model eliminate
the timing problems. Furthermore, in silico random mutations in the regulatory interactions of a speed-independent
Boolean model are shown to be unlikely to preserve speed independence, even in models that are otherwise functional,
providing evidence for selection pressure to maintain timing robustness. Multiple cell cycle models exhibit strong
robustness to timing variation, apparently due to evolutionary pressure. Thus, timing robustness can be a basis for
generating testable hypotheses and can focus attention on aspects of a model that may need refinement.

Citation: Mangla K, Dill DL, Horowitz MA (2010) Timing Robustness in the Budding and Fission Yeast Cell Cycles. PLoS ONE 5(2): e8906. doi:10.1371/
journal.pone.0008906

Editor: Vladimir Brezina, Mount Sinai School of Medicine, United States of America

Received July 3, 2009; Accepted November 30, 2009; Published February 1, 2010

Copyright: � 2010 Mangla et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research has been funded in part by a King Abdullah University of Science and Technology (KAUST) research grant under the KAUST-Stanford
Academic Excellence Alliance program, and by a seed grant from the Stanford University Department of Computer Science. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript. Any opinions, findings, and conclusions or recommendations expressed
in this paper are those of the authors and do not necessarily reflect the views of any of the funders.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: dill@cs.stanford.edu

Introduction

Since reaction rates vary widely both because of the stochastic

nature of interactions at low copy numbers and from diverse and

dynamically changing environmental conditions, cells that grow

and divide robustly in the face of these variations can be expected

to have a competitive advantage over less robust cells. The

principle of robustness to variation in reaction rates can be

exploited to check the accuracy of models, and to narrow the

range of possibilities when incomplete biological knowledge gives

rise to multiple plausible models.

There are a variety of approaches available to define and

evaluate robustness to noise, variation of parameters, and

environmental conditions. One approach is to model the dynamics

of the system with differential equations, and numerically integrate

many times for various values of parameters to compute

trajectories of the various signals in the system. However, this

approach is problematic because there is a lack of detailed

knowledge of quantitative reaction kinetics for most of the

reactions in a cell, and because only a small fraction of the space

of possible parameters can be examined.

Given the lack of quantitative information about reaction

kinetics, a reasonable approach is to use Boolean models, which

represent concentrations of proteins with a few discrete qualitative

levels (strictly interpreted, the term ‘‘Boolean’’ implies variables

can only take two values, but we use it in the more general sense

that allows more than two discrete levels variables). Variations in

reaction rates are reflected in Boolean models as variations in the

timing of transitions between qualitative levels of reactants and

products. The ability of a cell to maintain its function in the

presence of timing perturbations is called timing robustness.

Since the 1960’s [1], the dynamics of Boolean models of

biological control have been based on the synchronous update rule: At

each point in time, all variables that are logically able to change

are updated simultaneously at the next time step. This approach

has yielded many interesting results, but it allows no variation in

timing, and consequently makes examination of timing robustness

impossible. There are many ways to introduce varying amounts of

freedom in the timing of reactions. A model that makes weaker

assumptions about timing is more conservative, in that it is more

likely to violate a given specification than a model with stronger

timing assumptions. For example, the model could allow variables

to change in one or two steps after they are enabled [2,3], or

variables could change within a continuous but bounded window,

as can be specified with timed automata [4], or reactions could be

classified as ‘‘fast’’ and ‘‘slow’’ reactions, with ‘‘fast’’ reactions

occurring (effectively) infinitely faster than slow reactions [5,6].

One of the most conservative models, which we call fully

asynchronous, assumes nothing about the timing of reactions. The

delay of a transition could be any finite time. A system that has a

desired property in a fully asynchronous model is speed-independent.

Speed independence implies timing robustness in most other

PLoS ONE | www.plosone.org 1 February 2010 | Volume 5 | Issue 2 | e8906

plausible models. In particular, if the cell cycle works correctly in

the fully asynchronous model, it also works in a synchronous

model.

This paper explores the timing robustness of several Boolean

models of the cell cycles of budding yeast (S. Cerevisiae) and fission

yeast (S. Pombe). The Boolean model of budding yeast was

published previously, and we derived the fission yeast models from

published differential equations models. To test for timing

robustness, our approach was to begin with a fully asynchronous

model in each case, examine the cases where the models fail to be

robust, and either change the model or introduce additional

constraints on timing (making the model less-than-fully asynchro-

nous) as necessary. Surprisingly, it was not necessary to weaken the

assumption of full asynchrony. With changes that are either

justified from the literature or at least as plausible as the original

model, the cell cycle models could be made fully speed-

independent. These results indicate that (1) the cell cycle is highly

timing-robust, and (2) analyzing models for timing robustness can

generate testable predictions about the details of cell cycle control.

To check for speed independence, we analyze the behavior of

cell cycle models using the asynchronous update rule [7], which allows

at most one variable to change at a time. When multiple variables

are enabled to change, one of them is chosen arbitrarily. The

asynchronous update rule models a system in which the delays are

assumed to be arbitrary – nothing is known about the delays

except that they are finite. In such a model, the system behavior

depends only on the order in which variables change values. The

situation where two signals may transition in the ‘‘wrong order,’’

leading to a disruption of the normal function of the cell, is called a

hazard. If there are no hazards (i.e., if the model satisfies the

specified property for all possible orders of variable transitions,

corresponding to all possible delays), the model is speed-

independent.

The property that a cell successfully completes cell division for

all possible delays was checked using the NuSMV model checker

[8], which systematically explores all of the possible orders in

which variables can change. When this property failed, the cause

of the hazard was diagnosed and the biological literature re-

examined to determine whether revisions to the model could be

justified from biological evidence. In all cases, hazards could be

eliminated by biologically plausible revisions, and in some cases,

these revisions could be considered corrections to the biology in

the model.

Previous work has noted that the synchronous update rules is

unrealistic, and explored the effects of introducing random

variation in the update times [9–11]. Unlike that work, our

speed-independent model has no concept of probability; it answers

whether every possible timing of reactions results in a successful cell

cycle.

Others have used model checking and similar techniques to

explore the state space of biological systems [3,5,12,13]. In

particular, we found previously that Caulobacter Crescentus was

almost speed-independent [6] (in that work, it was necessary to

add a small number of timing constraints to the Caulobacter

model to eliminate all hazards). However, in previous work, timing

robustness appears not to have been used to critique and improve

Boolean models, nor has selection pressure for speed indepen-

dence been demonstrated in silico.

Results and Discussion

Hazards can be detected by the use of software tools, called

model checkers, that check a specified logical property on every

possible state of a Boolean model. Model checking can be used

with a synchronous or asynchronous update rule. Model checking

with asynchronous updating effectively checks the property for all

possible delays by systematically exploring every possible order in

which enabled signals can occur. The inputs to a model checker

consist of a boolean model, described as a set of variables and rules

that modify their values, an initial state, and a logical property to

check.

Timing Robustness of the Budding Yeast Cell Cycle
A simplified Boolean model of the budding yeast cell cycle of

(Figure 1A) was proposed and evaluated with a synchronous

update rule by Li, et al. in 2004 [14]. In this model, nodes are

labeled with protein names. At any given time, each node has a

level representing a qualitative degree of activation of the protein.

The activation state of a protein may represent that it is modified,

forms a complex with other proteins, or is simply present so as to

have an effect on other nodes in the system.

The originally published model had a node, Start, representing

the conditions that initiate transition from the G1 to S phase of the

cell cycle. We removed this node because it does not represent a

real molecule. Instead, the initial state of our model is the same as

G1, except that Cln3 is 1, representing that the cell cycle has just

entered S. NuSMV was used to check the property that, from this

state, the model inevitably leads back to G1, where it halts.

The first hazard is shown in Figure 1B. Cell cycle progression

can reach a state where Cdh1 is enabled to change from 0 to 1 and

Cdc20 is ready to change from 1 to 0. If Cdh1 changes first, the

cell cycle proceeds normally and reaches G1, but, if Cdc20

changes first, Cdh1 stops trying to change, causing the cell cycle to

halt before reaching G1.

The model can be revised to eliminate this hazard by replacing

the self-inhibition of Cdc20 with inhibition of Cdc20 by Cdh1, as

shown in Figure 1C, ensuring that Cdh1 transitions to 1 before

Cdc20 transitions to 0. This change is supported by Huang, et al.

[15], who show that APC-Cdh1 accelerates the degradation of

APC-Cdc20 in vivo.

Continuing to analyze and revise successive models reveals a

series of hazards, each of which can be resolved by small revisions

until a fully hazard-free model is finally obtained. The second

hazard occurs after a transition in Clb5 causes Clb2 to transition

to 1, after which Cdc20 and Mcm1 are both enabled to transition

to 1. If Cdc20 transitions first, Mcm1 can be disabled causing the

cell to exit mitosis without Mcm1 ever going high, causing the cell

cycle potentially to fail to enter G1.

According to the literature [16,17], activation of Clb5 first

causes Clb2 to be transcribed at a low level, which is sufficient to

activate Clb2’s own transcription factors, Mcm1/SFF (represented

as Mcm1 in the model), which then cause Clb2 to be transcribed

at a higher level.

To capture this understanding, the model was revised so that

Clb2 has one of three possible values: 0, representing a negligible

concentration of Clb2; 1, representing a low concentration; and 2,

representing a high concentration. The modeling formalism of Li,

et al. [14] was extended to permit three-valued signals (more

details in Methods). The model was additionally modified so that

Clb2 must be 2 before Cdc20 transitions to 1, eliminating the

hazard by ensuring that Mcm1 transitions to 1 before Clb2

transitions to 2.

The revised model has one more hazard. When Cln3 becomes

1, it enables both MBF and SBF to transition from 0 to 1. But

Cln3 inhibits itself, so it can return to 0 before either SBF or MBF

changes, causing the cell cycle to arrest. The hazard can be

eliminated by replacing self-degradation of Cln3 with inhibition by

SBF and MBF, so that SBF and MBF both must change before

Timing Robustness

PLoS ONE | www.plosone.org 2 February 2010 | Volume 5 | Issue 2 | e8906

Cln3 returns to 0. As observed in Orlando, et al. [18], MBF and

SBF indirectly inhibit Cln3 by activating Yox1 and Yhp1.

With this revision, there are no more hazards. Upon entering

the cell cycle from G1, the cell inevitably returns to G1 for every

possible combination of delays at each of the nodes.

Another Boolean model of budding yeast by Irons appeared

recently [19] that is more complete and introduces more

molecular components. Interestingly this model includes most

of the revisions discussed above, except for the inhibition of

Cdc20 by Cdh1. Analysis of this model using NuSMV with the

asynchronous update rule shows that it suffers from the same

hazard involving Cdc20 and Cdh1 as the model of Li, et al.

shown in Figure 1D. The Irons model has additional hazards

involving the new components that were added beyond the Li

et al. model, and it is unclear how to resolve them because they

have not been extensively discussed in the biological literature.

While a deeper study of hazards in the Irons model would be

merited in the future, the fact that the model has the same issues

as the simpler and more tractable models discussed above

indicates that a simple model can reveal insights into issues that

also occur in more complex models.

Timing Robustness of the Fission Yeast Cell Cycle
The biology of fission yeast is less well documented than that of

budding yeast, making it difficult to provide biological justifica-

tions for revisions based on hazards in the cell cycle. However,

timing robustness can be used to compare models and suggest

possible revisions.

Figure 1. Budding yeast models. Nodes in the graph represent molecules, complexes, etc. Arrows with pointed heads represent activation, and
arrows with bars indicate inhibition. Thin arrows represent a weight of 1/3, normal arrows represent a weight of 1 and thick arrows represent weight
3. (A) The model from Li, et al. [14]. (B) A subset of the model that highlights the first timing hazard. Nodes with values marked with * are enabled to
change. If Cdc20 transitions from 1 to 0 before Cdh1 transitions from 0 to 1, Cdh1 will stay at 0, causing the cell cycle to arrest before it has returned
to G1. (C) The hazard can be eliminated by replacing Cdc20 self-degradation with inhibition of Cdc20 by Cdh1, ensuring that Cdh1 transitions to 1
before Cdc20 transitions to 0. (D) The final speed-independent model for budding yeast.
doi:10.1371/journal.pone.0008906.g001

Timing Robustness

PLoS ONE | www.plosone.org 3 February 2010 | Volume 5 | Issue 2 | e8906

We constructed three Boolean models based on previously

published ODE models. In each case, we started with the ‘‘wiring

diagram’’ presented in the ODE paper, adjusted the edge weights

and made minor changes until the cell cycle worked properly

under the synchronous update rule. The first model was based on

a paper by Sveiczer, et al. in 2000 [20]. Analysis with NuSMV

revealed many hazards involving a hypothetical protein, PP, that

appeared in the model. Revisions to eliminate these hazards

seemed pointless, since there is no biology to refer to. A Boolean

model of fission yeast was published recently [21], also based on

Sveiczer, et al., 2000 but that was similar to the model we

constructed.

We created two other Boolean models based on more recent

papers, published in 2001 and 2004 [22,23], shown in Figure 2.

The 2004 paper has more hazards than the 2001 paper, and fixing

the hazards in the 2004 paper results in a model that is very similar

to that from the 2001 paper. The first hazard from the 2004 model

is that SK can degrade before Cdc2 is produced. This allows Ste9

and Rum1 to reactivate and prevent production of Cdc2, halting

the cell cycle. This hazard can be eliminated by replacing SK self-

inhibition with inhibition of SK by Cdc2, as hypothesized in in the

2001 paper.

Another hazard occurs when Slp1 is 1 and Cdc2 is 1. Then

either Cdc2 can transition to 0 or Cdc2 can degrade SK to 0. If

Cdc2 changes first, SK remains at 1 and the cell cycle arrests. The

hazard can be removed be reducing the weight of the inhibitory

edge from Slp1 to Cdc2 and replacing constitutive Ste9

production with an activating edge from Slp1 to Ste9 [22].

Finally, one hazard occurs in both models. When Slp1 inhibits

Cdc2, causing it to decrease from 2 to 1, Cdc2 is ready to decrease

again to 0. However, Slp1 is also enabled to return to 0 because of

self-inhibition. If Slp1 transitions first, Cdc2 can again transition to

2, leading to a deviation from the cell cycle. Interestingly, Slp1 and

Ste9 are homologous with Cdh1 and Cdc20 in budding yeast, so

this is essentially the same hazard that was detected in several

budding yeast models above. We could fix the hazard by making the

same change that was made in the budding yeast model: replace the

self-inhibition of Slp1 by inhibition of Slp1 by Ste9. In budding

yeast, there was some evidence in the literature for interaction.

Furthermore, similar interaction has been noted in the Xenopus cell

cycle, but no evidence of such an interaction has been noted in

fission yeast [24]. In general, this hazard can be resolved by ensuring

that Slp1 does not return to 0 until Ste9 has transitioned to 1. An

alternative revision with this effect would be to replace self-

inhibition of Slp1 with inhibition from Wee1 or Rum1. We could

find no evidence for or against this possibility in the literature.

Evolutionary Pressure for Timing Robustness
We tested in silico the hypothesis that timing robustness is not an

accidental property, but results from natural selection, by

introducing random mutations. The models were mutated by

deleting, adding, or re-weighting inputs. The mutant networks

were checked under the synchronous update rule using NuSMV, and

those whose cell cycles failed were discarded. The remaining

mutants (called ‘‘viable mutants’’) were further checked for speed

independence using NuSMV under the asynchronous update rule.

The fraction of viable mutants that are speed-independent

declines rapidly as mutations accumulate, as shown in Table 1.

Figure 2. Fission yeast models. (A) Fission yeast model derived from
Sveiczer, et al, 2004 [23]. (B) Revised speed-independent model.
doi:10.1371/journal.pone.0008906.g002

Table 1. In silico mutation results.

Mutation distance
from model

Fraction of viable
mutants that are
speed-independent
in budding yeast

Fraction of viable
mutants that are
speed-independent
in fission yeast

1 0.304 0.202

2 0.216 0.102

3 0.174 0.084

4 0.094 0.056

5 0.062 0.066

6 0.058 0.044

From one to six random mutations were simulated in each model 500 times.
Mutants were considered viable if they correctly completed their cell cycles
when analyzed with a synchronous update rule. However, mutations tended to
reduce timing robustness even in the viable mutants, indicating that timing
robustness is maintained by selection.
doi:10.1371/journal.pone.0008906.t001

Timing Robustness

PLoS ONE | www.plosone.org 4 February 2010 | Volume 5 | Issue 2 | e8906

From this experiment, it appears that speed-independence is a

fragile property that is easily destroyed by random mutations even

in cells that are otherwise viable. It is therefore reasonable to

conclude that the property is maintained by selection pressure.

Other Notions of Robustness
Robustness, the ability of a system to maintain a function in the

presence of perturbations, has been an important theme in systems

biology for many years [25]. Different classes of perturbations

yield different notions of robustness.

One perturbation is a change of the system state. This leads to

one of the notions of robustness explored by the paper by Li, et al.

[14]. In that paper, robustness is measured by the size of the

‘‘basin of attraction’’ of G1 (i.e., the set of states which, if the

system is started in them, cause it to progress to G1). This notion of

robustness is unrelated to timing robustness, and difficult to

transfer to asynchronous systems. The definition of the basin of

attraction in Boolean systems depends on a state determining a

trajectory to a unique attractor. In an asynchronous system, there

are usually many trajectories out of any state that visit various

attractors.

Another type of robustness is robustness to mutations. One

question that has been examined is the relationship between

robustness to mutations and evolvability [25–27]. Interestingly,

our simulation of mutations produces the seemingly opposing

result that timing robustness is not itself robust to mutations – from

which we conclude that it is a property that must be actively

maintained by evolution. However, this observation does not

necessarily imply that speed independent systems are not robust to

mutations. First, timing robustness probably should not be

considered a ‘‘function,’’ since a reduction in timing robustness

may only change the phenotype of the organism with a small

probability. More importantly, timing robustness may also imply

mutation robustness because timing robustness depends only on

the ‘‘wiring diagram’’ and the logical combinations of input signals

at each node. So, a timing-robust organism may freely vary

reaction rates without compromising function, allowing evolution

to fine-tune and optimize functions smoothly. For example,

reaction rates could be freely varied to maximize the speed of

the cell cycle or to maximize energy efficiency while preserving the

correct function of the cell cycle.

Are Real Cells Speed-Independent?
There are reasons to suspect that real cells are not quite as

timing-robust as the models here seem to suggest. Speed

independence may have a cost in time and energy, making it

disadvantageous when reactions operate on such different time

scales that hazards are unlikely. We conjecture that the observed

speed-independence results in part from the simplified represen-

tations of the cell cycle models analyzed here, and that more

detailed cell cycle models would probably exhibit strong timing

robustness while not being completely speed-independent. A

reasonable less conservative model would allow for qualitatively

different delays [5,6,9]. A less conservative model would also allow

the possibility that the cell cycle would be fully or partially intact

when genes are knocked out, a property of actual cells [18]. It will

be possible to answer more of the many open questions about

timing robustness as additional details about the regulation of the

cell cycle and other cellular processes are discovered.

Methods

Many of the Boolean networks from the literature are threshold

networks [11]. Each node can have a 0 or 1 value, and the value of a

node when it is next updated is one if the sum of positive inputs minus

the of negative inputs exceeds a constant threshold for that node. In

analyzing and modifying these models, we found it to be necessary to

extend threshold networks to handle more than two values.

Nodes have kz1 levels of activation, 0 . . . k, where 0 represents

a functionally inactive level and k represents maximum activity.

Three levels were sufficient for all of the networks appearing here.

Each node has a specified threshold between each successive

activation level, and each node input has an associated real-valued

weight representing the strength of the reaction on the node.

Formally, a Boolean network is defined to have a set of N nodes

associated with proteins. Each node has a set of inputs, which are

other nodes. Each input also has an input weight, wij . In the

networks here, only three magnitudes of weights are required:

+
1

3
, +1, and +3. Inputs with positive weights are activating and

inputs with negative weights are inhibiting. Each node i has

thresholds hi1vhi2v . . . vhik. The weighted sum of the inputs to

a node are compared with these thresholds to determine whether

the node level is enabled to increase or decrease. In the networks

here, hi1~:5 and hi2~1:5 for all nodes.

The network can be depicted as a directed graph. Nodes are

labeled circles, and lines with arrowheads (for activating inputs) or

flat ends (for inhibiting inputs) represent the inputs to nodes. The

thickness of the line represents the weight on that input.

The dynamics of a network are represented as a Kripke structure,

which is a directed graph of states, where each state consists of an

assignment of a value of 0 to k to each node in the network. The

Kripke structure has edges from each state to one or more successor

states; these edges represent possible ways that the states can

change over time. The Kripke structure is deterministic if each state

has exactly one successor. If one or more states have multiple

successors, the Kripke structure is nondeterministic. The Kripke

structure also has a designated initial state, which represents a state

in which the network can start. The Kripke structure is completely

defined by the network and an initial state.

Every possible assignment of values to nodes is a state in the

Kripke structure. To define the successors of a state S, we first

define the next value, S’i, for a node i (intuitively the next value is a

value that the node will have when next updated, if nothing else

changes). S’i depends on how the weighted sum of inputs to a node

compares with thresholds for the node.

Then, the next value can be defined for each node, given a state

S, as:

S’i~

Si{1 if S1 ƒ j ƒ N wij Sj v hi,Si

Siz1 if S1 ƒ j ƒ N wij Sj § hi,Siz1

Si otherwise:

8><
>:

Once the next value of each node is defined, the set of successor

states depends on what update rule is used. The synchronous update rule

that was used in much past work defines a single successor of each

state S in which each node is given its next value. Intuitively, every

node is updated as soon as it can be, and all such nodes are

updated simultaneously. Using the synchronous update rule results

in a deterministic Kripke structure.

The asynchronous update rule specifies that each successor state to S
has at most one node updated to its next value (it is always possible

that no nodes are updated, in other words, S is always a successor

of itself). Intuitively, a particular node is chosen arbitrarily for

updating. This represents a model with no timing constraints.

When , node i is said to be enabled. Using the asynchronous update

rule, any node that is enabled may change after an arbitrary delay

(but only one such node may change at a time). Any state that has

Timing Robustness

PLoS ONE | www.plosone.org 5 February 2010 | Volume 5 | Issue 2 | e8906

at least one enabled node has multiple successor states, so the

Kripke structure is nondeterministic.

NuSMV
Network behavior (under the synchronous and asynchronous

update rules) was analyzed using a symbolic model checking tool,

NuSMV, to test the robustness of the cell cycle model [8]. NuSMV

explores the paths of states starting from the initial state to check a

specific property of interest.

The theory and algorithms in NuSMV are the results of several

decades of research published in many books and papers, so we

cannot explain them in depth. In brief, NuSMV is able to check

dynamic properties of finite-state systems for infinitely many

possible variations in inputs or internal non-deterministic choices

by exhaustively searching the finite states of the system for

individual states or loops that violate the property. NuSMV has

several alternative implementations for searching the state of

states. We used the implementation based on Boolean decision

diagrams (BDDs), a data structure that can be used to explore

large state sets relatively quickly (however, the models of the cell

cycle only have a few thousand states, so any reasonable

implementation of model checking should work well on them).

NuSMV has an input language, similar to a programming

language, for describing the system to be checked. Descriptions in

the language consist of a set of state variables ranging over discrete

sets of values, along with rules that update those variables based on

the previous state. These rules can be non-deterministic, meaning

that state variables can be updated to several alternative values, in

which case NuSMV will check the property for all of those

possibilities. The NuSMV input language is naturally synchronous:

time is divided into steps, and all variables are updated on each step.

However, asynchronous updating can be encoded in NuSMV by

exploiting non-determinism. Each reaction in SMV was coded as a

separate rule updating its reactants and products. To implement the

asynchronous update rule, an additional control variable was added

to the rule, along with logic that only allows the rule to update if the

control variable is set to a particular value that triggers that rule. At

each time step, a value is non-deterministically chosen for the

control variable, so at most one rule can fire at a time. To

implement the synchronous update rule, the control variables are

omitted from the rules so that all of them update simultaneously.

The property is written in NuSMV’s logical specification

language, CTL. It requires that the cell inevitably reach G1 for

all of the sequences of states that occur with the chosen update

rule. This property is violated if the cell cycle halts in some other

state or continues without reaching G1. For the budding yeast

models, G1 is considered to be the state where Sic1 and Cdh1 are

1 and all other variables are 0, and the initial state is the same

except Cln3 is also 1. For fission yeast, G1 is taken to be the state

where Wee1, Ste9 and Rum1 are 1 and all other variables are 0,

and the initial state is the same except SK is also 1. We have also

checked the more stringent (and complex) properties that the cell

progresses through the correct sequence of stages as it progresses

to G1. The models are not detailed enough to specify many

intermediate states, but, in budding yeast, Clb5 is associated with

DNA replication and Clb2 is associated with mitosis. In the final

budding yeast model, as expected, a property requiring that the

Clb5 go to 1 before Clb2 goes to 1, before finally returning to G1,

holds for all possibly reaction delays. The final fission yeast model

is even smaller than the budding yeast model, but we can check

that Cdc2, the main driver protein causes both replication and

mitosis, reaches its highest level.

The source descriptions of the models and a translator to

generate NuSMV descriptions from them are available at http://

verify.stanford.edu/TimingRobustnessInYeast.html. NuSMV is a

widely-used open source system that can easily found by searching

the Web.

Mutation Simulation
To test whether there is selection pressure on the cells to be

speed-independent, the speed-independent models for both

budding yeast and fission yeast were mutated in silico. The

mutations were chosen by first choosing, with probability
1

3
,

whether to add an input, delete an input, or re-weight an input. If

the decision was to add an input, nodes i and j were chosen

with equal probability and node i was added as an input to j

with a non-zero weight chosen with equal probability from

f+ 1

3
,+1,+3g. If the decision was to delete in input, a pair of

nodes i and j were chosen with equal probability, where i was an

input to j, and i was deleted from the set of inputs of j. If re-

weighting was chosen, an input was selected at random and the

weight was changed with equal probability from f+ 1

3
,+1,+3g,

excluding the current input weight.

Mutations were performed in a series of steps. At each step,

mutants were checked with NuSMV, using the CTL properties

above, but with a synchronous update rule. Mutants that failed this

test were considered ‘‘non-viable’’ and discarded. The viable

mutants were further checked using NuSMV and the asynchronous

update rule to discover the proportion that were speed-

independent. 500 viable mutants were generated at each mutation

step, from 1 to 6 steps.

Author Contributions

Conceived and designed the experiments: KM DLD MAH. Performed the

experiments: KM. Analyzed the data: KM. Wrote the paper: KM DLD

MAH.

References

1. Kauffman S (1969) Metabolic stability and epigenesis in randomly constructed

genetic nets. J Theor Biol 22: 437–67.

2. Fisher J, Piterman N, Hajnal A, Henzinger T (2007) Predictive modeling of

signaling crosstalk during C. elegans vulval development. PLoS Computational

Biology 3: e92.

3. Fisher J, Henzinger T, Mateescu M, Piterman N (2008) Bounded Asynchrony:

Concurrency for Modeling Cell-Cell Interactions. Lecture Notes in Computer

Science 5054: 17.

4. Alur R, Dill D (1994) A theory of timed automata. Theoretical Computer

Science 126: 183–235.

5. Faure A, Naldi A, Chaouiya C, Thieffry D (2006) Dynamical analysis of a

generic Boolean model for the control of the mammalian cell cycle.

Bioinformatics 22.

6. Shen X, Collier J, Dill D, Shapiro L, Horowitz M, et al. (2008) Architecture and

inherent robustness of a bacterial cell-cycle control system. Proc Natl Acad

Sci U S A 105: 11340.

7. Thomas R (1973) Boolean formalization of genetic control circuits. J Theor Biol

42: 563–85.

8. Cimatti A, Clarke E, Giunchiglia E, Giunchiglia F, Pistore M, et al. (2002) NuSMV

Version 2: An OpenSource Tool for Symbolic Model Checking. In: Goos G,

Hartmanis J, van Leeuwen J, eds. Computer-Aided Verification. Copenhagen:

Springer. pp 359–364.

9. Chaves M, Albert R, Sontag E (2005) Robustness and fragility of Boolean

models for genetic regulatory networks. J Theor Biol 235: 431–449.

10. Braunewell S, Bornholdt S (2007) Superstability of the yeast cell-cycle dynamics:

Ensuring causality in the presence of biochemical stochasticity. J Theor Biol 245:

638–643.

11. Bornholdt S (2008) Boolean network models of cellular regulation: prospects and

limitations. J R Soc Interface 5: 85–94.

12. Fages F, Soliman S, Chabrier-Rivier N (2004) Modelling and querying

interaction networks in the biochemical abstract machine BIOCHAM. J Biol

Physics Chem 4: 64–73.

Timing Robustness

PLoS ONE | www.plosone.org 6 February 2010 | Volume 5 | Issue 2 | e8906

13. Garg A, Di Cara A, Xenarios I, Mendoza L, De Micheli G (2008) Synchronous

versus asynchronous modeling of gene regulatory networks. Bioinformatics 24:

1917.

14. Li F, Long T, Lu Y, Ouyang Q, Tang C (2004) The yeast cell-cycle network is

robustly designed. Proc Natl Acad Sci U S A 101: 4781–4786.

15. Huang JN, Park I, Ellingson E, Littlepage LE, Pellman D (2001) Activity of the

APCCdh1 form of the anaphase-promoting complex persists until S phase and

prevents the premature expression of Cdc20p. J Cell Biol 154: 85–94.

16. Amon A, Tyers M, Futcher B, Nasmyth K (1993) Mechanisms that help the

yeast cell cycle clock tick: G2 cyclins transcriptionally activate G2 cyclins and

repress G1 cyclins. Cell 74: 993–1007.

17. Maher M, Cong F, Kindelberger D, Nasmyth K, Dalton S (1995) Cell cycle-

regulated transcription of the CLB2 gene is dependent on Mcm1 and a ternary

complex factor. Mol Cell Biol 15: 3129–3137.

18. Orlando DA, Lin CY, Bernard A, Wang JY, Socolar JES, et al. (2008) Global

control of cell-cycle transcription by coupled cdk and network oscillators. Nature

453: 944–947.

19. Irons D (2009) Logical analysis of the budding yeast cell cycle. J Theor Biol 257:

543–559.
20. Sveiczer A, Csikasz-Nagy A, Gyorffy B, Tyson JJ, Novak B (2000) Modeling the

fission yeast cell cycle: Quantized cycle times in wee1-cdc25D mutant cells. Proc

Natl Acad Sci U S A 97: 7865–7870.
21. Davidich MI, Bornholdt S (2008) Boolean network model predicts cell cycle

sequence of fission yeast. PLoS ONE 3: e1672.
22. Novak B, Pataki Z, Ciliberto A, Tyson JJ (2001) Mathematical model of the cell

division cycle of fission yeast. Chaos 11: 277–286.

23. Sveiczer A, Tyson JJ, Novak B (2004) Modeling the fission yeast cell cycle. Brief
Funct Genomic Proteomic 2: 298–307.

24. Pfleger CM, Kirschner MW (2000) The KEN box: an APC recognition signal
distinct from the D box targeted by Cdh1. Genes Dev 14: 655–665.

25. Kitano H (2004) Biological robustness. Nature Reviews Genetics 5: 826–837.
26. Wagner A (2005) Robustness, evolvability, and neutrality. FEBS letters 579:

1772–1778.

27. Lenski R, Barrick J, Ofria C (2006) Balancing robustness and evolvability. PLoS
Biol 4: e428.

Timing Robustness

PLoS ONE | www.plosone.org 7 February 2010 | Volume 5 | Issue 2 | e8906

