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Abstract

Appropriate monitoring of the depth of anaesthesia is crucial to prevent deleterious effects of insufficient anaesthesia on
surgical patients. Since cardiovascular parameters and motor response testing may fail to display awareness during surgery,
attempts are made to utilise alterations in brain activity as reliable markers of the anaesthetic state. Here we present a novel,
promising approach for anaesthesia monitoring, basing on recurrence quantification analysis (RQA) of EEG recordings. This
nonlinear time series analysis technique separates consciousness from unconsciousness during both remifentanil/
sevoflurane and remifentanil/propofol anaesthesia with an overall prediction probability of more than 85%, when applied to
spontaneous one-channel EEG activity in surgical patients.
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Introduction

In today’s clinical practice, routine monitoring of general

anaesthesia is based mainly on cardiovascular parameters and motor

responses. If surgical stimulation provokes neither movement, nor an

increase in heart rate or blood pressure, it is assumed that the

anaesthesia is sufficient. However, during neuromuscular blockade, in

the presence of beta-blockers, or in patients who only tolerate ‘light

levels’ of anaesthesia, these clinical parameters may fail to reliably

monitor the depth of anaesthesia. Despite the stability of these

parameters, patients may become conscious during surgery, poten-

tially leading to explicit memory of words spoken in the operating

room, discomfort, or pain. In addition, if the central processing of

stimuli is not sufficiently blocked, implicit memories may be acquired

via auditory or other sensory input under general anaesthesia. Possible

consequences of intraoperative awareness include nightmares, or even

symptoms of a posttraumatic stress disorder [1].

As recently suggested by us [2,3] and others [4], RQA of EEG

recordings appears to be a highly promising tool for monitoring

the depth of anaesthesia. One of the basic requirements for

monitoring the hypnotic level of anaesthesia is the ability to

separate consciousness from unconsciousness. The present analysis

was performed to assess the ability of RQA to separate between

consciousness and unconsciousness at the transition between these

clinical stages.

Methods

RQA was applied to EEG data from two clinical studies

comprising 40 patients each (study I and study II). In both studies,

patients were randomly assigned to receive either remifentanil/

sevoflurane or remifentanil/propofol anaesthesia. In 30 s intervals,

patients were asked to squeeze the investigator’s hand. Anaesthesia

was slowly induced until patients stopped following this command

(first loss of consciousness, LOC 1). Subsequently, anaesthetic

concentrations were increased to reach an appropriate level of

anaesthesia for intubation. The isolated forearm technique [5] was

used to maintain the patient’s ability to follow commands, and

succinylcholine was given to facilitate endotracheal intubation.

After intubation, propofol or sevoflurane administration was

stopped until the patients followed commands again (first return

of consciousness, ROC 1). Propofol or sevoflurane concentrations

were increased, until the patients stopped squeezing the hand

(second loss of consciousness, LOC 2), and surgery was performed.

At the end of the surgical procedure, remifentanil and sevoflurane

or propofol were discontinued and patients were assessed again for

their ability to squeeze a hand on command (second return of

consciousness, ROC 2).

A single-channel EEG was recorded from an electrode at the

left temporal region (between the lateral edge of the eye and the

upper edge of the ear, AT1) and referenced at Fpz (with the

ground electrode at Fp1). The sampling frequency of the EEG

data in study I was 250 Hz. No low pass was used and the notch

filter (50 Hz) was enabled. The sampling frequency of the data

in study II was 1 kHz, digitized with 12 bit amplitude

resolution. To achieve equal sample rates, the EEG data from

study II were resampled offline at 250 Hz, after low-pass

filtering at 125 Hz. From both studies, data were selected from

LOC (1 and 2) as well as from ROC (1 and 2) for analysis. All

analyzed data segments were 30 s long, comprising the last 30 s
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before the last unanswered command (LOC, unconsciousness),

and the first 30 s after the first answer to command (ROC,

consciousness), respectively.

EEG Data Analysis
The recorded EEGs were analyzed by RQA. RQA is a

nonlinear time series analysis technique developed by J. P. Zbilut

and C. Webber [6] on the basis of previous research from J. P.

Eckmann and colleagues [7]. RQA quantifies the number and

duration of recurrences of a dynamical system presented by its

phase space trajectory. Compared to other techniques of

nonlinear signal analysis it has the advantage that it requires no

assumptions, on stationarity or linearity, concerning the analyzed

data [8]. Amongst other parameters, RQA evaluates the

determinism D of a time series, which has been shown to be a

highly sensitive measure of predictability (regularity) [6,8].

Mathematically, D is defined as the percentage of recurrence

points, which are placed along diagonal lines of minimal length

lmin in the recurrence plot of the investigated dynamical system. A

value of D approaching 100% indicates almost perfect predict-

ability, e.g. a straight line; a value approaching 0% indicates the

absence of almost any predictability, e.g. Gaussian white noise.

For EEG analysis we defined the complexity C as an inverse

function of D:

C~{20:log Dð Þ ð1Þ

According to (1) high values of C indicate that an EEG is highly

irregular (‘chaotic’), low values indicate that it contains a certain

amount of repetitive structures and thus is predictable to a certain

extent. We performed RQA in non-overlapping time windows,

each 5 s (1250 sample points) wide (windowed RQA [8]). From six

consecutively calculated values of C we only used the largest value

Cmax for generating a single prediction value by comparison of

Cmax with a fixed threshold CT. Thus, one prediction value p was

generated per 30 s interval (Figure 1).

RQA requires the specification of four preset parameters: a) An

appropriate embedding dimension m b) A time lag t for

appropriate time-delay embedding of the EEG data according to

Taken’s theorem [9]. c) A value rmax, describing the radius of the

sphere in which radius neighboured phase space locations are

assumed to be recurrent. rmax was always scaled to the highest

occurring distance in phase space for the current data segment. d)

The minimal length lmin of the left-upward diagonals in the

recurrence diagram were taken into account for the calculation of

D [6]. Unlike Zbilut and Webber [6], we used a Manhattan (City-

block) metric for calculating phase space distances, i.e. the phase

space distances were calculated as:

d x,yð Þ~
Xm

i~1

xi{yij j ð2Þ

d: distance between to vectors x and y, m: embedding dimension.

Compared to Euclidean metrics (L2-norm), city-block metric

(L1-norm) reveals more information about the local behaviour of

recurrences [10]. Furthermore, it is computationally more

efficient, whilst being more robust in its significance, with respect

to an increase in recurrence numbers [10].

Optimization of RQA Parameters-Assessment of RQA
Results

We employed a box bounded global mixed-integer optimization

algorithm [11] to determine best possible values for the RQA

parameters m, t, rmax, and lmin with respect to an optimal prediction

probability pk for the ‘awake’ state using a training procedure.

Mixed integer optimization uses a special algorithm, which enables

the optimization variables to be fixed to discrete values as is

Figure 1. Principle of analysis. 5 s long successive data segments
are analyzed by RQA yielding complexity values C1…Cn. From 6
consecutive Ci’s, the largest values Cmax are compared with a threshold
CT to generate the decision values pi for making a conscious/
unconscious decision.
doi:10.1371/journal.pone.0008876.g001

Table 1. Optimization of RQA parameters.

N
RQA parameters as determined in 5 training runs, each using one randomly selected third of
the ROC’s of study I.

p
k

for complete study I
(ROC + LOC)

m t [ms] rmax [%] lmin [ms] pk

1 3 16 70 20 0.88 0.86

2 3 4 66 24 1.0 0.84

3 6 4 55 12 0.87 0.82

4 2 20 70 20 0.96 0.84

5 3 4 57 32 0.91 0.83

RQA parameters were optimized using 5 sets of training data, each comprising one randomly selected third of the ROC events in study I each. The parameter
combination used for further evaluation is printed in bold.
doi:10.1371/journal.pone.0008876.t001
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required for the embedding dimension m. Pk describes the

correlation between an anaesthetic depth indicator value and

observed anaesthetic depth. It has a value of 1 when the indicator

predicts observed anaesthetic depth perfectly and a value of 0.5

when the indicator predicts no better than a 50:50 chance [12].

For two-state systems, such as the regarded conscious/unconscious

decisions, pk is equal to the area under the receiver-operator

characteristics (roc) curve [12–13]. The numerical parameter

range in which numerical optimization was performed was 1 to 25

for m, 4 to 200 ms for t, 1 to 75% for rmax, and 4 to 400 ms for lmin.

For training the algorithm, we used five different data subsets

taken from study 1. Each of the training data subsets comprised

one randomly selected third of the ROC events contained in

study. The length of the training segments always was 30 s,

comprising the values from the last 30 s before the last unanswered

command (LOC, unconsciousness), and the first 30 s after the first

answer to command (ROC, consciousness), respectively. The

parameter values obtained in the five optimization runs varied

between 2 and 6 for m, between 4 ms and 20 ms for t, between

55% and 70% for rmax, and between 12 ms and 32 ms for lmin.

As two signals were analyzed at every clinical event LOC1,

LOC2, ROC1, and ROC2, a maximum of 320 signals was

available from studies I and II. The signals are situated either

completely in a phase of consciousness or in a phase of

unconsciousness. For study I, 282 signals and for study II 302

signals were used for pk analysis. Thus 38 signals were excluded

from study I and 18 signals were excluded from study II. These

signals contained artefacts expressed by signals of constant

amplitude (flat line), values exceeding the measuring range of

250 mV, or were not of sufficient length.

Results

Training of the Algorithm
Table 1 shows the prediction probabilities obtained in the

five training runs performed with different randomly selected

data subsets taken from study 1. Obviously, the combination

m = 3, t = 16 ms, rmax = 70%, and lmin = 20 ms yielded the

highest pk (0.8660.023, errors are always specified as standard

error with non-parametric assumptions), if applied to the entire

study I, i.e. to all 282 considered LOC/ROC and ROC/LOC

transitions (Table 1). We therefore decided to use this

parameter set for all further evaluations of the ability of RQA

to separate consciousness from unconsciousness by means of

studies 1 and 2.

Prediction Probabilities
The achieved prediction probability for the complete study I

was 0.8660.023 (ROC + LOC). For this evaluation ROC and

LOC transitions were pooled and one common pk was calculated.

In two further calculations we considered only the ROC

transitions or only the LOC transitions of the study, respectively.

Considering only the ROC events resulted in a higher value

(0.8960.029), considering only the LOC events yielded a lower

value (0.8360.037) than that obtained if ROC and LOC events

were pooled (Figure 2).

Our results were verified by means of study II. For this

evaluation no modifications to the algorithm or to the RQA

parameters as determined from study 1 were made. We obtained a

pk of 0.8660.022 (ROC and LOC events), notably, this was

identical to the pk obtained from study I. As in study I, ROC and

LOC transitions were pooled and a common pk was obtained.

Again, we found the pk was higher when considering only the

ROC events (0.9360.020) and lower (0.7760.039) when consid-

ering only the LOC events (Figure 2).

Figure 2. Complexities C and prediction probabilities pk obtained by RQA of the wake-sleep (LOC) or sleep-wake (ROC) transitions
from studies I and II.
doi:10.1371/journal.pone.0008876.g002

Table 2. Verification of the algorithm by means of study II.

m t [ms] rmax [%] lmin [ms] pk (ROC + LOC)

1 3 16 70 20 0.86

2 3 4 66 24 0.78

3 6 4 55 12 0.81

4 2 20 70 20 0.82

5 3 4 57 32 0.81

As in study I the parameter combination m = 3, t = 16 ms, rmax = 70%, and
lmin = 20 ms gave the highest pk.
doi:10.1371/journal.pone.0008876.t002
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Additionally, we tested the other four RQA parameter sets,

determined in the five training runs (Table 1) by means of study

II. Consistently, the pk values obtained with these parameter sets

were all lower than the pk values obtained with the parameter set

found optimal for study I (Table 2). Thus, the results obtained

from study II are remarkably close to those obtained from study I.

This clearly demonstrates that no over-fitting occurred during the

training procedure.

Homogeneity of the Data
To test if the quality of our EEG data is homogeneous, or if it

might suffer from outliers, we repetitively drew random samples

from studies I and II, consisting of 10 transition (ROC or LOC)

events each. This procedure was repeated 1000 times, resulting in

10000 randomly composed data subsets for each study. For all of

these subsets we determined the according pk values and binned

the results into a histogram. As is obvious from Figure 3, the pk

values were strictly normal distributed for both studies

(p = 0.88660.005 for study I and p = 0.89060.004 for study II,

Kolmogorov-Smirnov Test), suggesting that the quality of the

EEG data in studies I and II is not critically suffering from outliers.

Specificity and Sensitivity
To determine cut-off values CT for C which would allow a best

possible decision between consciousness and unconsciousness, we

calculated roc-curves for studies I and II, illustrating the

relationship between sensitivity and specificity for given values of

CT [13] (Figure 4, Table 3). Considering ROC and LOC events

together, a sensitivity of about 0.90 is achieved with a specificity of

about 0.56 (for study I, as well as for study II). For the ROC events

alone, a sensitivity of 0.90 corresponds to a clearly improved

specificity of about 0.68 (study I) or 0.8 (study II).

Discussion

Our results support the view that monitoring of the activity of

the main target organ of general anaesthetics, i.e., the brain, may

provide a method to assess the level of consciousness. The

obtained pk value of .0.85 reflects an encouraging result for the

analysed challenging data sets.

Selection of a 30 s period immediately preceding LOC or

following ROC provides data, which are very close to each other

in terms of not only time but also clinical status. As a consequence,

we showed that RQA of the EEG is a method to separate ‘just

unconscious’ from ‘just conscious’. The same data sets were

presented to different monitors, the majority of which separated

consciousness from unconsciousness with considerably lower pk

values (0.5–0.8) [14–17]. So far, the best results have been

obtained by the GE Entropy module, which analyses spectral

entropy of the EEG, i.e., also a parameter of irregularity. As both

entropy and RQA quantify the degree of regularity in the EEG

signal, this may be a strong indication of an increase of EEG

regularity as a general mechanism underlying anaesthesia-induced

unconsciousness.

Figure 3. Homogeneity test. 1000 random samples comprising 10
ROC or LOC events each were drawn from studies I and II respectively.
The figure shows a histogram of the pk values calculated from these
subsamples.
doi:10.1371/journal.pone.0008876.g003

Figure 4. Roc-curves describing the relation between sensitivity and specificity of conscious/unconscious decisions using different
threshold values CT.
doi:10.1371/journal.pone.0008876.g004
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The cut-off values CT slightly differed between study I and II. A

sensitivity of 0.9 corresponds to a CT of 0.0325 in study I, and to a

CT of 0.0235 in study II (Table 3). This may be because the

complexity values obtained from study II were generally larger

than those obtained from study I (Figure 2). This is probably due

to differences in the EEG-amplifiers that were used in the study.

A potential limitation of the present approach may be the

selection of the maximum complexity value from a 30 s interval. If

implemented in a monitor, this approach could produce a delay of

up to 30 s before the state of consciousness is correctly indicated.

This 30 s delay reflects a critical time interval. As Dutton et al.

(1995) showed, the risk of postoperative recall increases, if patients

are intraoperatively awake for more than 30 s. [18].

In this regard, consciousness (or wakefulness) during anaesthesia

may be seen as an early warning sign of possible awareness with or

without implicit or explicit recall. Therefore, the present study was

designed to separate consciousness from unconsciousness. Con-

sciousness was defined as an adequate response to a particular

command. This reflects an intact working memory. The working

(or short-term memory) spans a short time interval (approx. 30 s)

and contains everything an individual thinks or perceives. After

processing in the working memory, contents may either be

forgotten or stored and form conscious (explicit) or unconscious

(implicit) memory [19]. As a consequence, prevention of

consciousness will prevent formation of both implicit and explicit

memory.

Currently, available monitors require even longer time intervals

before they reflect a change in the level of anaesthesia as indicated

by changes of the EEG [16]. However, we expect that with higher

sampled EEG data (1 kHz or above), combined with further

improvements in the algorithm, shorter response times ,10 s may

become possible.

A potential limitation of the approach is that the analysis also

includes high frequency components of the EEG signal.

Particularly if electrodes are placed on the forehead, high

frequency EEG signals may be contaminated with an electro-

myogram (EMG) of the frontal muscle, which is in the same

frequency range and has higher amplitudes. As a consequence,

analysis may be based on (unspecific) EMG rather than (specific)

EEG. It has been shown for the EEG bispectral index (BIS), that

with such an approach a patient who is fully awake but

paralyzed may be classified as unconscious, because high

frequency signals are diminished or blocked by neuromuscular

blockade [20].

The selection of a maximum within a 30 s. interval may induce

a bias towards higher values indicating ‘consciousness’. This may

increase RQA values before LOC and after ROC (towards

consciousness values). Conversely, results from ‘‘unconsciousness’’

should also be biased towards higher values in this case and,

therefore, the overall statistical result should remain nearly

unchanged.

Unfortunately, it is almost impossible to measure the brain

concentration of an anaesthetic drug. Therefore, it is extremely

difficult to test whether a parameter reflects a certain drug

concentration in the brain. On the other hand, loss and return

of consciousness are clinically relevant measures of the main

effect of anaesthetic drugs, which can readily be assessed. Our

study showed that RQA can be a useful measure of this main

effect of general anaesthesia for both propofol and sevoflurane.

In a test with two independently acquired EEG studies we

achieved an overall prediction probability pk of .0.85. This

value is considerable better than the pk’s obtained with devices

being presently commercially distributed [14–15]. The de-

scribed RQA-based algorithm is easily implemented on a

modern personal computer in real-time. Thus, our study opens

a new avenue for the development of improved future

anaesthesia monitoring devices.
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