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Abstract

A potential strategy for diagnosing lung cancer, the leading cause of cancer-related death, is to identify metabolic
signatures (biomarkers) of the disease. Although data supports the hypothesis that volatile compounds can be detected in
the breath of lung cancer patients by the sense of smell or through bioanalytical techniques, analysis of breath samples is
cumbersome and technically challenging, thus limiting its applicability. The hypothesis explored here is that variations in
small molecular weight volatile organic compounds (‘‘odorants’’) in urine could be used as biomarkers for lung cancer. To
demonstrate the presence and chemical structures of volatile biomarkers, we studied mouse olfactory-guided behavior and
metabolomics of volatile constituents of urine. Sensor mice could be trained to discriminate between odors of mice with
and without experimental tumors demonstrating that volatile odorants are sufficient to identify tumor-bearing mice.
Consistent with this result, chemical analyses of urinary volatiles demonstrated that the amounts of several compounds
were dramatically different between tumor and control mice. Using principal component analysis and supervised machine-
learning, we accurately discriminated between tumor and control groups, a result that was cross validated with novel
test groups. Although there were shared differences between experimental and control animals in the two tumor models,
we also found chemical differences between these models, demonstrating tumor-based specificity. The success of these
studies provides a novel proof-of-principle demonstration of lung tumor diagnosis through urinary volatile odorants. This
work should provide an impetus for similar searches for volatile diagnostic biomarkers in the urine of human lung cancer
patients.
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Introduction

Lung cancer is the leading cause of cancer-related deaths

throughout most of the world [1]. The only treatment that that

achieves a high rate of cure is surgical resection of early disease

(before metastatic spread occurs). Since only about 25% of cases

are diagnosed at this early stage, effective early diagnostic

techniques are urgently needed.

Aggressive and early chest imaging of high risk patients is

emerging as the dominant approach to early diagnosis, although

large studies to validate this approach are still ongoing [2,3,4].

Unfortunately, although imaging is quite sensitive, it is also

relatively non-specific. Recent studies have shown that between

5–26% of high risk smoking patients have detectable lung nodules

by CT screening, however only an average of about 4% (with a

range of 2–11%) of these nodules are malignant [5]. Clearly

surgical resection of all of these nodules is neither practical nor

desirable. Approaches to determine which nodules should be

removed are thus needed. One attractive strategy would be to

combine a sensitive imaging technique with a biomarker of lung

cancer to increase specificity [6,7,8]. Because the incidence of lung

cancer in this ‘‘nodule population’’ is significantly higher than in

current or former smoking populations, biomarkers in this context

would not require the extremely high sensitivities and specificities

needed for population screening. Another use for such a

biomarker might be to follow the course of the tumor after

treatment.

With the development of high-throughput techniques for

biomarker discovery [9], the field of lung cancer biomarkers has

recently expanded substantially. Current biomarker candidates

from blood, sputum, and urine include many classes of molecules

including proteins, tumor antigens, anti-tumor antibodies, cell
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type-specific peptides, various metabolic products, and epigenetic

phenomena such as hyper-methylated DNA, RNA, and specific

gene expression [10]. However, no biomarker identified to date

has been shown to have adequate sensitivity, specificity and

reproducibility to be considered sufficient for use to detect and

monitor lung cancer development.

Another class of biomarkers for lung cancer could be small

molecular weight volatile organic compounds. These molecules,

which can be perceived as odors (especially by animals), have been

shown to function as ‘‘signatures’’ that convey social, emotional

and health information to other members of the species [11].

There might be two sources of volatile markers in lung cancer

patients. Studies have shown that lung cancer cell lines can release

specific volatile organic compounds in vitro [12]. The presence of a

growing tumor could also induce specific metabolic or nutritional

changes that could alter the production or release of such

compounds [6].

The ‘‘volatile hypothesis’’ for lung cancer has led to a number of

studies examining the utility of analyzing these compounds in

exhaled breath using either animals (such as dogs) [13] or

sophisticated biochemical techniques [14,15]. Some of these

studies have shown promise. For example, a recent study from

the Chen group [16] using solid phase micro-extraction followed

by gas chromatography showed that 1-butanol and 3-hydroxy-2-

butanone were found at significantly higher concentrations in the

breath of lung cancer patients compared to controls. Dragonieri et

al. used an ‘‘electronic nose’’ and were able to discriminate

patients with lung cancer versus those with chronic obstructive

lung disease with relatively high sensitivity and specificity [17].

Unfortunately, collecting, handling, storing, concentrating and

analyzing breath samples is cumbersome, technically challenging,

and may thus not be easy to apply widely. A partial solution to

these problems would be to use a much more convenient source of

volatiles, such as urine samples although urine, like breath, will

include not only endogenous volatiles but also exogenous ones

from sources such as diet and the environment. In this regard,

Willis et al. (2004) reported that dogs could be trained to

distinguish patients with bladder cancer on the basis of urine odor

more successfully than would expected by chance alone [18].

Unfortunately, a follow-up study by Gordon et1 al. [19] was

unable to reproduce these findings in urine samples from patients

with breast and prostate cancer.

Based on these considerations, the hypothesis explored in this

paper is that variations in small molecular weight volatile organic

compounds (‘‘odorants’’) in urine could be used as biomarkers for

lung cancer. One of the primary difficulties in attempting to

initially identify volatile biomarkers from human patients is the

vast variation that can be due to uncontrolled variables such as

genetic and dietary differences, personal care product usage, and

other environmental variables that can impact on body odor

volatiles. The observation that dogs can apparently filter out these

potential distractions and focus on the disease signature (see above)

suggests that potentially useful biomarkers may exist.

In light of these challenges, we elected to pursue a more highly

controlled animal model approach [20,21] where many of the

variables that make patient work so difficult can be controlled

(Figure 1A). Our strategy was to first demonstrate that mice can be

trained to discriminate urine samples from mice with tumors from

control mice by odor alone. Once we had established this was

possible, we then employed metabolic profiling (solid-phase-

microextraction, followed by gas chromatography coupled with

mass spectrometry) to show we could identify specific patterns of

volatiles in urine that could distinguish tumor-bearing mice from

control animals.

Results

Mouse Models of Lung Cancer
Lung tumors derived from mouse cell lines have similarities in

morphology, histopathology, and molecular characteristics with

human lung adenocarcinomas and can serve as useful first models

[22]. We used two mouse lung cancer cell lines, LKR that was

derived from a transgenic animal expressing mutated Kras and

LLC, the Lewis lung cell carcinoma which arose spontaneously.

Tumors were induced by inoculating each of these cell lines into

different groups of mice (control mice were injected with the

vehicle, saline, on the same schedule). The tumor growth curves

for these two cell lines showed similar patterns (Figure 1B). Based

on tumor growth curves, we collected urine samples that spanned

stages of tumor growth for bioassay and for later chemical

analyses.

Olfactory Detection of Urinary Odor
We trained sensor mice (see methods) to discriminate between

the odors of mouse urine samples collected from LKR-injected

mice with large tumors (Days 25–37 post cell injection) compared

to genetically identical control mice without tumors. When this

was successful, we tested to determine whether this learning

generalized to earlier stages of tumor development. As shown in

Figure 1C-i, the trained mice successfully distinguished between

urines collected from mice with tumors at 25–37, 15–20 and 9–14

days post injection but did not generalize to tumors at very early

stages (Days 1–7). Next, we further trained these same sensor mice

using urines collected on Days 15–24 post injection. Although

these mice generalized this training to novel samples collected

from mice with tumors the same size, they did not do so for urines

collected on Days 9–14 or 1–7 (Figure 1C-ii). Control experiments

verified that trained mice did not distinguish between injected and

uninjected mice prior to injections, demonstrating that there was

no bias in the original mouse urine or the Y-maze apparatus.

To investigate the generality of this result, we trained a separate

group of sensor mice to discriminate urines of mice with- and

without LLC-induced tumors. The pattern of results was almost

identical to that with LKR-induced tumors (Figure 1C-iii).

We next asked whether the odors associated with the LKR and

LLC tumors were perceptually similar, by testing the trained mice

on urine samples collected from tumor-bearing vs. control mice

from the animal model different from the one that they had been

trained on. That is, we asked whether mice trained to discriminate

urines of mice with and without LKR-induced tumors would

recognize (generalize this response to) LLC tumor-bearing mice

and vice versa. The answer was in the affirmative (Figure 1C-vi

and -v). These results show that tumors induced by these cancer

cell lines produce common (although not identical; see below)

volatile biomarkers that can be recognized by the olfactory systems

of mice.

Characterization of Urinary Volatile Compounds
We next characterized the nature of chemical variation

distinguishing mice with the tumors from those without by

analyzing urinary volatile compounds with solid-phase-microex-

traction, followed by gas chromatography coupled with mass

spectrometry. From the typical total ion chromatograms (TICs) a

large diverse set of peaks could be distinguished (Figure S1). Forty

seven peaks were selected for identification from the TICs based

on their having sufficiently large peak heights and non-overlapping

TICs as determined by visual inspection. As can be seen in Table 1

and S1, the peaks were comprised of a variety of chemical

structures and are potentially involved in several biological
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functions, for example in pheromonal communication (2-hepta-

none, 3,4-dehydro-exo-brevicomin and 2-sec-butyl-4,5-dihydrothia-

zole, 6-hydroxy-6-methyl-3-heptanone, b-farnesene [23]). Also

identified were compounds previously reported in human urine

(nitromethane, dimethyl sulfone, o-toluidine, 2-ethylhexanoic acid

[24]).

We next used quantitative analyses of these 47 peaks to

determine if mice with and without experimentally-induced

tumors could be distinguished. Variation in the raw peak heights

clearly showed differences in the relative amounts of various

compounds based on the presence or absence of tumor and

cancer types (Figure 2A and Figure S2). We observed relatively

consistent changes for many peaks and for both tumor groups

with the most common pattern being a decreased production

(down-regulation) in the tumor groups and either an increased

production (up-regulation) or negligible change in the placebo

groups (Figure S3). For example, peak 13 (5-hepeten-2-one) was

down-regulated dramatically as a consequence of tumor pre-

sence (Figure 2B). Thus, an overall down-regulation of volatile

compounds may be a common feature of tumor growth. How-

ever, there were other patterns of change for a minority of

Table 1. Selected peaks and their identifications.

No. Cell lines with p,0.0001 Compounds

2,4,5,6 LKR and LLC 5,5-dimethyl-2-
ethyltetrahydrofuran-2-ol

7 LLC nitromethane

8 LKR 2-heptanone

11 LLC unkown 2 compounds

13 LKR 5-hepten-2-one (E or Z)

18 LKR and LLC 2-acetyl-1-pyrroline

19 LKR and LLC 2-isopropyl-4,5-dihydrothiazole

22 LKR and LLC 2-sec-butyl-4,5-dihydrothiazole

27 LLC 6-hydroxy-6-methyl-3-heptanone

33 LKR o-toluidine

37 LLC 2-ethyl hexanoic acid

45 LKR N-phenyl formamide

doi:10.1371/journal.pone.0008819.t001

Figure 1. Tumor growth curves and urine collection times for bioassays and the results of bioassay. (A) Overview of experimental
procedure. We employed mouse olfactory guided behavior (left) and metabolomic (right) approaches. (B) LKR cells and LLC cells were injected
subcutaneously into the flanks of adult male mice and tumor size was measured weekly thereafter. Each time point shows the mean6SEM tumor
size. Solid line: actual data; Dotted line: curve fitted with cubic function; LKR: y = 0.092*x3 2 2.8*x2+38*x 2 18, LLC: y = 0.16*x3 2 0.83*x2+3.5*x 2 4.
Mouse urine was collected individually once a day and was used for chemical analysis and for bioassay during the periods indicated: For LKR - Days
15224 and 25237 for training and Days 227, 9214, 15220, and 25237 for generalization; For LLC - Days 17226 for training and Days 128, 9216,
and 17226 for generalization. (C) Box plot of generalization scores for bioassay and the correlations among tests. Blue boxes represent the lower and
upper quartiles. The red horizontal bar in each box indicates the median. The dotted line represents the range of observations. The plus (+) marks
extreme outlier observations. *;P,0.01, **;P,0.001, ***;P,0.0001 compared to the null hypothesis of a 50% generalization score. From left, LKR-
trained mouse urine generalization to LKR mouse urine (Training 1, Figure 1C-i); LKR- trained mouse urine generalization to LKR mouse urine (Training
2, Figure 1C-ii); LLC-trained mouse urine generalization to LLC mouse urine (Figure 1C-iii); LKR-trained mouse urine generalization to LLC mouse urine
(Figure 1C-iv); LLC-trained mouse urine generalization to LKR mouse urine (Figure 1C-v).
doi:10.1371/journal.pone.0008819.g001
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Figure 2. Comparison of selected peaks. (A) Comparison between early stage and late stage of 4 illustrative peaks selected from 47 peaks
analyzed. Vertical axis indicates intensity (amount) of TIC; vertical lines around mean indicate SEM at each sampling point. Blue represents early stage
whereas red represents late stage. Horizontal axis indicates retention time. (B) Bar plot of intensity of 4 illustrative peaks selected from the 47 peaks
analyzed. Mean peak intensity is plotted at each peak. Red bars represent tumor groups; blue bars represent control groups. A pale blue background
indicates a significant difference at P,0.0001 between tumor and control groups. (C) Raw intensity of 47 analyzed peaks obtained by subtracting the
early period from the later period (n = 25 for each of the 4 groups). Darker grey means the peak increased following tumor development whereas the
lighter grey means the peak decreased following tumor development.
doi:10.1371/journal.pone.0008819.g002
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volatiles compounds. For example, production of peak 37 (2-ethyl

hexanoic acid) was elevated in both tumor groups. Changes in

other peaks depended on cancer types (and/or mouse strain).

Peak 29 (Acetophenone) was down-regulation in the LKR-tumor

group and up-regulation in LLC-tumor group whereas peak 33

was down-regulation only in LKR tumor group. The image array

plot (Figure 2C) clearly shows the overall differential effects of

tumor growth.

Discrimination of Tumor and Placebo Groups
We next proceeded to metabolomic profiling to statistically

discriminate between groups and to identify characteristic peaks.

To this end, we combined two different approaches: principal

component analysis (PCA) and support vector machine (SVM).

The first, PCA, allows the structure in a dataset to dictate the

separation of samples into clusters based on overall similarity in

peak values without prior knowledge of sample identity. Plots of

PCA scores calculated from the normalized values of the 47 peaks

showed a distinctive separation of the chemical profile between

tumor groups and placebo groups in both cancer cell lines

(Figure 3A and 3B). Second, a supervised machine-learning

approach based on the SVM was employed to determine the

boundary between tumor groups and placebo groups. This

algorithm considered the first two principal components, PC1

and PC2, to create descriptions of samples in this high-

dimensional space, and then defined a hyperplane that best

separates samples from the two classes. The SVM classifier

successfully separated the samples into tumor and placebo

categories (displayed in the fine contour with color of blue to

red in Figure 3A and 3B). The SVM successfully classified most

individuals giving a classification accuracy of 94% with a

sensitivity of 88 % and specificity of 100% (LKR) and an accuracy

of 94% with a sensitivity of 100% and specificity of 88% (LLC).

Notably, only 3 of the 50 individual mice in our test set were

misclassified. Thus, the selected peaks contain chemical features

distinguishing tumor from placebo mice.

Cross Validation and Essential Combination of Peaks
To validate these analyses, we employed a 10-fold cross

validation method by using all 25 samples. For further analysis,

we selected 11 peaks from the original 47 peaks that differed

between tumor and placebo groups with a P,0.0001 (Table 1).

We trained the SVM classifier by applying all logically possible

combinations without repetitions from these 11 peaks for each of

the two model systems (LKR and LLC). The generalization

performance of the SVM classifiers employing different sets of

peak clusters was illustrated in receiver operating characteristic

(ROC) space. No single peak successfully classified with an

accuracy of greater than 95%. However, classification with several

pairs of peaks resulted in an accuracy of up to 9862% for LKR

and 100% for LLC (Table 2-i,-ii and Table S2, Figure S4),

confirming that better generalization relies upon a combination of

peaks. In further analyses (data not shown) we found that SVM

had superior performance to Fisher Discriminant Analysis, which

used unsupervised learning methods. Thus, characteristic peak

clusters can reliably differentiate tumor groups from placebo

groups and may have diagnostic potential.

To assess the generalization power of the peak clusters to a

novel group, we created independent training sets (13 of the 25

samples) and test sets (remained 12 samples). The SVM classifiers

trained with the 11 selected peak clusters of the training set

generated a best combination of peaks having accuracies of 95%

for LKR and of 100% for LLC to test sets (Table 2-iii,-v and Table

S3, Figure S5).

Although LKR and LLC cell lines are different model systems

and they were injected into different inbred mouse strains (which

themselves likely differed in body odors), our behavioral studies

suggested that they shared common odors indicative of the

presence or absence of tumors. This was also found to be the case

in the metabolomic analyses. The group of peaks (the cluster) that

best predicted LLC status from LKR data as determined by SVM

(Table 2-iv) had an accuracy of 98%. Conversely, the group of

peaks that best predicted LKR from LLC (Table 2-vi) had an

Figure 3. Separation of tumor and placebo groups based on PCA scores using SVM. Separation of tumor and placebo groups by Principle
Components Analysis (PCA) and its boundary determination by Support Vector Machine (SVM) are shown in A (LKR) and B (LLC). Circles represent
individuals of tumor groups and triangles represent individuals of placebo groups (Support vectors: solid circles and triangles). The background
contour color, ranging from red to blue, indicates the class probability for different regions of the plane.
doi:10.1371/journal.pone.0008819.g003
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accuracy of 91%. Only one peak (# 22; see Table 2-iv,-vi) was

common to these two sets of predictive clusters. Classification by

other peak clusters also generated high diagnostic accuracy (95%)

with substantial diagnostic potential (Figure S6).

Interactive Effect of Tumors and Cell Lines
Even though there were commonalities between the two tumor

models, further statistical analyses also demonstrated that the

effects of the two tumor models on metabolic profiles were not

identical. The interactions between two different cell lines (LKR

and LLC) and tumor vs. placebo was analyzed with 2-way analyses

of variance (tumor and placebo groups for each of the two tumor

models) for each of the 47 peaks (Figure 4 and S7). A significant

interaction indicates tumor specificity. Of the 47 separate analyses,

the interaction w’as significant (P,0.05) in 11 cases (Table S3). To

control for false positives due to testing 47 peaks, we restricted

consideration to 4 peaks (No. 1, 7, 29, and 33) with P,0.002.

These interactions are illustrated in Figure 4 where, for example,

peak 29 shows no difference between tumor and placebo

(P = 0.0387) but a large difference between tumor models

(P = 0.0002). There is sufficient specificity to distinguish between

the volatile profiles of the two tumor types.

Discussion

Identification of volatile biomarkers in urine for disease

diagnosis is an area of great promise, however it is based on

limited prior human research. The data in this paper are

consistent with the hypothesis that diagnostically useful volatile

compounds are produced in patients with lung cancer and

secreted into the urine, thus providing support for this diagnostic

approach in the context of lung cancer.

Specifically, our studies showed that animal olfaction in species

like the mouse (that has a sensitive olfactory system [25,26]), can

have diagnostic success in detecting lung cancer signatures in

urine. More importantly, we were able to mimic this ability using

bioanalytic techniques. This suggests it will be possible to create a

biomimetic sensor based on the knowledge of olfactory system

for screening diagnostic odorants that could be practical for

widespread applications [27,28,29,30]. Indeed, genetically engi-

neered yeast expressing an olfactory receptor and its signal

transduction system have been shown to be capable of detecting

2,4-dinitrotoluene, a compound diagnostic of explosives [31].

Artificial olfaction with a polymer epithelium and model glomeruli

could detect odorants thereby mimicking a biological olfactory

system [32]. Ultimately, such sensors could lead to the development

Figure 4. Interactions between tumor type and tumor stage.
Normalized intensity (on the vertical axis) of the four peaks (A2D) in
which a two-way ANOVA indicated significant (P,0.002) interactions
indicating differentiation between the two tumor models. The
horizontal axis of each of the 4 panels (A2D) indicates the two stages,
early - prior to significant tumor development on the left and later -
after development of significant tumor size. Red: tumor, Blue: placebo,
Circle: LKR, Star: LLC.
doi:10.1371/journal.pone.0008819.g004

Table 2. Summary of highest scores of SVM classifiers.

Summary of highest scores of SVM classifiers

Numbers of Peaks Accuracy Sensitivity Specificity

i) LKR ten-fold CV mean sem mean sem mean sem

Nos. 7, 13, 22 98 2 97.5 2.5 100 0

Nos. 8, 13, 18, 19, 22, 45 98 2 100 0 95 5

ii) LLC ten-fold CV

Nos. 5, 11, 19, 37 (or 2, 4, 6, 19, 37) 100 0 100 0 100 0

iii) LKR to LKR (training, 13 samples; test, 12 samples)

Nos. 7, 8, 13 95 5.6 91.67 0 98.33 1.11

Nos. 13, 33, 45 (or 8, 13, 33, 45) 95 8.3 90 1.67 100 0

iv) LKR to LLC (training, 13 samples; test, 12 samples)

Nos. 13, 22, 33, 45 (or 7, 13, 19, 22, 33, 45) 98.33 1.67 100 0 96.67 3.33

v) LLC to LLC (training, 13 samples; test, 12 samples)

Nos. 2, 6, 19, 37 (or 4, 5, 19, 37) 100 0 100 0 100 0

vi) LLC to LKR (training, 13 samples; test, 12 samples)

Nos. 5, 11, 22, 27, 37 91.25 4.2 91.67 0 90.83 8.3

doi:10.1371/journal.pone.0008819.t002
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of commercially available test kits. However, it also appears that

metabolic profiling (solid-phase-microextraction, followed by gas

chromatography coupled with mass spectrometry) is a viable

alternative that should be further explored.

The metabolic origin of many of the diagnostic biomarkers we

identified is not known and we could not identify common

chemical features. Instead, they had their origins in either a variety

of endogenous biochemical pathways or from environmental

(exogenous) sources. These latter compounds (e.g. o-toluidine, and

2-ethylhexanoic acid) are unlikely to be diagnostically useful.

Among the endogenous metabolites, 2-heptanone, a pheromone,

is reported to increase in concentration in stressed rats, and has

been observed in human urine [33]. 6-hydroxy-6-methyl-3-

heptanone has also been previously identified in mouse urine

although we can find no report of this compound in human urine.

The observed variation of ketones as a function of tumor growth

suggests that ketogenesic pathways may be involved in these

models of lung cancer. Further research would be required to

determine which of these diagnostic metabolites are of tumor

origin and which originate from normal metabolic processes and

are either down- or up-regulated by the tumors.

The common down-regulation we observed following tumor

development in many compounds is noteworthy. Most biomarkers

reported by other investigators have been up-regulated. One

explanation for these different findings may reside with detection

strategies employed by others to identify biomarkers. In some

investigations there may be a bias toward a search for novel (and

therefore up-regulated) biomarker compounds whereas our

methods had no such bias. Another possibility is that this frequent

down-regulation results from complex effects of the tumor on the

animal’s metabolism.

Although SVM found clusters of peaks that predicted between

the two models of cancer (LKR to LLC and vice versa: Table 2)

with high accuracy, the clusters were mainly different for

prediction in the two directions. This result appears to be

inconsistent with the animal training studies that indicated that

mice trained to discriminate in one of the tumor models

generalized this learned response without further training to the

other model. This implies that there should be a set of volatile

compounds (odorants) common to the two models that differen-

tiate tumor from non-tumor mice. One likely explanation for this

apparent anomaly is that the combinations of volatile components

that we have identified with SVM classifiers are not the same ones

that the mice are cueing in on during training and testing; perhaps

there are other components in common with the two models that

we have not yet identified. If this is the case, one of the next

challenges will be to identify these novel biomarkers. Alternatively,

we note that there was one compound that was common to

prediction in both directions (#22) and we cannot exclude the

possibility that it was this compound the mice used to make the

distinction in both cases.

An important consideration for any practical diagnostic tool is

its ability to discriminate among different types of disease.

Although the two models of lung cancer clearly have similarities

in volatile profiles, they also have sufficient differences that they

can be discriminated in metabolomic analyses (Figure 4). This

ability to discriminate between closely related mouse models of

lung cancer implies that specific cancer types may be amenable to

diagnostic differentiation through analyses of volatile profiles as

illustrated in the current research.

Future work with animal models could proceed along three

convergent lines. First, it is important to monitor the develop-

mental changes in markers at earlier stages of tumor development.

Not only is this relevant to determining how early diagnostic

markers can be detected but it could throw light on potential

mechanisms underlying changes in volatiles as a consequence of

the tumor progression. Second, a variety of different tumor types

should be investigated in addition to the two closely related ones

described here. This could also provide important clues as to

mechanism. Third, in vitro studies on tumor cells will be crucial in

understanding mechanisms.

In summary, we were able for the first time to identify volatile

chemical signatures in urine of mouse models of lung cancer using

rigorous experimental behavioral and analytic techniques. The

importance of this study is that it establishes the feasibility of using

urinary volatiles to detect lung cancer. The ability to easily collect

and store urine samples will be a major advantage of this approach

over analyzing volatile in exhaled breath. Although this study has

raised many questions about the identity and source of the

compounds detected in our mouse models, we are not planning to

pursue this direction. Instead, we view this study as an important

proof of principal for the value of studying urine volatiles using

biochemical and bioinformatic techniques in the diagnosis of

human lung cancer (and perhaps other cancers). Accordingly, we

have begun clinical studies with human patients. These studies

will address key questions about sensitivity, specificity, the size

of tumors that can be accurately detected, the mechanisms

underlying the observed changes in volatile profiles, the ability to

generalize among different types of lung cancers, and the impact of

current or former smoking.

Materials and Methods

Lung Cancer Cell lines
The Kras-induced murine lung cancer (LKR) and Lewis lung

cell carcinoma (LLC) cell lines were purchased from the ATCC

(American Type Culture Collection, Manassas, VA). LKR cells

were derived from explants of a pulmonary tumor from an

activated K-rasG12D mutant mouse grown in Dr. Tyler Jacks’

Laboratory at M.I.T. [34]. Cells were cultured and maintained

in high glucose DMEM (Mediatech, Washington, DC) supple-

mented with 10% fetal bovine serum (Georgia Biotechnology,

Atlanta, GA), 2 mmol/L glutamine, and 1% penicillin/strepto-

mycin [35].

Flank Tumor Model Mice of LKR and LLC Cell Lines
To create peripheral tumors 100 mL of 16106 LKR cells were

injected in the flanks of male C57BL/6J6129P3/J F1 hybrid

mice (group 1: n = 27; group 2: n = 22: LKR tumor groups). For

control purposes, 100 mL of saline was injected in individuals of

LKR-placebo group (n = 26). In the second model, 100 mL of

16106 LLC cells were injected in the flanks of 8-week-old

male C57BL/6J mice (n = 32, LLC-tumor group) and for control

mice 100 mL of saline was injected into same strain individuals

of the LLC-placebo group (n = 31). Tumors were measured

weekly beginning 1 week after injection with a digital caliper

and volumes were estimated using the formula 3.146[largest

diameter6(perpendicular diameter)2]/6. The measured points

were fitted with a cubic function implemented in MATLAB. All

mice used in these experiments were maintained on a 12:12 h

light:dark cycle. All mice were given food and water ad libitum

throughout the experimental period. Tumor-injected mice were

euthanized when it appeared that the tumor burden induced

discomfort. The mice were cared for in accordance with the

Guide for the Care and Use of Laboratory Animals and the

experimental protocols were previously approved by the Institu-

tional Animal Care and Use Committee in Monell Chemical

Senses Center (Approval number: 1113p).
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Urine Collection for Bioassay and Chemical Analysis
Voided mouse urine was collected individually once a day, 5

days per week by gentle abdominal pressure into a sterile glass

tube [36]. Immediately, urine samples were frozen at 220uC and

retained until needed for experiments.

Sensor Mice and Behavior Assessment in the Y-Maze
Apparatus

Mice (Male C57BL/6, n = 6; female C57BL/6 H-2b, n = 1) were

trained in a Y-maze apparatus to discriminate between urines of

tumor bearing mice compared with placebo (non-tumor bearing)

mice [37]. Briefly, the two arms of the maze were scented by air

currents conducted through chambers containing freshly-thawed

urine (0.3–0.4 ml placed in 3.5-cm-diameter Petri dishes). For

training and testing in the Y-maze, gates were raised and lowered in

a timed sequence of up to 48 consecutive trials, paired urine samples

(tumor vs. placebo) being changed for each trial. During the training

session, water-deprived sensor mice for 23hr were rewarded with a

drop of water for each correct response. After successful training

(.80% correct scores), unrewarded (generalization) trials were

interspersed at an average frequency of one in four to accustom the

mice to occasional absence of reward.

For one group of trained mice (n = 7), training samples consisted

of urine collected 25–37 days after either LKR cell injections

(LKR tumor mice) or placebo injection (LKR-placebo mice)

(Figure 1B). Four mice were reinforced in the Y-maze when they

chose the urine scent of LKR tumor mice over LKR placebo mice

whereas the other 3 trained mice were reinforced for the opposite

choice. Within 14 days, all mice were responding correctly at

.80% accuracy. At this point generalization trials with novel

samples were introduced (see next paragraph). A second group of

trained mice (female C57BL/6, n = 3; female C57BL/6 H-2k,

n = 1) were trained on LLC tumor vs. LLC placebo urine samples

collected on days 17–26 post-cell or placebo injections. Here 2

mice were reinforced for LLC tumor and the other two were

reinforced for LLC placebo.

Mice were then tested in generalization trials with novel urine

samples (by blind testing) that were collected from LKR

experimental (tumor bearing) and LKR placebo mice during days

2–7, 9–14, 15–20, and 25–37 and for LLC experimental and

placebo mice during days 1–8, 9–16, and 17–26 (Figure 1B). To

test for detection of urine odor changes at earlier stages of tumor

development, LKR-trained mice were retrained on samples

collected on days 15–24 of LKR and then were given a series of

generalization tests. Additionally, LKR trained mice were given a

series of generalization tests with LLC tumor vs. control samples

(these animals never having been trained on LLC) and,

reciprocally, LLC-trained mice were with LKR samples. The

animals were maintained on a 12 hr light/dark cycle and tested

during their light period.

Extraction of Mouse Urinary Volatile Compounds by
Solid-Phase-Microextraction

We chemically analyzed 25 samples of urines for each group at

two time points: early stage (Days 1–3) and terminal stage (Days

34–40) of the LKR-tumor and -placebo groups and, in parallel,

early stage (Days 1–3) and terminal stage (Days 24–27) of the LLC-

tumor and -placebo groups. One hundred ml of mouse urine was

placed in a 4-ml glass vial and the volatiles in the headspace were

extracted for 30 min at 40uC using a Solid-Phase-Microextraction

(SPME) fiber (2-cm long, 30 mm carboxen, 50 mm divinyl benzene,

polydimethyl siloxane, Supelco Corp, Bellefonte, PA). No salt

addition or pH adjustment was performed on the mouse urine.

Gas Chromatography and Mass Spectrometry
The SPME fiber with absorbed volatile compounds was inserted

into the injection port of Thermo-Finnigan Trace GC/MS

(Thermo Electron, San Jose, CA) system and desorbed for 5 min

at 230uC. The Trace GC/MS was equipped with a Stabilwax

column (30 M60.32 mm with 1.0 m coating; Restek, Bellefonte,

PA) which was used for separation and analysis of the desorbed

volatiles. We employed the following chromatographic protocol for

separation before MS analyses: 60uC for 4 min, then programmed

at 6uC/min to 230uC with a 40-min hold at this final temperature.

Column flow was constant at 2.5 ml/min. The injection port was

held at 230uC. Operating parameters for the mass spectrometer

were as follows: ion source temperature, 200uC, ionizing energy at

70 eV; scanning frequency was 2/s from m/z 41 to m/z 400. Peak

identification was accomplished through manual interpretation of

spectra and matching against the NIST’02 library and comparison

with commercially available standard samples when available.

Data Processing of Raw GC/MS Chromatogram
Raw GC/MS chromatograms were pre-processed using methods

similar to those described elsewhere [38]. Briefly, components

were detected simultaneously across all samples, quantified, log-

transformed, and then normalized for differences in overall

intensity levels with MATLAB. Forty seven total ion peaks from

the total ion chromatogram were selected, all of which are shared

by each animal in every group, and the heights were quantified.

To eliminate the effect of the treatment term from the first day to

last day that may occur in both experimental and control groups

we defined the change in the production level of volatile

compounds as: Ri = tHi–eHi (i = 1, 2,…, 47), where tHi denotes

the maximum height of each peak at the terminal stage (i.e. days

25–37 for LKR and 17–26 for LLC while eHi denotes the

maximum height of each peak at the early stage (Days 1–3).

Thus, the subtracted value (Ri) represents ‘‘the term effect’’ for

the placebo groups (LKR(–) and LLC(–)) and ‘‘the term plus the

tumor effect’’ for tumor groups (LKR(+) and LLC(+)) (Figure 2B).

The subtracted value was normalized for data processing.

Two-Way Analysis of Variance
We used two-way analysis of variance to assess the effects of

lung cancer and tumor development on relative subtracted value

for each compound. The following statistical model [39] was fit

separately for each compound to assess the effects of lung cancer

and tumor development on relative subtracted value:

Yijk~mztizbjz tbð Þijzeijk

where Yijk is normalized subtracted value, m is the overall average,

ti is the relative effect of tumor effect i (i = 1, 2 corresponding to

tumor and placebo), bj is the relative effect of lung cancer type

j (j = 1, 2 corresponding to LKR and LLC), and tbð Þij is an

interaction effect describing the extent to which the lung cancer

effect ti depends on strain effect bj . A significant interaction suggests

that mice of different lung cancer types respond metabolically

differently to tumor development. The random error term eijk

captures all other unexplained variation, and is assumed to have

mean 0 and variance s2.

Principal Component Analysis and Boundary
Determination by Support Vector Machine

Linear principal component analysis (PCA) was employed to

examine the projection between two classes (e.g. LKR(+) vs.
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LKR(–)). First the first two principal components were plotted in

the two dimensional space. The first principal component (PC1)

accounts for as much of the variability in the data as possible, and

each succeeding component accounts for as much of the

remaining variability as possible.

For capturing the nonlinear boundaries between two classes

(e.g. LKR(+) and (2)) as well as for understanding factors

responsible for the group separation identified by PCA, we

employed support vector machine (SVM) classifiers, which have

been used with considerable success in a variety of fields

including computational biology [40]. SVM finds an optimal

hyperplane that separates two classes in high dimensional pro-

jected feature space. SVM maximizes the margin of separation

between two classes to find a separating optimal hyperplane

f xð Þ~
P

wixizb~w0xzb, where w is the p-dimensional vector

perpendicular to the hyperplane, b is the bias, i is the number

of peaks. The SVM finds w = (w1, w2, …, wp)’ minimizing

(1/2)||w||2 subject to the constraints yi(w
0xzb)$1, "i = 1, …,

n, where yi = +1 or 21 depending on the class. When the training

data are not linearly separable, SVM minimizes (1/2)||w||2+C

gji subject to the constraints yi(w
0xzb+ji)$1, "yi = +1;

yi(w
0xzb2ji)$1, "yi = 21; ji$0, "i. The ji is the slack variable.

To realize this projection, we have used the Gaussian (also known

as RBF) kernels of Kernlab package of R (http://www.r-project.

org/), Spider MATLAB toolbox (http://www.kyb.tuebingen.

mpg.de/bs/people/spider/) which implements linear function

and Gaussian radial basis function: k x,yð Þ~exp {sjjx{yjj2
� �

,

initialized radial basis function (RBF) dot with parameter s = 0.9.

The performance of the SVM classifiers was assessed by con-

sidering the number of correctly classified (true positives, tp; true

negatives, tn) and incorrectly classified (false positives, fp; false

negatives, fn) cases in the testing set. Sensitivity (se) was defined as

the probability of a true positive, se = tp/(tp+fn); specificity (sp) as

of a true negative, sp = tn/(tn+fp); and accuracy (ac) as the

proportion of correct classifications, ac = (tp+tn)/(tp+fp+tn+fn).

True positive rate (se) and false positive rate (1–sp) was plotted

onto a receiver operator curve (ROC) space to perform diagnostic

accuracy of SVM classifier. The error rate of the classifier is

defined as the average number of misclassified samples, i.e. the

sum of off-diagonal elements of the confusion matrix divided by

the total number of objects.

Ten-Fold Cross Validation and Generalization with
Classifier

We used 10-fold cross validation to estimate diagnostic accuracy

using 11 peaks that were selected based on the criterion that they

were different between the tumor vs. control group (for LKR or

LLC) at P,0.0001 (Table S1). We used 10-fold cross validation to

estimate diagnostic accuracy using 11 peaks that were selected

based on the criterion that they were different between the tumor

vs. control group (for LKR or LLC) at P,0.0001 (Table S1).

In the first approach, the original 25 sample data sets from mice

with tumors (e.g. LKR(+)) and the control mice (e.g. LKR(2)) were

each randomly split into 10 sub-samples, each sub-sample consisting

of 1–3 mice. The SVM classifier was then trained on 9 (10 minus 1)

of the subgroups with a single subgroup being retained as the test

sample. This cross-validation process was repeated 10 times (the

folds), each of which has a different validation test group so that

each sub-sample serves one time as a test sample. The resulting

values for each of the folds were averaged to produce mean values

for accuracy, sensitivity, and specificity (Figure S4, Table S2).

In a second approach, to determine a robust estimation of the

generalization capability of classifiers for unknown samples, we

randomly assigned 13 samples to a training set and left the

remaining 12 samples for a test set (e.g. 13 LKR(+) and 13

LKR(2) were the training sets and 12 LKR(+) and 12 LKR(2)

were the test sets). Using these sets, we determined the SVM

classifiers using training sets made up of all logically possible

combinations (combinations without repetition) of the selected 11

peaks (n = 2047 possible combinations). The classifiers were

evaluated for accuracy, sensitivity, and specificity. In addition, to

determine the predictive values across the two tumor cell lines (i.e.

how predictive LKR is for LLC and vice versa), two additional

tests were conducted. In one, the training sets were made up of

LKR(+) and LKR(2) (n = 13 mice each) and the test sets were

made up of LLC(+) and LLC(2) (n = 12 each). In the other this

procedure was reversed. The calculated scores for these analyses

were plotted in two dimensional spaces for sensitivity, and

specificity (Figure S5 and S6) and are summarized in Table 2

and Table S2. We plotted onto a receiver operator curve (ROC)

space to perform diagnostic accuracy of SVM classifier.

Supporting Information

Figure S1 Image plot of total ion chromatogram (TICs). Total

ion chromatograms of volatile compounds from urine samples

collected during the early and late stages of the two tumor groups

as well as parallel collections for the two placebo groups. TICs

were pre-processed (see methods and reference). A typical TIC is

shown in the top of (a) and the intensity is displayed as a colorized

belt at the bottom of (a). All of TICs are displayed for LKR (b) and

for LLC cell lines (c). The horizontal belt contains TICs from 25

animals. The horizontal axis represents retention time (later, far

right).

Found at: doi:10.1371/journal.pone.0008819.s001 (1.05 MB

PDF)

Figure S2 Comparison between early stage and late stage of

peaks. Forty-seven peaks were selected from the TICs for further

analysis. Vertical axis indicates intensity (amount) of TIC; vertical

lines around mean indicate SEM at each sampling point. Blue

represents the early stage whereas red represents the late stage.

Horizontal axis indicates retention time.

Found at: doi:10.1371/journal.pone.0008819.s002 (3.99 MB

PDF)

Figure S3 Bar plot of the intensity of the 47 peaks. Mean peak

intensity is plotted for each peak. Red bars represent tumor groups

whereas blue bars represent control groups. A pale blue

background indicates a significant difference at P,0.0001 between

tumor and control groups. It is possible to create a "bar code"

representing each individual mouse.

Found at: doi:10.1371/journal.pone.0008819.s003 (0.47 MB

PDF)

Figure S4 Classification performance in ROC space of paired

peaks. Each box (A-K) provides an overall visual representation of

ROC obtained from the ten-fold cross validation of LKR. Red

dots indicate mean sensitivity (vertical axis) and mean specify

(horizontal axis, 1-specificity) for each classifier. The number of

paired peaks are: A, 1; B, 2; C, 3; D, 4; E, 5; F, 6; G, 7; H, 8; I, 9;

J, 10; K, 11. Each box (L–V) provides an overall visual

representation of ROC obtained from the ten-fold cross validation

of LLC. Red dots indicate mean sensitivity (vertical axis) and mean

specify (horizontal axis, 1-specificity) for each classifier. The

number of paired peaks are: L, 1; M, 2; N, 3; O, 4; P, 5; Q, 6; R, 7;

S, 8; T, 9; U, 10; V, 11.

Found at: doi:10.1371/journal.pone.0008819.s004 (0.64 MB

PDF)
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Figure S5 Generalization performance in ROC space of paired

peaks. Each box (A–K) provides an overall visual representation of

ROC obtained from generalization to the LKR test group by the

LKR training group. Red dots indicate mean sensitivity (vertical

axis) and mean specify (horizontal axis, 1-specificity) for each

classifier. The number of paired peaks are: A, 1; B, 2; C, 3; D, 4; E,

5; F, 6; G, 7; H, 8; I, 9; J, 10; K, 11. Each box (L–V) provides an

overall visual representation of ROC obtained from generalization

to the LLC test group by the LLC training group. Red dots indicate

mean sensitivity (vertical axis) and mean specify (horizontal axis,

1-specificity) for each classifier. The number of paired peaks are:

L, 1; M, 2; N, 3; O, 4; P, 5; Q, 6; R, 7; S, 8; T, 9; U, 10; V, 11.

Found at: doi:10.1371/journal.pone.0008819.s005 (0.67 MB

PDF)

Figure S6 Generalization performance in ROC space of paired

peaks. Each box (A–K) provides an overall visual representation of

ROC obtained from generalization to the LLC test group by the

LKR training group. Red dots indicate mean sensitivity (vertical

axis) and mean specify (horizontal axis, 1-specificity) for each

classifier. The number of paired peaks are: A, 1; B, 2; C, 3; D, 4; E,

5; F, 6; G, 7; H, 8; I, 9; J, 10; K, 11. Each box (L–V) provides an

overall visual representation of ROC obtained from generalization

to the LKR test group by the LLC training group. Red dots indicate

mean sensitivity (vertical axis) and mean specify (horizontal axis,

1-specificity) for each classifier. The number of paired peaks are:

L, 1; M, 2; N, 3; O, 4; P, 5; Q, 6; R, 7; S, 8; T, 9; U, 10; V, 11.

Found at: doi:10.1371/journal.pone.0008819.s006 (0.70 MB

PDF)

Figure S7 Regulatory factor determined by two-way ANOVA.

Normalized intensity of subtracted peaks in a two-way ANOVA.

Red: tumor, Blue: placebo, Circle: LKR, Star: LLC.

Found at: doi:10.1371/journal.pone.0008819.s007 (0.41 MB

PDF)

Table S1

Found at: doi:10.1371/journal.pone.0008819.s008 (0.32 MB

PDF)

Table S2

Found at: doi:10.1371/journal.pone.0008819.s009 (0.31 MB

PDF)

Table S3

Found at: doi:10.1371/journal.pone.0008819.s010 (0.24 MB

PDF)
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