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Abstract

Clostridium difficile, a spore-forming bacterium, causes antibiotic-associated diarrhea. In order to produce toxins and cause
disease, C. difficile spores must germinate and grow out as vegetative cells in the host. Although a few compounds capable
of germinating C. difficile spores in vitro have been identified, the in vivo signal(s) to which the spores respond were not
previously known. Examination of intestinal and cecal extracts from untreated and antibiotic-treated mice revealed that
extracts from the antibiotic-treated mice can stimulate colony formation from spores to greater levels. Treatment of these
extracts with cholestyramine, a bile salt binding resin, severely decreased the ability of the extracts to stimulate colony
formation from spores. This result, along with the facts that the germination factor is small, heat-stable, and water-soluble,
support the idea that bile salts stimulate germination of C. difficile spores in vivo. All extracts able to stimulate high level of
colony formation from spores had a higher proportion of primary to secondary bile salts than extracts that could not. In
addition, cecal flora from antibiotic-treated mice was less able to modify the germinant taurocholate relative to flora from
untreated mice, indicating that the population of bile salt modifying bacteria differed between the two groups. Taken
together, these data suggest that an in vivo-produced compound, likely bile salts, stimulates colony formation from C.
difficile spores and that levels of this compound are influenced by the commensal gastrointestinal flora.
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Introduction

Clostridium difficile is a spore-forming, Gram-positive bacterium

estimated to be responsible for about one-quarter of hospital-

acquired infections [1]. C. difficile causes a watery diarrhea, and

transmission of this pathogen likely occurs through ingestion of C.

difficile spores. C. difficile-associated disease (CDAD) can progress to

intestinal lesions, resulting in pseudomembranous colitis charac-

terized by raised yellow plaques throughout the mucosa of the

colon. Though progression to toxic megacolon, intestinal perfo-

rations, peritonitis, and death is uncommon, it does occur [1,2].

Although C. difficile is an obligate anaerobe when in its vegetative

state, its spores have been estimated to persist on dry, inanimate

surfaces for months [3], contributing to its role as a major

nosocomial pathogen. In fact, C. difficile has been suggested to be

the major infectious cause of diarrhea caused by antibiotic usage in

human adults [2] and is especially a problem in elderly and

immunocompromised patients. Although CDAD has a low

mortality rate, C. difficile infection causes longer hospital stays,

and treatment costs are estimated to be more than $3 billion per

year in the U.S. [4]. The beginning of this century has been

marked by a doubling of the rate of CDAD throughout the United

States [1], and the recent emergence of hypervirulent C. difficile

strains has resulted in higher rates of CDAD-associated morbidity,

mortality, and health care costs [5,6].

Two events usually occur prior to development of CDAD:

administration of antibiotics [7], leading to disruption of commensal

bacteria in the host intestine [8], and infection with C. difficile, likely

via the spore form. Since C. difficile infection manifests in patients

undergoing antibiotic treatment, it is not surprising that C. difficile is

naturally resistant to a number of antibiotics [9]. Treatment has

mainly relied on the antibiotics metronidazole and vancomycin

[1,10], which are unsatisfactory given that they prevent reestab-

lishment of the commensal flora so relapses are common [1], and

failure rates for metronidazole are on the rise [11,12].

Two important aspects of C. difficile infection are germination of the

spores and how this process is regulated in the intestinal environment.

Despite the fact that C. difficile is likely acquired via ingestion of spores

(as the vegetative form will die in the presence of oxygen), only the

vegetative form produces toxins. Thus, to more fully understand

pathogenesis of C. difficile, a better understanding of spore germination

is needed. In general, bacterial spores germinate in response to the

binding of one or more small molecules, and the small molecules that

can cause germination vary among different species and strains of

bacteria [13]. The signals to which C. difficile responds have not been

well-characterized, but the primary bile salts cholate, taurocholate,

and glycocholate have been shown to stimulate germination in vitro

[14,15,16]. In fact, this effect of bile salts is the basis for a standard

method of titering C. difficile spores by colony formation [16].

However, signals to which C. difficile spores respond in vivo have not
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been identified. While it has been shown that commensal microflora

may inhibit C. difficile growth and downregulate C. difficile virulence

gene expression [17,18,19], it is not known what effects normal

intestinal flora have on C. difficile spore germination. The identifica-

tion of intestinal signals that affect C. difficile spore germination could

lead to the discovery of compounds that inhibit germination and thus

CDAD. Here, we examined colony formation from C. difficile spores

in the presence of cecal and intestinal extracts from untreated and

antibiotic-treated mice as well as the ability of flora from these mice to

modify the primary bile salt taurocholate.

Materials and Methods

Strains and Growth Conditions
C. difficile CD196 [20] was grown in BHI liquid medium (Bacto

brain-heart infusion [BD]) or BHIS plates (BHI supplemented

with yeast extract to 5 mg/ml and L-cysteine to 0.1% [w/v]) at

37uC in a Don Whitley MiniMACS anaerobic chamber (80% N2,

10% H2, 10% CO2). Taurocholic acid (TA) (Sigma) was added to

0.1% where indicated. Spores of CD196 were prepared as

previously described [14].

To construct a strain overexpressing 7a-hydroxysteroid dehy-

drogenase (7a-HSDH), first the hdhA gene (Entrez GeneID 946151),

which encodes 7a-HSDH, was PCR-amplified from the MG1655-

based E. coli strain PK7743 [21] using primers 59-CACTCTCA-

TATGTTTAATTCTGACAACCTGAGAC-39 and 59-TCT-

CGAGTTAATTGAGCTCCTGTACCCCACC-3.9 This DNA

fragment was restriction digested and cloned into the NdeI and

XhoI sites of pET-32a. The resulting plasmid, pJG32, was

transformed into E. coli strain BL21 to give strain JG73.

Antibiotic Treatment and Preparation of Cecal and
Intestinal Extracts

Mouse protocols were approved by the Institutional Animal Care

and Use Committee at the University of Pennsylvania. CD-1

mother mice were given clindamycin hydrochloride (Spectrum

Chemical) or ampicillin (Research Products International) orogas-

trically in two doses each of 200 mg/kg of body weight in a 20 hour

period and were sacrificed 24 hours after the initial antibiotic

treatment. Streptomycin sulfate (Research Products International)

was added to the drinking water to a final concentration of 5 mg/ml

for 24 hours as previously described [22]. Mice were sacrificed by

CO2 asphyxiation and cervical dislocation, and the small intestine,

cecum, and large intestine were harvested. Organs were weighed

and homogenized in 1 ml H2O per mg weight, pelleted, and the

supernatant was filtered through a 0.2 mm filter or boiled to sterilize.

Boiling was followed by centrifugation at 16,0006g for 5 min., and

supernatants were frozen at 220uC until use. Extracts were spotted

onto BHIS plates to ensure that no colonies formed from the

extracts in the absence of added spores. Where indicated, extracts

were dialyzed against water in a 1 kDa membrane for 4 hours. For

some experiments, cholestyramine resin (Sigma) was added to a

final concentration of 50 mg/ml to small intestinal or cecal extracts

or to 0.1% taurocholate, rocked for 1 hour at room temperature,

and pelleted by centrifugation. The supernatant from dialysis or

cholestyramine treatment was boiled to sterilize and used in colony

forming unit (CFU) recovery assays as described below.

CFU Recovery Assays
Spores were incubated anaerobically with the indicated extracts

for 30 min. at 37uC, at which point dilutions were made, spread

onto individual BHIS and BHIS + TA plates, and colonies

enumerated after overnight growth. Spores of C. difficile will form

colonies with extremely low efficiency on plated media in the

absence of a germinant such as bile salts [14,16]. CFU recovery is

reported as the CFU/ml on BHIS plates relative to those for

untreated spores spread on BHIS + TA plates.

Determination of Bile Salt Levels
Measuring the production of NADH during the oxidation of the

hydroxyl groups of bile salts by hydroxysteroid dehydrogenases

(HSDHs) can be used as a method to quantify bile salts [23]. Briefly,

the background absorbance at 340 nm for bile salt standards (TA,

deoxycholate [DCA], or chenodeoxycholate [CDCA]) or murine

cecal or intestinal extracts in 900 mM glycine/NaOH buffer,

pH 9.5 and 2.65 mM NAD was measured. Reactions were initiated

by addition of 3a-HSDH (Worthington) at a final concentration of

80 mg/ml, and absorbance at 340 nm was measured until it no

longer increased. Total concentrations of bile salts were calculated

by generating standard curves and solving the equation A340 =

k(CA + DCA + CDCA), where k is the extinction coefficient of

NADH and CA is cholate. Quantitation of bile salts with a hydroxyl

group at the C7 position (i.e., primary bile salts) were performed in a

similar manner, except that supernatant from cells overexpressing

7a-HSDH was used to initiate the reaction and the equation solved

was A340 = k(CA + CDCA). This supernatant was prepared as

follows: strain JG73 was grown to mid-log phase, at which time

IPTG was added to a final concentration of 1 mM to induce

overproduction of 7a-HSDH. After a 2 hour induction period, cells

were pelleted and frozen at 220uC. On the day of the assay, the

pellet was resuspended in 0.1 M sodium phosphate, 1 mM EDTA,

pH 7 buffer, sonicated, and centrifuged for 20 min. at 60006g. The

supernatant was immediately used in HSDH assays.

Incubation of Taurocholate with Small Intestinal and
Cecal Contents

The contents of small intestines and ceca from freshly euthanized

mice treated with or without clindamycin were removed in the

anaerobic chamber and washed five times with PBS to remove any

bile salts present. Pellets were resuspended in 0.1% TA and incubated

anaerobically for 24 hours at 37uC. Samples were pelleted, and the

supernatant was boiled to sterilize for use in CFU recovery assays.

Results

An Ex Vivo Factor Stimulates Colony Formation from C.
difficile Spores

To examine whether compounds present in the mouse gastroin-

testinal tract could stimulate germination of C. difficile spores, separate

extracts of small intestines, ceca, and large intestines from untreated

adult mice were prepared and used in CFU recovery assays. The

density of the extracts precluded the use of a spectrophotometric

assay for germination [14]. Dormant spores have a very low

efficiency of colony formation on BHIS medium unless the medium

contains an appropriate bile salt; in contrast, germinated spores form

colonies with high efficiency on BHIS medium [14]. Incubation of

spores with cecal or large intestinal extracts led to low levels of colony

formation, whereas incubation of spores with small intestinal extracts

resulted in about 15% CFU recovery (Fig. 1A). These results indicate

that there is a factor present in mouse small intestines that can

stimulate germination of C. difficile spores.

Disruption of the Commensal Flora with Antibiotics
Leads to Higher Levels of Colony Formation from C.
difficile Spores

Treatment with clindamycin and ampicillin often precipitate

CDAD in humans [24], and both have been used in animal

C. difficile Germination
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models to disrupt normal flora and induce CDAD [25,26], so cecal

extracts from mice treated with clindamycin, ampicillin, and

streptomycin were also tested for their ability to stimulate colony

formation from C. difficile spores. Cecal extracts from all of the

antibiotic-treated mice showed roughly equal abilities to stimulate

colony formation from C. difficile spores, which was about 502 to

65-fold higher than cecal extracts from the untreated mice (Fig. 1A

and B). The small intestinal extracts from the clindamycin-treated

mice also stimulated high levels of colony formation, but the large

intestinal extract did not.

Since the CFU recovery assay measures not only spore

germination but also outgrowth of the vegetative cells, germination

efficiency was also measured by the loss of heat resistance. Briefly,

spores were incubated with the cecal extracts from untreated or

clindamycin-treated mice for 30 min. at 37u, heat shocked for 20

min. at 60u, then diluted and plated on BHIS + TA plates. Spores

incubated with cecal extract from untreated mice were several-fold

more heat-resistant than were spores incubated with cecal extract

from clindamycin-treated mice (data not shown). Although the

reason for the differences in magnitude between the CFU recovery

assay and the heat shock experiment is unclear, it is unlikely that

outgrowth was inhibited to a great degree in the CFU recovery

assay. In the CFU recovery assay, spores treated with different

extracts showed comparable numbers of colonies on plates

containing TA (data not shown), as can be appreciated in Fig. 1B

(also see Fig. 2). This would not be the case if outgrowth of the

colonies were greatly inhibited. Thus, it appears that the cecal and

intestinal extracts stimulate germination of the spores.

Characterization of the Germination Factor
Several approaches were used to characterize the physical

properties of the factor causing germination of C. difficile spores.

First, to ensure that antibiotics alone did not stimulate spore

germination, spores were incubated with streptomycin at a final

concentration of 200 mg/ml. The CFU recovery from streptomy-

cin-treated spores was comparable to the water control, indicating

that streptomycin alone does not stimulate spore germination (data

not shown). To test the heat stability of the germination factor,

cecal extracts from clindamycin-treated mice were boiled for 10

min.; these extracts showed no difference in CFU recovery

compared to extracts sterilized by passage through a 0.2 mm filter,

indicating that the germination factor is heat-stable and can pass

through a 0.2 mm filter (Fig. 2A). The germination factor appears

to be small, since dialysis of cecal extract from the clindamycin-

treated mice in a membrane with a 1 kDa cutoff abolished its

ability to stimulate CFU recovery from spores (Fig. 2B). Testing

the organic and aqueous fractions from ethyl acetate extraction

indicated that the germination factor goes to the aqueous, not the

Figure 1. An in vivo-produced factor can stimulate CFU recovery from spores of C. difficile. A) CD196 spores were incubated for 30 min.
with water, 0.1% taurocholate (TA) (gray bar), or extracts from mice that were untreated (black bars) or treated with clindamycin (striped bars),
streptomycin (white bar), or ampicillin (cross-hatched bar), then diluted and spread to BHIS plates. The CFU/ml were compared to the CFU/ml on BHIS
plates containing taurocholate, which was considered to reflect 100% germination. Data are the mean of at least three experiments, with error bars
representing the standard error of the mean. B) Plates from a CFU recovery experiment in which spores were incubated with water, TA, or cecal
extract from untreated or clindamycin-treated mice as in (A), then serially diluted ten-fold and spotted onto BHIS or BHIS + TA plates. A representative
experiment is shown.
doi:10.1371/journal.pone.0008740.g001
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organic, phase (Fig. 2C). Taken together, these data indicate that

the germination factor is a compound present at higher levels in

vivo in response to antibiotic treatment (but is not itself the added

streptomycin), and is small, heat-stable, and water-soluble.

Treatment of Extracts with Cholestyramine Decreases
Their Ability to Stimulate Colony Formation from C.
difficile Sspores

These physical characteristics and the presence of the factor in

untreated and antibiotic-treated mice (albeit at different locations

along the gastrointestinal tract) are consistent with bile salts as an

in vivo germination factor. Previous in vitro work has shown that

purified primary bile salts such as taurocholate, glycocholate, and

cholate stimulate spore germination [14,16]. As a test of whether

bile salts are an in vivo germination factor, the bile acid

sequestrant cholestyramine was used. Treatment of 0.1%

taurocholate with cholestyramine resin decreased its ability to

germinate spores about 200-fold (Fig. 3). Similarly, cholestyramine

treatment of the cecal and small intestinal extracts from the

clindamycin-treated mice and the small intestinal extracts from the

untreated mice severely decreased their abilities to stimulate

colony formation from C. difficile spores (Fig. 3). Spores that had

been incubated with cholestyramine-treated samples were still able

to germinate on plates containing TA, indicating that the resin

itself did not interfere with germination. Importantly, bile salt

levels in the cholestyramine-treated samples were below the limits

of detection in hydroxysteroid dehydrogenase (HSDH) assays (data

not shown). These results support the idea that the germination

factor may be a bile salt that is present in the small intestines of

untreated mice and in the cecal and small intestinal extracts of

antibiotic-treated mice.

Murine Small Intestinal and Cecal Extracts That Can
Stimulate Colony Formation from Spores Contain Higher
Proportions of Primary Bile Salts

To examine whether bile salts levels differ among small

intestinal and cecal extracts from untreated and clindamycin-

treated mice, HSDH assays were carried out as previously

described [23]. Total bile salt levels in extracts from small

intestines were about 10-fold higher than those from cecal extracts

(Fig. 4), also consistent with the greater ability of small intestinal

extracts to stimulate colony formation from spores. Surprisingly,

the total levels of bile salts in cecal extracts from untreated and

clindamycin-treated mice were similar despite their differing

abilities to stimulate CFU recovery from spores. Because some

bile salts can inhibit spore germination and/or outgrowth [14,27],

additional HSDH assays were performed to quantify primary and

secondary bile salts (Fig. 4). Indeed, extracts that stimulated colony

formation from spores contained higher levels and proportions of

primary bile salts than did an extract that stimulated colony

formation much less (i.e., cecal homogenate from untreated mice).

Treatment of Taurocholate with Small Intestinal and
Cecal Flora Reduces Its Ability to Stimulate Colony
Formation from C. difficile Spores

Several species of commensal bacteria have been shown to

modify primary bile salts to secondary bile salts via 7a-

dehydroxylation in vitro [28]. Secondary bile salts such as

deoxycholate, formed by the deconjugation and dehydroxylation

of primary bile salts by normal anaerobic intestinal bacteria,

inhibit the growth of C. difficile [14,15]. Since antibiotic treatment

disrupts the commensal gastrointestinal flora, there may be

differences in the bile salt modifying ability of bacteria from the

Figure 2. Investigation of properties of the germination factor. Cecal extracts from clindamycin-treated mice were A) boiled for 10 min., B)
dialyzed against H2O in a 1 kDa membrane, or C) extracted with ethyl acetate (EtOAc) and were tested as in Fig. 1.
doi:10.1371/journal.pone.0008740.g002
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small intestines and ceca of organisms treated with antibiotics

versus those untreated. To test this point, cecal contents were

anaerobically isolated from untreated and clindamycin-treated

mice, washed with PBS to remove endogenous bile salts, and

incubated with 0.1% taurocholate under anaerobic conditions for

24 hours at 37u C. The bile salt levels in the supernatant from this

incubation were quantified (Fig. 5A), and the TA that had been

incubated with cecal contents from clindamycin-treated mice had

not been converted to secondary bile salts. In contrast, over 80%

of the bile salts in the supernatant from incubation of TA with

cecal contents from untreated mice were in the secondary form.

Thus, it appears that the populations of bile salt modifying

bacteria differ between untreated and antibiotic-treated mice.

To test its ability to stimulate colony formation from spores,

sterilized supernatant from this incubation was used in CFU

recovery assays (Fig. 5B). Taurocholate that had been incubated

with cecal contents from the clindamycin-treated mice exhibited
22 to 5-fold higher levels of CFU recovery, respectively, than

taurocholate incubated with contents from untreated mice. Thus,

it appears that flora present in the ceca of non-antibiotic-treated

mice can modify taurocholate and decrease its ability to stimulate

colony formation from C. difficile spores.

Discussion

Here, we have shown that colony formation from C. difficile spores

is stimulated by an in vivo-produced factor present in the

gastrointestinal tract, and that this factor appears to be present at

higher levels in mice treated with antibiotics. These results are

consistent with those from a recent paper in which C. difficile spores

germinated in the presence of small intestinal and cecal contents

from mice treated with a proton pump inhibitor [29]. Intriguingly, a

recent study showed that clindamycin treatment of C. difficile-

infected mice appeared to induce a highly contagious ‘‘super-

shedder’’ state, which indicates that antibiotic treatment also

promotes transmission of the spores [30]. This mouse model

appears to be relevant to the human disease since infection of germ-

free mice with C. difficile resulted in large intestinal inflammation

[31]. In addition, the histopathology of antibiotic-treated mice

infected with C. difficile was similar to that of humans with CDAD,

including the presence of pseudomembranous colitis [32].

Figure 3. Cholestyramine treatment of small intestinal and
cecal homogenates decreases their ability to induce spore
germination. CD196 spores were incubated with the indicated
germinant for 30 min, then diluted and spread onto BHIS plates. The
CFU/ml were compared to the CFU/ml on BHIS plates containing
taurocholate (TA), which was considered to reflect 100% germination.
Data are the mean of at least three experiments, with error bars
representing the standard error of the mean. ND, not done.
doi:10.1371/journal.pone.0008740.g003

Figure 4. Proportions of primary bile salts in small intestinal and
cecal extracts. Quantitation of bile salts in small intestinal and cecal
extracts from untreated and clindamycin-treated mice was performed as
previously described [23]. Data are reported as the mean percentages of
total bile salts, with levels of primary bile salts (mM) indicated in the bars
and error bars representing the standard error of the mean.
doi:10.1371/journal.pone.0008740.g004

Figure 5. Modification of taurocholate by cecal flora and its ability
to stimulate CFU recovery from spores. Contents of the ceca from
freshly euthanized, clindaymin-treated (striped bars) or untreated (black
bars) mice were isolated under anaerobic conditions, washed 5 times to
remove any bile salts present, and incubated with 0.1% taurocholate for
24 hours at 37u C. Samples were pelleted, and the supernatant was boiled
and used in A) bile salt quantitation and B) CFU recovery assays. The CFU/
ml were compared to the CFU/ml recovered from spores incubated with
taurocholate, which was considered 100% germination. Data are the mean
of at least three experiments, with error bars representing the standard
error of the mean. (* p,0.05, Student’s t-test).
doi:10.1371/journal.pone.0008740.g005
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The in vivo-produced germination factor may be bile salts,

based on its physical properties as well as the result that treatment

of extracts with cholestyramine, a bile salt sequestrant, eliminated

their abilities to stimulate colony formation from C. difficile spores.

Bile salts have been shown to have different effects in vitro: some

(taurocholate, cholate, deoxycholate) stimulate germination, some

inhibit germination (chenodeoxycholate), and some inhibit growth

of vegetative cells (deoxycholate, chenodeoxycholate) [14,27]. For

this reason, the ratio of primary to secondary bile salts was

determined, and those extracts that could stimulate colony

formation from C. difficile spores contained higher levels of primary

bile salts than those that could not. It is important to note,

however, that chenodeoxycholate is a primary bile salt and we

were unable to perform the 12a-HSDH assay that would allow for

comparison of the cholate and chenodeoxycholate levels. We

hypothesize that the extracts able to stimulate CFU recovery have

low levels of chenodeoxycholate (that is, that the majority of the

primary bile salts were cholate or its derivatives) because

chenodeoxycholate can inhibit spore germination even in the

presence of cholate and taurocholate [27]. In addition, the HSDH

assays do not detect sulfated bile salts, which are present in the

murine gastrointestinal tract [33], and detect muricholate, whose

effect on germination is unknown, so these reported bile salt levels

may be approximate.

Based on the results presented here, cholestyramine may appear

to be a good candidate for treatment of CDAD. In fact,

cholestyramine (Questran) has been used to treat CDAD in

humans [34] and in the hamster model [25] with mixed results

[35,36]. Its mode of action was initially thought to be via toxin

binding, which has been shown in vitro [37]. Perhaps the limited

efficacy of cholestyramine in treating CDAD is due to the fact that

bile acid synthesis increases 42 to 6-fold upon its ingestion and/or

because ileal absorption of bile salts may outcompete the ability of

cholestyramine to bind them [38]. In addition, cholestyramine can

bind to vancomycin, one of the antibiotics used to treat CDAD

[37].

We also investigated the ability of cecal flora from untreated

and clindamycin-treated mice to modify the bile salt taurocholate.

The results suggest that populations of bile salt modifying bacteria

differ between untreated and antibiotic-treated mice, consistent

with recent reports showing that antibiotic treatment of mice

greatly reduces the diversity of their gastrointestinal flora [30,39].

In addition, taurocholate that had been incubated with cecal

contents from clindamycin-treated mice exhibited higher levels of

CFU recovery than taurocholate incubated with contents from

untreated mice. It is worth noting that the taurocholate that had

been incubated with cecal contents was less able to stimulate

colony formation from C. difficile spores compared to pure 0.1%

taurocholate. Though 7a-dehydroxylation of taurocholate to

deoxycholate may have occurred, the taurocholate also could

have been dehydroxylated at C12 by Bacteroides species [40],

resulting in conversion to chenodeoxycholate, which inhibits spore

germination even when cholate or its derivatives are present, as

mentioned above [27].

Intriguingly, disruption of intestinal bacteria by antibiotic

treatment appears to cause differences in bile salt levels in vivo,

since levels of secondary bile salts in the feces of rats treated with

b-lactam antibiotics decreased while primary bile salt levels

increased [41]. A similar result was observed in humans despite

the bile salt differences between these two species [38]. Stools from

human volunteers treated with neomycin, an aminoglycoside like

streptomycin, exhibited an increase in the primary bile salt cholic

acid compared to the level prior to antibiotic treatment [42] and

showed a decrease in the amount of 7a-dehydroxylation activity

[43], supporting the idea that changes in bile salt levels were due to

a decrease in the commensal flora that carry out 7a-dehydroxyla-

tion of bile salts.

Relationships among Antibiotic Treatment, Commensal
Flora, Bile Salt Metabolism, and Germination of Spores of
C. difficile

A model emerges in which C. difficile spores can be germinated

by primary bile salts such as cholate and its derivatives in the small

intestine and cecum. In healthy humans, CDAD may be avoided

because spore germination can be inhibited by the primary bile

salt chenodeoxycholate [27]. For those C. difficile spores that

manage to germinate in response to cholate and its conjugates,

outgrowth of the vegetative cells would be inhibited by the

secondary bile salt deoxycholate in the large intestine, where bile

salts are present in millimolar ranges [28], concentrations at which

they can inhibit growth in vitro [14]. In contrast, when the host is

treated with antibiotics, C. difficile spores are able to exploit the

accompanying changes in bile salt levels. Antibiotic treatment

disrupts the normal flora that carry out the 7a-dehydroxylation of

bile salts, leaving a larger pool of primary bile salts such as cholate

and its derivatives that can germinate the spores. There is likely

also an unknown mechanism by which levels of chenodeoxycho-

late, a primary bile salt that inhibits spore germination and

outgrowth, are concominantly lowered. Once C. difficile spores

have germinated, the vegetative cells must be able grow out in

order to produce toxins and lead to CDAD. In fact, the CFU/ml

and toxin B levels from C. difficile strains grown in vitro in cecal

contents from clindamycin- or ampicillin-treated mice were about

10,000-fold higher after 24 hours relative to those grown in cecal

contents from non-antibiotic-treated mice [19,44]. This indicates

that treatment of the host with antibiotics creates a favorable

environment for growth of and toxin production by C. difficile

vegetative cells, which would lead to CDAD. The model presented

here suggests that perhaps non-hepatotoxic analogs of cheno-

deoxycholic acid could be administered as a preventative measure

to hospital patients at risk for infection with C. difficile or that those

with the infection could be treated with antibiotic-resistant

probiotics exhibiting 7a- and/or 12a-dehydroxylating activity.
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