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Abstract

Philologists reconstructing ancient texts from variously miscopied manuscripts anticipated information theorists by
centuries in conceptualizing information in terms of probability. An example is the editorial principle difficilior lectio potior
(DLP): in choosing between otherwise acceptable alternative wordings in different manuscripts, ‘‘the more difficult
reading [is] preferable.’’ As philologists at least as early as Erasmus observed (and as information theory’s version of the
second law of thermodynamics would predict), scribal errors tend to replace less frequent and hence entropically more
information-rich wordings with more frequent ones. Without measurements, it has been unclear how effectively DLP has
been used in the reconstruction of texts, and how effectively it could be used. We analyze a case history of acknowledged
editorial excellence that mimics an experiment: the reconstruction of Lucretius’s De Rerum Natura, beginning with
Lachmann’s landmark 1850 edition based on the two oldest manuscripts then known. Treating words as characters in a
code, and taking the occurrence frequencies of words from a current, more broadly based edition, we calculate the
difference in entropy information between Lachmann’s 756 pairs of grammatically acceptable alternatives. His choices
average 0.2660.20 bits higher in entropy information (95% confidence interval, P = 0.005), as against the single bit that
determines the outcome of a coin toss, and the average 2.1660.10 bits (95%) of (predominantly meaningless) entropy
information if the rarer word had always been chosen. As a channel width, 0.2660.20 bits/word corresponds to a
0.790.79+0.09

20.15 likelihood of the rarer word being the one accepted in the reference edition, which is consistent with the
observed 547/756 = 0.7260.03 (95%). Statistically informed application of DLP can recover substantial amounts of
semantically meaningful entropy information from noise; hence the extension copiosior informatione lectio potior, ‘‘the
reading richer in information [is] preferable.’’ New applications of information theory promise continued refinement in
the reconstruction of culturally fundamental texts.
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Introduction

How accurately have culturally fundamental texts been

transmitted to the present by way of variously miscopied

manuscripts? If the accuracy can be measured, can it be improved,

and if so, how? Philology traditionally has been concerned almost

entirely with information of the semantic kind, that is, with

meaning. Here we are concerned instead with what has been

called entropy information, information entropy, and Shannon

entropy (and sometimes negentropy in recognition that a higher

information content corresponds to a higher degree of disorder). In

the first study of its kind, we measure the accuracy of transmission

in bits/word of meaningful entropy information. The case in point

is one of acknowledged editorial excellence and cultural

importance: the reconstruction of Lucretius’s De Rerum Natura,

beginning with Lachmann’s 1850 edition [1], a defining example

of modern textual criticism [2–4].

1. Anticipation of Information Science by Early
Philologists

1.1. Information, randomness, and probability. Information

theory originated in twentieth-century telecommunications engi-

neering, as is well known [5–8], but it has a long and apparently

unappreciated prehistory in philology. Theorizing about how best to

recover accurate messages from noisy signals goes back many centuries

to scholars who endeavored to reconstruct ancient texts from variously

miscopied manuscripts. Systematically organized, institutionally

sponsored comparison of manuscripts expressly for this purpose

dates back at least to the founding of the Library at Alexandria

(,300 BCE), if not to far older Mesopotamian clay-tablet libraries [9].

Beginning with notions developed independently by Wiener,

Shannon established that information is a probabilistic phenom-

enon closely akin to entropy; that information entropy tends to be

lost as noise during transmission in a manner analogous to the

increase in physical entropy according to the second law of
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thermodynamics; and that the losses are recoverable from noise,

sometimes completely, from redundancies in the information

received [7,10,11]. Scholars centuries before had intuited enough

about information as orderedness to develop a remarkably similar

probabilistic approach to recovering original text from corrupt

copies. Medieval scribes recognized that copying error has a

random or chaotic element, and even invented a counterpart to

Maxwell’s Demon as its source: Tutivillus, whom they adopted as

their patron demon [12]. (The demon is commonly known as

Titivillus as well as Tutivillus — names which, appropriately

enough, must be misspellings of one another. ‘‘Tutivillus’’ is used

here because it is preferred in the definitive work [12].)

1.2. The difficilior lectio potior principle (DLP). In

associating information with probability, philologists at least as

early as Erasmus (?1466–1536) [3], and perhaps even as early as

Probus (first century CE) [4], recognized that when scribes

mistakenly substitute one wording for another, they tend to

simplify, to replace less common forms with more common ones

(the utrum in alterum abiturum erat principle) [3]. From this

follows the editorial principle difficilior lectio potior (DLP): all else

being equal, ‘‘the more difficult reading [is] preferable’’ [3,13,14]

or ‘‘the less probable reading [is] preferable’’ [15]. The same basic

idea is known in New Testament philology as the proclivi

scriptioni praestat ardua principle (‘‘The difficult is to be preferred

to the easy reading’’) [16].

As a statistical generalization, DLP is well grounded. Consider

an author’s original manuscript (autograph copy) of a text

containing N = n(1)+n(2)+…+n(k)+…+n(L) words belonging to L

lemmata. Let us consider first the ideal case of an indefinitely long

message (that is, N R ‘) in which each lemma k occurs with

probability p(k). Treating each lemma as a character in a code, the

information content per character of the message will be

H~{
XL

k~1

p kð Þ log2p kð Þ ð1Þ

As Shannon showed [5,6], random replacement of a word of

lemma i with a word of lemma j tends to reduce the information

content per character H unless the occurrences of lemmata i and j

are statistically independent of one another. Let H(x) and H(y) be

respectively the information entropies of the original text (message

x) and the copied text (message y), let p(i,j) be the probability of the

event that lemma i in the original has been replaced by lemma j in

the copy, and let H(x,y) be the entropy of the joint occurrence of x

and y:

H x,yð Þ~{
X

i,j

p i,jð Þ log2p i,jð Þ ð2Þ

It can be shown that the total amount of information in the two

manuscripts collectively, H(x,y), is no more than the sum of the

information in the two manuscripts individually, H(x)+H(y):

H(x,y)#H(x)+H(y) (5, 6). Information will be lost unless the

occurrences of all lemmata i and j are statistically independent,

that is, p(i,j) = p(i) p(j), which implies that the occurrences of i and j

are uncorrelated. This generalization about information entropy

corresponds to the second law of thermodynamics. In statistical

mechanics, the condition H(x,y) = H(x)+H(y) corresponds to a

reversible process and conservation of entropy, whereas

H(x,y),H(x)+H(y) corresponds to an irreversible process and

increase in entropy.

Because correlation in the co-occurrence of words and symbols

is a characteristic of human language, copying error will tend to

result in information loss [5,6,7,10,11]. Correlation can take many

forms. Redundancy, one form, is discussed in section 2.2 below.

Particularly strong correlation is to be expected in cases to which

DLP applies, because the condition that the alternative words

be more or less equally acceptable will drastically limit possible

co-occurrences.

Thus Tutivillus, like Maxwell’s Demon, is a sorting demon with

respect to entropy, but unlike its counterpart, has a dual nature

as a randomizing demon with respect to semantic information.

Whereas Maxwell’s Demon decreases physical entropy by

intelligently sorting gas molecules by energy level (which requires

information about their energy levels), Tutivillus decreases

information entropy by playing perversely on words’ correlated

co-occurrence.

Let us turn now to finite messages because it is to these that

DLP applies. Consider a message so long that the relative

abundance n(k)/N of each lemma k approximates its probability of

occurrence, p(k) (implying n(k)&1, since 1/N is likely an inaccurate

approximation). It is found from equation (1) that the frequency-

weighted geometric mean Æpæ of the probabilities p(k) directly

reflects the information entropy H of the message [5,6]: Æpæ<2–H.

This applies to the weighted geometric mean word frequency

Ænæ = Æpæ N as well: Ænæ<N ? 22H. If words in an original message (x)

are substituted one-for-one with words in the copy (message y), so

that N remains constant, the weighted mean frequency in the

copy, Æn (y)æ, is related as follows to the corresponding frequency in

the original, Æn (x)æ, by the difference DH = H(y) – H(x) in the

information content per word:

Sn yð ÞT&Sn xð ÞT2{DH ð3Þ

If, as expected, DH,0 (presuming that variation in abundances

n(k) in the original message leaves information to be lost), the utrum

in alterum abiturum erat principle follows as a consequence: Æn (y)æ.Æn
(x)æ, which is to say that, when mistakes occur, less common words

tend to be replaced by more common ones [3]. From this follows

the difficilior lectio potior principle (DLP) that, to recover the

information lost, an editor does well to choose the less common of

two equally acceptable alternative words as more likely the

author’s original.

Thus there is no question that DLP ought to work. The question

is how well it works.

1.3. Historical note on entropy awareness and C.P.

Snow’s ‘‘Two Cultures’’. C.P. Snow made awareness of the

second law of thermodynamics his litmus test for dividing

academics into his famous Two Cultures, humanistic and

scientific [17]. Centuries before probability theory, philologists

— quintessential humanists — had an intuitive understanding of

the second law as it applies to information, as we document further

below. Had Karl Friedrich Gauss not been turned from an

intended career in philology by his discovery of the geometrical

constructability of the regular 17-gon and related implications for

number theory [18], the results of Snow’s litmus test might not

have been so sharp. As Figure 1 shows, Gauss could even have

discovered the Gaussian distribution in philological rather than

astronomical data.

2. The Process of Reconstructing a Text
2.1. ‘‘Lachmann’s Method’’. Ever since Erasmus, if not

before, the favored approach to reconstructing a text has been first

Mathematical Philology
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to reconstruct the ‘‘family tree’’ (stemma) of manuscripts based on

the occurrence of major ‘‘mutations’’ (characteristic errors) [4].

Current methods have grown up around the one established by

Karl Lachmann (1793–1851), the founder of modern textual

reconstruction (textual criticism) [14]. ‘‘Lachmann’s method,’’ as

the general approach has come to be known, is essentially the

cladistic method developed independently a century later by

taxonomists for attempting to establish the relative recency of

common descent among organisms [19–22].

The steps in preparing a new edition are: identifying and

studying comparatively the surviving manuscripts of the text

(exemplars); identifying the characteristic errors that appear to

distinguish the major branches of the stemma; reconstructing the

stemma in detail by seeking the tree that accounts most

parsimoniously for the occurrence of characteristic errors in terms

of the relative recency of common descent among exemplars;

selecting for further analysis only those readings evidently closest

to the author’s original, and eliminating from further consideration

those variants that contain no additional information; collating the

selected manuscripts word by word; and finally, choosing among

the alternative wordings in the effort to reconstruct the closest

possible approximation to the original text, footnoting the rejected

alternatives in the new edition’s apparatus criticus [3,14]. DLP

figures in the final step when alternatives are more or less equally

acceptable.

In its strictest form, Lachmann’s method assumes that the

manuscript tradition of a text, like a population of asexual

organisms, originates with a single copy; that all branchings are

dichotomous; and that characteristic errors steadily accumulate in

each lineage, without ‘‘cross-fertilization’’ between branches [13].

Notice again the awareness that disorder tends to increase with

repeated copying, eating away at the original information content

little by little. Later schools of textual criticism relax and modify

these assumptions, and introduce more of their own [4,14].

2.2. Decisions between single words. Many types of scribal

error have been catalogued at the levels of pen stroke, character,

word, and line, among others [3,13,14]. Here we limit ourselves to

errors involving single words, for it is to these that DLP should apply

least equivocally. This restriction minimizes subjective judgments

about one-to-one correspondences between words in phrases of

differing length, and also circumvents instances in which DLP can

conflict with a related principle of textual criticism, brevior lectio potior

(‘‘the shorter reading [is] preferable’’) [4].

Limiting ourselves to two manuscripts with a common ancestor

(archetype), let us suppose as before that wherever an error has

occurred, a word of lemma j has been substituted in one manuscript

for a word of the original lemma i in the other. But can it be

assumed realistically that the original lemma i persists in one

manuscript? The tacit assumption is that errors are infrequent

enough that the probability of two occurring at the same point in the

text will be negligible, given the total number of removes between

the two manuscripts and their common ancestor. For instance, in

the ,50,000-word text of Lucretius, we find 2,095 variants denoting

errors of one sort or another in two manuscripts that, as Lachmann

and others have conjectured, are each separated at two or three

removes from their most recent common ancestor. At least for

ideologically neutral texts that remained in demand throughout the

Middle Ages, surviving parchment manuscripts are unlikely to be

separated at very many more removes, because a substantial

fraction (on the order of 10% in some instances) can survive in some

form [23,24], contrary to anecdotally based notions that only an

indeterminately very much smaller fraction remains [25–27].

Let us suppose further that copying mistakes in a manuscript are

statistically independent events. The tacit assumption is that errors

are rare and hence sufficiently separated to be practically

independent in terms of the logical, grammatical, and poetic

connections of words. With Lachmann’s two manuscripts of

Lucretius, the ,2,100 variants in ,50,000 words of text

correspond to a net accumulation of about one error every four

lines in Lachmann’s edition in the course of about five removes, or

of roughly one error every 20 lines by each successive scribe. The

separation of any one scribe’s errors in this instance seems large

enough to justify the assumption that most were more or less

independent of one another.

Finally, let us suppose that an editor applying DLP chooses the

author’s original word of lemma i with probability p, and the

incorrect word of lemma j with probability 1 – p. Under these

conditions, the editor’s choice amounts to a Bernoulli trial with

probability p of ‘‘success’’ and probability 1 – p of ‘‘failure.’’ But how

can it be assumed that p is constant among all words when any given

kth lemma in a manuscript will be unique, and hence should have its

own characteristic probability pk of being correctly copied?

Assuming that p is constant among lemmata amounts to assuming

that the pks approach a common value p as an average, for which

justifications can be found in instances like this one [28]. That is,

given a large number of choices among a large number of lemmata,

the law of averages will apply, and, for practical purposes, all choices

could just as well have been governed by a constant probability p.

Under these conditions, the editor’s probability p of choosing

correctly relates directly to the amount of pertinent information

entropy 0#h#1 in bits/choice unavailable to guide editorial

decisions, and equation (1) takes the form:

h~{plog2 p{ 1{pð Þ1og2 1{pð Þ ð4Þ

As equation (4) shows, a single bit of information entropy

suffices to predict correctly the outcome of a Bernoulli trial (h = 0

Figure 1. The difference DI in entropy information between 756
pairs of otherwise acceptable alternative words in the two
manuscripts on which Lachmann based his reconstruction of
Lucretius’s De Rerum Natura (On the Nature of Things, ,60 BCE)
[1], and a Gaussian curve fitted to the data. The mean value
ÆDIæ = +0.25760.196 bits/word (95% confidence interval; P–value = 0.005,
one-sided) corresponds to a 0.79+0.09

20.15 likelihood of the rarer word being
the better choice, showing the value of the difficilior lectio potior principle
(DLP) that ‘‘the less probable reading is preferable’’ in choosing between
otherwise acceptable alternatives in reconstructing a text from variously
miscopied manuscripts. The Renaissance and earlier philologists who
framed DLP evidently had a prescient understanding of information as a
probabilistic phenomenon.
doi:10.1371/journal.pone.0008661.g001
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bit, p = 1 or, for a contrarian choice, p = 0). The amount of non-

redundant information entropy per choice, the channel width c,

corresponds to the amount that reaches the editor [6,7]:

c~1zplog2 pz 1{pð Þ1og2 1{pð Þ ð5Þ

Redundancy is possible, which corresponds to the situation c.1

bit/word, which ensures p = 1. In this case, DLP would be literally

too good to be true: word frequency alone would suffice for a

correct choice, independent of context and semantic content.

2.3. Evaluating a reconstructed text. What evidence is

there that earlier philologists ever paid anything more than lip

service to DLP, and that they indeed understood enough about

information in the sense of entropy to recapture measurable

amounts of it? Given a suitable text against which to judge the

correctness of choices between alternative words, DLP becomes a

testable hypothesis. The ideal standard of comparison is the

archetype of the manuscripts being used to reconstruct the text. A

problem is immediately apparent: an ideal test would be possible

only in the seldom if ever realized case in which the archetype has

been unequivocally identified subsequent to the reconstruction of

its text; for if the archetype were already known, what incentive

would there be to reconstruct it? Thus for testing DLP, we must be

content with evaluating an earlier, more narrowly based edition

against later, more broadly based editions. Ideally, all the editions

would be statistically independent of one another, but this is

exceedingly unlikely.

We need to test statistically whether the probability p in

equations (4) and (5) is greater than 0.5, the probability of correctly

calling a toss of a fair coin. We can do this by testing whether two

estimated values of p are significantly greater than 0.5: the first is

the estimate P1 found numerically from an estimate of c in

equation (5) as the average amount of information gained or lost in

some large number of decisions; the second is P2, the fraction of

decisions that are correct. If both tests support the alternative

hypothesis p.0.5, there is reason to conclude that DLP is valid.

But why be concerned with information at all if DLP maintains

simply that an editor will more often be correct in choosing the less

common of equally acceptable alternative words? As will be

explained, it is quite possible for an editor to choose correctly by

selecting the less common word more often than not, thereby

satisfying DLP (P2.0.5), and yet lose much more information than

would be lost in making decisions by coin toss (c#0.5 bits/word

because, in sum, incorrect choices lost more information than

correct choices gained), implying P1,0.5 and thus contradicting

DLP.

Let us turn now to the case of an archetype whose text contains

N = n(1)+n(2)+…+n(k)+…+n(L) words belonging to L lemmata.

Treating each lemma as a character in a code, as before, the

information content I (x) of the archetype’s text (message x) is

I xð Þ~log2

N!

n 1ð Þ!n 2ð Þ! . . . n ið Þ! . . . n jð Þ! . . . n Lð Þ! ð6Þ

The expression on the right is the logarithm of the multinomial

probability of the particular set of numbers n(k) occurring by

chance. H(x) in equation (1) is the limit as N R ‘ of the average

I(x)/N as found by applying Stirling’s approximation to the

factorials in equation (6). The probabilities p(k) in equation (1)

correspond to the relative abundances n(k)/N. If equation (1) were

used as an approximation in place of the exact equation (6), the

probabilities p(k) would have to be estimated separately from some

sample of the language. Equation (6) avoids this difficulty. At the

same time, it more accurately assesses the substantial information

content of rare words, which is important because in general most

occur quite infrequently. For instance, in Lucretius’s De Rerum

Natura, ,4,500 lemmata are represented in the ,50,000-word

text, and of these, ,1,600 occur only once.

Suppose now that a copyist has mistakenly replaced an original

word of lemma i with an otherwise equally acceptable word of

lemma j at some point in the text. All else remaining the same, the

information content I (y) of the corrupt copy (message y) will be

I yð Þ~log2

N!

n 1ð Þ!n 2ð Þ! . . . n ið Þ{1½ �! . . . n jð Þz1½ �! . . . n Lð Þ! ð7Þ

and the apparent change in information content DI = I(y) – I(x) will

be

DI~log2

n ið Þ
n jð Þz1

ð8Þ

Questions about expression (8) in relation to continuous as

opposed to discrete information are taken up in section 2.4 below.

The average of DI-values throughout the text, ÆDI æ, corresponds

to c in equation (5). Notice that n(i)$1 because, by hypothesis, the

original lemma i is one of the possibilities. Notice also that DI can

be positive, negative, or zero. A copying mistake may lose

semantic information, but it can either increase or decrease the

amount of entropic information.

Whenever a copying error is made, an amount of information

|DI| given by equation (8) is cast in doubt. Reconstruction of a

text can be viewed as a process of recovering as much of this

information is possible. Wherever the editor endeavors to correct a

mistake, choosing the correct lemma i will add the amount of

information –DI from equation (8), and choosing the incorrect

lemma j will add the amount +DI. If the editor always chooses the

less frequent word, a non-negative amount of information |DI|

will be added each time.

The firmest prediction for testing DLP comes from the second

law as it applies to information: if the editor has successfully taken

advantage of entropy information, then the average DI-value for a

large number of binary decisions should be distinctly greater than

zero, that is, ÆDI æ.0 bits/word. How much greater than zero will

depend on many factors, such as the language itself, the author’s

vocabulary, each scribe’s attention span, the editor’s competence,

and the psychologies of all involved. In itself, ÆDI æ significantly

greater than 0 bits/word constitutes prima facie evidence that DLP

applies to the reconstructed text, because ÆDI æ.0 bits/word

implies by way of equation (5) that the editor has a distinctly

higher likelihood p of choosing correctly by choosing the less

common word than by flipping a coin (that is, p.0.5). On the

other hand, DLP would not apply if ÆDI æ#0 bits/word; words’

frequencies of occurrence n(k) then could be said to have provided,

if anything, entropy disinformation.

There is no doubt that editorial decisions are based primarily on

semantic information. Hence there is reason to believe that

entropic information ordinarily contributes less than half of the

single bit needed to decide a binary choice, especially since DLP

comes into play only when there is enough non-entropic

information to establish that both alternatives are acceptable,

and more or less equally so. Thus we have a second expectation:

that ÆDI æ is probably less than 0.5 bits/word. A ÆDI æ-value even
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approaching 1 bit/word would appear practically impossible, like

the case of c.1 bit/word in equation (5), as it would imply that the

correct word generally could be chosen on the basis of frequency

alone.

All that can be estimated from ÆDI æ alone is the maximum

amount of entropy information that could have contributed to the

single bit needed for a successful decision. The problem in

establishing how much the entropy information actually did

contribute to the editor’s decision is the inherent redundancy of

language itself, typically ,50–75% in modern printed English

[10]. The question is whether the editor tended to dismiss actually

meaningful entropic information as redundant.

Evidence comes by way of equation (8). If ÆDI æ$0, the (non-

redundant) entropy information corresponds to a channel width

0#C1#1 analogous to channel width c in equation (5); if ÆDI æ,0,

there is no corresponding channel width C1. If ÆDI æ$0 bits/word,

the probability P1 corresponding to p in (8) can be found

numerically from C1; if ÆDI æ,0, there is no corresponding

probability P1. Now p can also be estimated as the fraction of

editorial choices P2 that agree with the archetype or its stand-in.

Notice that P2 depends only on the total number of the editor’s

successful choices, whereas P1 depends primarily on the distribu-

tion of the frequency of occurrence of words as reflected in the

distribution of DI-values (Figure 1). Though not independent of

one another, P1 and P2 could differ substantially. If P1<P2 within

the range of uncertainty, evidence then supports the conclusion

that the editor has indeed taken entropic information into account.

To sum up, 0,ÆDI æ,1 bit/word supports the conclusion that

entropic information contributed to the editor’s decisions, and

hence that DLP applies to the edition. If P1<P2, the conclusion is

reinforced, as it is if ÆDI æ,0.5 bits/word. If the conclusion holds,

then the prediction from the second law is confirmed, and DLP

follows as a consequence. Though DLP concerns the frequency of

alternative words relative to the total number, the real test of DLP is the

frequency of alternative words relative to one another, which is the

quantity that determines the difference in entropic information, as

equation (8) shows.

2.4. Discussion. Would the corresponding expression

derived from equation (1), DI = log2 [p(i)/p(j)]<log2 [n(i)/n(j)], be

preferable to equation (8): DI = log2 {n(i)/[n(j)+1]}? This cannot be

the case: in 95 out of 756 choices between acceptable alternative

words in reconstructing Lucretius’s De Rerum Natura, n(j) = 0, giving

a meaningless DI R log2 [n(i)/0] each time.

How could a text approach the theoretical minimum-informa-

tion condition I = 0 bits in which all words belong to a single

lemma, when equation (8) allows the introduction of previously

unrepresented lemmata, that is, ones with n(j) = 0? A text may gain

or lose lemmata through repeated miscopying, but as equation (3)

shows, the overall trend will be toward replacement of less

common lemmata by more common ones, with the eventual loss

of lemmata from the text. Is this a realistic possibility to consider in

a manuscript only one or a few removes from its archetype? Loss

during copying should be common because most lemmata occur

quite infrequently. With Lucretius’s De Rerum Natura, for instance,

,1,600 out of ,4,500 lemmata in the archetype of manuscripts O

and Q apparently occurred only once (n(i) = 1) and hence would

have been on the verge of extinction at the very first copying.

Results

1. Lachmann and Lucretius
We analyze Lachmann’s 1850 reconstruction of Lucretius’s On

the Nature of Things (De Rerum Natura, ,60 BCE) [1], which he based

on two ninth-century manuscripts, known as Oblongus (O) and

Quadratus (Q) (the two oldest then known), plus a fifteenth-century

manuscript (L) that he took to have descended independently from

a common ancestor, even though all its scribal variants seem to be

found in either O or Q. It is now generally accepted that L and all

other fifteenth-century Italian manuscripts are descended from O,

so that, for practical purposes, Lachmann based his edition on O

and Q alone [2,29–31]. It is also generally accepted on the basis of

paleographic and codicological evidence that O and Q are both

descended at one or two removes from a lost ancestor known as

vII, and that vII in turn is twice removed from a lost fourth- or

fifth-century ancestor known as V [2,30].

2. Differences in Information Entropy between
Manuscripts

We evaluate Lachmann’s reconstruction using the later and

much more broadly based reconstruction by Ernout [32] as a

stand-in for the archetype, and using Govaerts’s [33] tabulation of

word frequencies in Ernout’s edition. Govaerts’s data are of a type

seldom collected, and are the only such data available on

Lucretius. The fifth edition of Martin [34] is used for comparison.

Like Ernout’s edition, Martin’s has long been one of the standards.

Ernout’s text contains N = 49,658 words belonging to L = 4,492

lemmata [33], and is found from equation (6) to have an entropy

information content of I<474 ?103 bits (,58KB). The entropy

information per word, H = I/N<9.54 bits/word, is comparable to

the 9–12 bits/word in present-day written English when calculated

in the same manner [10,11].

We count 2,095 instances in which Lachmann’s apparatus criticus

[1] lists one or more words as alternatives for one or more others

(see Table S1). Some of the discrepancies are easily correctable

errors; for instance, ones of spelling, syntax, or repetition. Some

involve whole phrases. Some may be due to different editors’

alternative readings of the same letters in the same manuscript.

Here we analyze only those instances to which DLP should apply

unequivocally: 756 cases involving single, correctly spelled words

that are easily seen to correspond one-to-one between O and Q,

and that both Ernout and Martin accept as the correctly read

alternatives (out of 830 on which only Lachmann and Ernout

agree).

We calculate the entropy difference DI between Lachmann’s

two alternative words as the difference resulting from the

substitution of each one into Ernout’s text according to equation

(8). For instance, in Book III, line 1038, the alternatives are potitus

(‘‘acquired,’’ n = 6) and potius (‘‘better’’ or ‘‘preferable,’’ n = 23) for

an absolute difference in entropy information of |DI| = |log2 [6/

(23+1)]| = 2.0 bits to be gained or lost. We take Ernout’s text as

establishing the correct alternative, as if it were the text of the

common ancestor v II. In this instance, Lachmann chose potitus, as

did Ernout and Martin, thereby recovering DI = +2.0 bits that

otherwise would have been lost to noise. Notice that of the 2.0 bits,

1.0 bit is redundant, which would imply any editor should have

more than enough entropy information to choose correctly

between semantically equivalent alternatives. Consistent with this,

all three editors made the same choice.

The distribution of DI-values for all 756 instances is nearly

Gaussian (Figure 1). The mean difference in entropy information

is ÆDI æ = +0.25760.196 bits/word (95% confidence interval; the

observed significance level or P–value = 0.005, one-tailed because

the second law gives reason to believe the population mean of DI is

positive, so the alternative hypothesis is that this population mean is

greater than zero). This is contrasted with the 1 bit/word needed to

determine the outcome of a Bernoulli trial, and the average

2.16160.095 bits/word (95% confidence interval) of predominantly
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meaningless information that would have been added if the editor

had chosen the rarer word in all 756 cases.

Similar results were obtained with the 830 instances in which

Lachmann and Ernout, but not necessarily Martin, agree on the

alternative lemmata: ÆDI æ = +0.29260.187 bits/word (95% con-

fidence interval; P–value = 0.001, one-tailed), and with subsamples

in which the rarest lemmata were eliminated (a notable point

because some of these are best known from Lucretius’s poem).

As a channel width, 0.2660.20 bits/word (in significant figures)

corresponds by way of equation (5) to a P1 = 0.79+0.09
20.15 likelihood of

the rarer word being correct, in agreement with the P2 = 547/

756 = 0.7260.03 (95% confidence interval) fraction of Lachmann’s

choices taken to be correct by Ernout. Similar results were obtained

uniformly with additional data sets, beginning with the set of all 830

cases in which Lachmann and Ernout but not necessarily Martin

agree on the alternative reading, and including various subsets of those

830 cases.

The implication from 0,ÆDI æ,1 bit/word, reinforced by

P1<P2, is that Lachmann recovered a substantial and realistic

amount of semantically meaningful entropic information, and

hence that DLP applies to his reconstruction. Lachmann evidently

found it possible to increase the odds of choosing correctly

between more or less equally acceptable alternatives from 0.5 for a

fair coin toss to about 0.7–0.8 (0.79+0.09
20.15, 0.7260.03), on average.

Discussion

Our results suggest that the difficilior lectio potior principle (DLP)

can indeed be useful as an editorial rule of thumb. This is

consistent with the notion that the early philologists who framed

DLP had prescient understanding of information as a probabilistic

phenomenon.

The results also suggest an extension of DLP as a quantitatively

testable hypothesis: copiosior informatione lectio potior, ‘‘the reading

richer in [entropic] information [is] preferable.’’ Conclusively

testing this hypothesis will require analysis of the manuscript

traditions of many more texts.

The results call attention to the mathematical nature of

philology, and to its connections with information science. They

suggest that applications of information theory, particularly

statistical aspects developed to high levels of sophistication in

cryptography [35], could prove valuable in continuing to refine

the reconstruction of culturally fundamental texts.

Materials and Methods

1. Data
Table S1 gives the data used in this study.

2. Issues of Latinity
In the attempt to estimate each word’s entropy information as

objectively and unambiguously as possible, we treat grammatically

justifiable words without regard to inflection, context, and

semantic content (meaning); and we calculate entropy information

by treating each word’s lemma as if it were a symbol. If inflection

or association in context were taken into account, it often would

be impossible to classify an individual Latin word uniquely as

belonging to one and only one symbol, and thus impossible

to associate that word uniquely with a definite amount of

information. For instance, the noun feminae could be genitive or

dative singular, or nominative plural, the correct choice depending

on the reader’s interpretation of the word’s sometimes ambiguous

relationship to others in the sentence.

Taking all of the inflections of a word like femina as representing

a single symbol avoids many ambiguities, but at certain costs. One

of these is losing whatever information is contained in any one

word’s contextual association with others in a sentence. Another is

losing whatever information is contained in the distinction

between lemmata of the same spelling. The word cum, for

instance, can be read as either a conjunction or a preposition, the

choice again depending on the reader’s assessment of the context.

Where a word such as cum could represent more than one part of

speech (that is, more than one lemma), we count it as belonging to

all possible lemmata and reckon its frequency of occurrence

accordingly.

Although the Oxford Latin Dictionary [36] is perhaps more widely

known, we chose Lewis and Short’s A Latin Dictionary [37] as our

standard of reference because it is favored by the Pope’s principal

Latinist, Reginald Foster [38]. Also, we accept as correct well-

known medievalisms, such as que (not the enclitic -que) for quae, that

occur in Lachmann’s apparatus criticus [1].

Supporting Information

Table S1 The 2,095 textual variants we note in the apparatus

criticus for Karl Lachmann’s 1850 edition of Lucretius’s De

Rerum Natura [1].

Found at: doi:10.1371/journal.pone.0008661.s001 (0.17 MB

PDF)
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