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Abstract

Deep sequencing of transcriptome (RNA-seq) provides unprecedented opportunity to interrogate plausible mRNA splicing
patterns by mapping RNA-seq reads to exon junctions (thereafter junction reads). In most previous studies, exon junctions
were detected by using the quantitative information of junction reads. The quantitative criterion (e.g. minimum of two
junction reads), although is straightforward and widely used, usually results in high false positive and false negative rates,
owning to the complexity of transcriptome. Here, we introduced a new metric, namely Minimal Match on Either Side of
exon junction (MMES), to measure the quality of each junction read, and subsequently implemented an empirical statistical
model to detect exon junctions. When applied to a large dataset (.200M reads) consisting of mouse brain, liver and muscle
mRNA sequences, and using independent transcripts databases as positive control, our method was proved to be
considerably more accurate than previous ones, especially for detecting junctions originated from low-abundance
transcripts. Our results were also confirmed by real time RT-PCR assay. The MMES metric can be used either in this empirical
statistical model or in other more sophisticated classifiers, such as logistic regression.
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Introduction

Alternative splicing (AS), which invalidates the old theory of

‘‘one gene one protein’’, enables higher eukaryote to produce large

number of transcripts with limited number of genes, and has been

proposed as a primary driver of the evolution of phenotypic

complexity in mammals [1]. In human, ,95% of multi-exon

genes undergo alternative splicing, which explains the numerical

disparity between the low number of human protein-coding genes

(,26,000) and the high number of human proteins (more than

90,000) [2,3]. Alternative pre-messenger RNA splicing also

influences development, physiology, and disease; many studies

have reported the existence of cancer-specific alternative splicing

in the absence of genomic mutations (for a review see [4]).

Several methods have been applied to detect AS events.

Expression Sequence Tag (EST) was the first widely used

technology and played a leading role in detecting AS events.

However, except for the relatively high cost, EST technology has

many other limitations including genomic contamination, cloning

bias, paralog confusing, 39 gene bias and low sensitivity in

detecting low abundance transcripts. Besides, it also requires great

efforts for data interpretation [5]. Microarray technologies have

also played a prominent role in shaping our understanding of the

complexity of transcriptome [1,6,7]. Recently, whole-transcript

microarrays were used to monitor 24,426 alternative splicing

events in 48 human tissues and cell lines [8]. Although this

technology has been used extensively, limitations still persist;

including limited probe coverage, cross-hybridization artifacts,

requirement of previously known gene structures and difficulties in

data analysis, etc.

More recently, rapid progress in the development of massively

parallel sequencing such as Illumina/Solexa or Applied Biosys-

tems/SOLiD, has provided people unprecedented opportunities to

interrogate plausible alternative RNA splicing. Using these

technologies, tens of millions of short tags (25–75 bases) can now

be simultaneously sequenced at less than 1% the cost of traditional

Sanger methods. Deep sequencing of transcriptome (RNA-seq)

quickly becomes the most powerful technique to interrogate the

whole transcriptional landscape [9], including both known

transcript quantification and novel transcript discovery. Theoret-

ically, all splicing events as well as chimeric transcripts can be

directly detected [10]. However, the RNA-seq downstream data

analysis still remains a big challenge.

Several major alternative splicing forms, such as exon skipping,

mutually exclusive exon, alternative first/last exon and intron

retention, can be detected by simply mapping RNA-seq reads to

hypothetical splicing junctions. The reliability of a splicing

junction is determined by: 1) number of reads mapping to the

junction (junction reads); 2) number of mismatches on each

mapped read; 3) read mapping position on the junction, i.e. how

close is the center of the read to the junction itself. The shorter the

distance is, the less likely that this mapping is simply by chance; 4)

Mismatch position on junction read, e.g. mismatches occurring at

both ends of reads are more likely due to the sequencing error,

while those occurring in the middle of read are more likely to be

polymorphisms [11].
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However, most previous studies only considered the first

quantitative information of junction reads, i.e. an exon junction

is considered to be real if it has more than R junction reads (R = 1

or 2) [12,13]. This read-counting method, as demonstrated in the

results, has both high false positive and false negative rates. On the

other hand, in one of the two earliest pioneering human

transcriptome studies, Pan et al [3] used features similar to those

described above to train both linear and nonlinear classifiers for

true splicing junction detection, and achieved superior results.

In this paper, we introduced a new statistical metric, namely

Minimal Match on Either Side of Exon junction (MMES), as a

means to measure the ‘‘quality’’ of junction reads by integrating all

the features listed above. Then, we presented a simple yet effective

empirical statistical model using this metric to detect splicing

junctions with real RNA-seq data. When validated by two highly

reliable mouse transcript databases, this MMES based empirical

method is shown to be remarkably more accurate than read-

counting method, and also better than the logistic regression

method used in Pan et al [3].

Results

1) Overview of MMES
The MMES score for each junction read is calculated as:

MMES~Min Larm{Lmismatchð Þ, Rarm{Rmismatchð Þð Þ

where Larm and Rarm correspond to the left and right portions of the

read split by joint point of exon junction, respectively. While

Lmismatch and Rmismatch are number of mismatches occurred on Larm

and Rarm, respectively (Figure 1A).

For each junction read, the MMES score captured the criteria

2–4 listed above in an integrative manner. First, a junction read

with fewer mismatches will have a higher MMES score. Second, a

junction read with its center closer to the junction itself will have a

higher MMES score. Finally, MMES can give a rough estimate of

the positions of mismatches: When a read was divided into ‘‘long

arm’’ and ‘‘short arm’’ by the middle point of exon junction, in

most cases, mismatches on ‘‘long arm’’ have no effect on MMES

score, while mismatches on ‘‘short arm’’ will reduce the MMES

score. In summary, MMES is an integrated metric for measuring

mapping quality, indicating the combinatorial effect of the position

of the read relative to the junction and the position of the

mismatch(es) in the alignment.

2) Non-Uniform Distribution of MMES Scores
We mapped a real RNA-seq dataset (.200M 25 bp reads) from

mouse brain, liver and muscle [13] to both Exon Spliced Junction

(ESJ, see Methods) and, as a negative control, Exon Random

Junction (ERJ, see Methods) databases using SOAP (v1.11) with

up to 2 mismatches allowed [14]. Although easy to calculate and

informative, MMES is somewhat less powerful to discern different

number of mismatches (i.e. 1-mismatch vs 2-mismatch). For

example, additional mismatch on ‘‘long arm’’ has no effect on

MMES score. Therefore, we divided all junction reads into 3

categories (0-mismatch, 1-mismatch and 2-mismatch), and then

calculated MMES score distribution for each category, respec-

tively. (Figure 1B). Grouping junction reads according to

mismatches is necessary, because number of mismatches have

great impact on mapping specificity, especially for shorter reads.

This classification was also performed in previous ChIP-seq study

[15].

In general, there were much more reads aligned to ESJ than to

ERJ. Reads aligned to ESJ were almost uniformly distributed

regardless of MMES score. In contrast, reads mapped to negative

control ERJ presented a skewed distribution, i.e. the number of

mapped reads drops dramatically with the increase of MMES

score, which indicated that there were only a few reads having

their centers close to exon junctions. Furthermore, for exact match

(0-mismatch), several orders of magnitude more reads map to ESJ

than to ERJ regardless of the MMES scores, which implied that

exact match reads were the most reliable to detect spicing

junction, no matter which part of the junction the read was aligned

to. However, if there were mismatches especially 2-mismatches,

nearly the same number of reads (with small MMES scores) will

map to ESJ as well as ERJ (Table S1). This strongly indicated that

the reliability of 2-mismatch read alignment largely depended on

the corresponding MMES score, i.e. those with large MMES score

Figure 1. MMES metric and its skewed distribution over ESJ
and ERJ. (A) Calculation of Minimal Match on Either Side (MMES) of
junction. Each square represents a nucleotide. The figure shows that
eight 25-mer reads are aligned to a 42-mer exon junction (the bottom).
The exon junction is composed of two equal parts: the left part (filled in
red) is from the last 21bp of the upstream exon, and the right part (filled
in blue) is from the first 21 bp of the downstream exon. Within aligned
reads, the matched nucleotides are colored in either red (left) or blue
(right), and the mismatch nucleotides are blank. MMES score is placed
on the right side of each read. (B) MMES score (see main text)
distribution on Exon Splicing Junction (ESJ, red lines) and Exon Random
Junction (ERJ, blue lines). For both ESJ and ERJ, mapped reads are
divided into 3 categories: 0 mismatch (circle), 1 mismatch (triangle) and
2 mismatches (cross).
doi:10.1371/journal.pone.0008529.g001
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were more likely to be real ones while those with small MMES

score were non-specific mapping artifacts. The latter cannot be

applied to identify splicing junctions without further calibration.

We also performed the same analysis on another RNA-seq

dataset from human embryonic kidney and B cell line [12], and

obtained very similar results (Figure S1, Table S1). We further

demonstrated that this non-uniform distribution of MMES is not

due to the uniqueness of read mapping, as similar distributions

were observed in both uniquely and non-uniquely matched

junction reads, for both human and mouse datasets (Figure S2).

3) Error Rate for Exon Junction Detection
The error rate of a read mapping to an exon junction (Pread) can

be empirically estimated from RNA-seq reads themselves, based

on the MMES score distributions on ESJ (as observation) versus

ERJ (as negative control).

Pread N,Mð Þ~ # hits on ERJf g
# hits on ESJf g

where N is MMES score and M is number of mismatches

(M[½0,1,2� if maximum 2 mismatches allowed). Finally, the

‘pseudo’ p-value (thereafter p-value) of the exon junction (Pjunction)

was calculated as the product of mapping error rates from all

junction reads. A p-value threshold was subsequently selected

(based on FDR) to call all the true exon junctions.

Pjunction~PPread N,Mð Þ

In conclusion, this empirical p-value is a measurement of

reliability of junction. It was calculated based on collective effect of

mapped reads, and different read had different weight according

to its ‘‘mapping quality’’. The smaller p-value indicates the better

reliability.

4) Comparison with Read-Counting Method
One drawback of read-counting method was that it failed to

consider the detailed information of alignment such as mapping

position and number of mismatches, and therefore, assigned all

mapped reads the same weight. Another major problem was that it

was difficult to set a reasonable threshold R, as the minimum

number of covering reads with which a splicing junction would

be accepted. Because as shown in Figure 2A, almost every R

threshold in read-counting method presented a wide dynamic

range of p-value inferred from our statistical method. For example,

45% of 2-read-covering junctions (R = 2) were rejected by our

statistical method (p-value.0.01), while 55% was accepted

(p-value#0.01). From Figure 2B, we can see that on average

46% (this is the under-estimated percentage, see Discussion) of

junctions with p-value#0.01 can be verified by transcripts

database, while only less than 5% of junction with p-value.0.01

can be verified.

Here we used 0.01 as a p-value cutoff, since the corresponding

false discovery rate (FDR) is less than 5% (Figure 2A). The FDR

was estimated by applying the same criteria to our negative control

database (ERJ).

To further confirm that our empirical method performed better

than read-counting method, we divided all splicing junctions

predicted either by read-counting or our MMES based method

into 3 non-overlapping categories: MMES model uniquely

predicted (‘‘P0.01_uniq’’, p-value#0.01, R = 1), read-counting

method uniquely (‘‘R2_uniq’’, p-value.0.01, R$2), and predicted

by both methods (‘‘Common’’, p-value#0.01, R$2) (Figure 3A).

For each group, we then checked the validation rate (i.e. positive

predictive value; PPV, see discussion), using highly reliable

Figure 2. Performance of MMES based empirical method. (A)
Relationship between ‘‘percent of splicing junctions detected’’ and
p-value cut-off threshold. Splicing junctions are grouped by the number
of covering reads R, the pink line indicates the incurred FDR when the
corresponding cutting-off p-value is selected, and the vertical dashed
line indicates the p-value = 0.01 cutoff (with incurred FDR = 4.8%). (B) In
case of p-value threshold = 0.01, all junctions are divided into two
classes: those junctions with p-value#0.01 are predicted to be real,
while those junctions with p-value.0.01 are predicted to be false. Each
class is further divided into 5 sub-classes according to number of
covering reads. For each sub-class, percent of junctions verified (PPV) is
calculated by cross validating predicted junctions with combined
alternative splicing database.
doi:10.1371/journal.pone.0008529.g002
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Combined Alternative Splicing Database (CASD, see Methods)

as positive control. The results indicated that 63.26% of the

‘‘Common’’ and 30.13% of ‘‘P0.01_uniq’’ splicing junctions could

be rediscovered in CASD, while only 4.86% of ‘‘R2_uniq’’ splicing

junctions were observed in CASD (Figure 3B). The PPV difference

between ‘‘R2_uniq’’ and ‘‘P0.01_uniq’’ was statistically significant

with Fisher’s Exact Test p-value = 3.3610254. To our surprise, the

low PPV (4.86%) of those R2 unique splicing junctions were almost

constant regardless of the number of junction reads (Figure 2B),

although PPV of the common splicing predictions rose dramati-

cally with the increase of the number of junction reads.

The read-counting method (with R = 2 cutoff) had some

intrinsic problems especially in detecting splicing junctions in

low-abundance transcripts, where, in most cases, only one read

was mapped to a splicing junction. For example, in mouse brain

tissue, 20,945 non-consecutive exon junctions (skipped junctions)

were supported by RNA-seq reads, of which 86.34% (18,088/

20,945) were covered only by one read (Figure S3). Not

surprisingly, many of them are real exon junctions rather than

false positives, because as shown in Figure 3B, 30.13% of them can

be found in CASD. And we believe 30.13% was an under-

estimated number as low abundance transcripts were poorly

represented in CASD (see discussion).

Taking all together, we demonstrated that our MMES-based

empirical statistical approach is more accurate than previous used

read-counting method. In terms of method-specific predictions (i.e.

junctions predicted only by one method rather than the other), our

method is roughly 66more accurate than read-counting method.

5) Comparison with Logistic Regression Model
Logistic regression (logit model) allows one to predict a binary

outcome from a set of predictor variables, which could be continues

or discrete or mix of any of these. We built a logistic regression model

using the same features in Pan et al. (see Methods). Basically, these

features incorporate all the quantity and quality information of

mapped reads, and all have strong p-values for the associated

regression coefficients. When performing a log-likelihood test

(comparing this logit model with empty model which only had an

intercept), we received a p-value = 0 (x2 = 106751, df = 6), indicating

this logit model as a whole fits significantly better than empty model.

Figure 3. Comparison of MMES based empirical approach with read-counting method and logistic regression model. (A) All splicing
junctions predicted by either method are divided into 3 non-overlapping categories: ‘‘P0.01_uniq’’ refers to those junctions with only 1 covering read
but with p-value#0.01 (green); ‘‘R2_uniq’’ refers to junctions with at least 2 covering reads but with p-value.0.01 (red). ‘‘Common’’ refers to those
junctions with at least 2 covering reads and with p-value#0.01 (blue). (B) Validation rate (PPV) for ‘‘P0.01_uniq’’, ‘‘R2_uniq’’, and ‘‘Common’’,
respectively. (C) ‘‘P0.01_uniq’’ refers to those junctions detected by MMES based empirical method only (green), ‘‘LR_uniq’’ refers to those junctions
identified by logistic regression only (red), ‘‘BothSig’’ refers to junctions identified by both models (blue) and ‘‘BothUnsig’’ refers to junctions rejected
by both method. (D) Validation rate (PPV) for ‘‘P0.01_uniq’’, ‘‘LR_uniq’’, and ‘‘Common’’, respectively.
doi:10.1371/journal.pone.0008529.g003

Detect Exon Junctions

PLoS ONE | www.plosone.org 4 January 2010 | Volume 5 | Issue 1 | e8529



We then compared our MMES based empirical method with

logistic regression model the same way as before: all predicted

junction by MMES based method (designated as P0.01) and

logistic regression model (designated as LR) were divided into 3

non-overlapping categories: common, P0.01_uniq and LR_uniq

(Figure 3C). For commonly predicted junctions, 48.78% can be

verified by CASD, while for P0.01_uniq and LR_uniq junctions,

18.40% and 13.75% can be verified, respectively (Figure 3D). In

terms of uniquely predicted junctions, MMES model is 1.3 times

more accurate than LR model (p-value = 1.761023). Further-

more, by using 10-fold cross-validation, we obtained highly

significant and comparable AUC scores from both logistic

regression model (AUC = 0.981) and our empirical method

(AUC = 0.982). Finally, we added the MMES feature to this logit

model to see whether MMES score is also superior when used in

Pan et al’s approach. The results indicated that the model was

indeed improved, measured by both AUC and validation rate, but

still not as good as our empirical approach (Figure S4).

6) Experimental Validation of False Positive and False
Negative

We randomly selected 20 false positive (FP) and several false

negative (FN) splicing junctions for experimental validation by

RT-PCR followed by Sanger sequencing (Table S2). False positive

splicing junctions refer to those covered by at least 2 reads but with

p-value.0.01 in our statistical method. False negative splicing

junctions refer to those covered by 1 read but with p-value#0.01.

We chose splicing junctions with relatively higher RNA-seq read

coverage for RT-PCR analysis. Of the 20 FPs tested, all were

confirmed, yielding a validation rate of 100%. An example was

shown in Figure S5. In contrast, false negative is difficult to verify

with RT-PCR/Sanger sequencing because those transcripts

usually have extremely low expression level. As an alternative,

we analyzed the EST data in public domain and found that at least

30% of the false negatives were confirmed (see discussion). Two

examples were shown in Figure S6.

Discussion

1) Sensitivity, Specificity and Positive Predictive Value
(PPV)

Sensitivity, specificity and positive predictive value (PPV) are all

widely used statistical measures of the performance of a prediction

system. By definition, sensitivity refers to the proportion of actual

positives which are correctly predicted as positive; specificity is the

proportion of actual negatives which are correctly predicted as

negative; while PPV is the proportion of predicted positives which

are actual positive.

sensitivity~
TP

TPzFN
; specificity~

TN

TNzFP
; PPV~

TP

TPzFP

Where true positive (TP) refers to real exon junctions (i.e. exist in

vivo) which are correctly identified as real; false positive (FP) refers to

false exon junctions (i.e. not exist in vivo) which are incorrectly

identified as real; true negative (TN) refers to false exon junctions

which are correctly identified as false; and false negative (FN) refers

to real exon junctions which are incorrectly identified as false.

Here, sensitivity and specificity cannot be applied to evaluate

different methods for exon junction prediction, because we don’t

know the number of actual positive (TP+NF), i.e. the denominator

of sensitivity, or actual negative (TN+FP), i.e. the denominator

of specificity, in a specific tissue under a specific condition.

Furthermore, some low-abundance exon junctions may not be

detected just because the sequencing coverage is not deep enough,

not because of the prediction method used. On the other hand,

PPV can be determined as a statistical measure to compare our

method with other method since the number of true positives (TP),

i.e. the numerator of PPV, is confirmed by CASD, while the

number of predicted positives (TP+FP), i.e. the denominator of

PPV, is the result from each prediction method.

As shown in Figure 3B, 30% of the predicated splicing junctions

covered by 1 read (low abundance transcripts) were confirmed by

CASD. However, this does not imply that our model is less

powerful in detecting low abundance transcripts. First, the PPV for

low- abundance transcripts could be significantly under-estimated

since CASD is based on traditional assays such as EST sequencing,

which is much less sensitive than RNA-seq in detecting low

abundance transcripts. Based on current data, it is difficult to

evaluate the extent to which PPV is under estimated. Second, and

more importantly, unlike sensitivity and specificity, which will not

be affected by the ratio of positives to negatives in the sample, PPV

suffers greatly from this ratio, and because of this, the PPV value

per se cannot reflect the detecting power of a method [16].

2) Influence Factors for the Mapping Specificity of
Junction Reads

As shown in Figure S2 and Table S1, non-specific mapping to

exon junctions is a big problem for RNA-seq. In mouse dataset,

4,102,511 reads were mapped to ESJ, while 929,756 reads were

mapped to negative control ERJ. Therefore as high as 23%

(929,756/4,102,511) of those junction mappings are false positives.

In this paper, we showed that Minimal Match on Either Side of

exon junction (MMES) and the number of mismatches have very

strong impacts on mapping specificity. To further determine the

effect of other factors, such as read length, we performed the

following simulation: assuming a uniform i.i.d. random model for

DNA sequences, the number of random hits per junction per

million reads (X) can be determined by a Random Model reported

in Sultan et al. [12]. The results suggested that read length (RL) also

has a big impact on mapping specificity (Table S3). For example, if

two mismatches are allowed, X is 6.1861029 when RL = 32, which

is about four orders of magnitude lower than that (4.4461025)

when RL = 25. In general, other than increasing MMES and

reducing the allowable mismatches, one can also increase the

length of RNA-seq read to improve the mapping specificity.

3) Negative Control Databases
The mapping specificity of junction reads largely depends on

the negative control database. Pure random sequence (PRS)

shuffles the transcriptome in nucleotide level and therefore is

definitely not a good control as it failed to consider inherent

codon, dinucleotide and other compositional features. In contrast,

ERJ and rESJ shuffle the transcriptome in exon level (i.e. the basic

unit of shuffling is exon rather than nucleotide), and therefore

these two databases could inherently retain most of the

compositional features. As shown in Figure S7, both ERJ and

rESJ reserve the compositional features of ESJ in terms of single

nucleotide distribution. For example, the 5-mer motif near

junction site in ESJ, i.e. 59-[A|C]23A22G21G1T2 -39, can be

found in both ERJ and rESJ. ERJ and rESJ can also preserve the

compositional features in dinucleotide level (Table S4).

As expected, ERJ and rESJ almost give the same results when

serving as negative control. In terms of mapped reads, the Pearson’s

correlation coefficient between ERJ and rESJ is 0.987 (p = 3.60610214),

0.986 (p = 5.75610214) and 0.992 (p = 8.88610214) for exact

mapping, 1 mismatch mapping and 2 mismatch mapping,

respectively (Figure S8).

Detect Exon Junctions
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In conclusion, both ERJ and rESJ are good negative controls

because they keep compositional features inherently, however,

ERJ is slightly more conservative in discriminating real splicing

junctions when there are mismatches (Figure S8).

4) Conclusions
MMES is an integrated metric for measuring mapping quality,

indicating the combinatorial effect of the position of the read

relative to the junction and the position of the mismatch(es) in the

alignment. Our MMES-based empirical statistical model is an

annotation-based method, which relies on junction databases

according to certain known gene model, and as shown in results,

outperformed previous methods in terms of method-specific

junction predictions. We believe that our MMES model provided

a timely contribution to the splicing detection using RNA-seq.

Materials and Methods

1) RNA-Seq Datasets
Two RNA-seq datasets from mouse and human were used in

this study. Mouse dataset consists of 215 million, 25-bp reads from

brain, liver and muscle. We downloaded the data from http://

woldlab.caltech.edu/,alim/RNAseq/ [13]. Human dataset con-

tains 13 million, 27-bp RNA-seqs from embryonic kidney and B

cell line. We downloaded these data from NCBI Gene Expression

Ominibus (www.ncbi.nlm.nih.gov/geo) with Accession Number

GSE11892 [12].

2) Exon Junction Sequences
We prepared several databases in this study—ESJ (Exon Spiced

Junction), ERJ (Exon Random Junction), rESJ (reversed Exon

spliced Junction). We used ESJ database to detect all the potential

exon skipping events. The ERJ and rESJ databases were used as

negative control with the merits of maintaining inherent codon,

dinucleotide and other possible compositional biases when

discriminating between true and false junctions. As negative

controls, ERJ and rESJ almost came up with the same results, so

we only used ERJ in this study (see discussion).

ESJ database was prepared by pairwise connection of exon

sequences from every locus annotated by UCSC knownGene

model (mm9, July, 2007). The last 21 bp of the upstream

exon was connected to the first 21 bp of the corresponding

downstream exon. We tried all possible combinations, e.g. exon

i was connected to exon i+1, exon i+2, etc. The 21-bp was

chose to ensure at least 4 nucleotides overlapping between one

of the two connected exons and a RNA-seq read. In our

simulation, using a criterion with less than 4 nucleotides

overlapping will introduce extraordinary non-specific RNA-seq

read mapping to exon junctions (data not shown). After

discarding those junctions shorter than reads and removing

redundancy, we built the ESJ database containing 1,976,416

possible junctions.

ERJ database was constructed exactly the same way as we

described for ESJ, except that two exons joined together were

randomly picked from 2 different loci. For our own convenience,

the sizes (i.e. total number of exon junctions) of 2 databases were

set to be the same. rESJ database was also built exactly the same

way as we built ESJ, except that we swapped the position of

upstream exon and downstream exon.

For the human dataset, we built ESJ and ERJ databases with

exactly the same method as we applied to mouse, based on UCSC

knownGene model (hg18, Mar. 2006). We had in total 2,782,935

exon junctions for ESJ, ERJ. The read length is 27 bp in this

dataset, so we connected the last 23 bp of upstream exon to the

first 23 bp of the corresponding downstream exon, to make sure

there is at least 4 bp overlapping between an exon and a RNA-seq

read.

3) Known Splicing Junction Databases
We used two high quality transcript databases to evaluate the

predicted junctions. These include the EBI Alternative Splicing

and Transcripts Diversity database (ASTD, v1.1) (http://www.ebi.

ac.uk/astd/main.html) and Mouse Gene Index database (v4.0)

developed by National Institute of Aging (http://lgsun.grc.nia.nih.

gov/geneindex4/index.html) [17,18]. All mouse transcripts se-

quences were downloaded and combined as a Combined

Alternative Splicing Database (CASD). All predicted exon

junctions were mapped to CASD with up to two mismatches

allowed. Percentage of junctions verified was measured by Positive

Predictive Value (PPV, see discussion), which is defined as:

PPV~
TP

TPzFP
.

4) Logistic Regression Model
We used exact the same features in Pan et al [3] in their

pioneering study of human transcriptome, except insertions/

deletions, because none of our short 25mer reads was aligned with

gaps when mapped to junctionome. Another logit model was build

by adding maximum MMES score to the above features. The

classifiers were trained on rESJ database (as negative) and

consecutive junctions (as positive) to obtain parameters. An R

package glm was use to implement this logistic regression and ROC

curve was plot using ROCR package [19].

5) Experimental Validation of False Positive and False
Negative

To experimentally validate the false positive and false negative

splice junctions, we designed exon-specific primers and carried out

Reverse Transcription Polymerase Chain Reaction (RT-PCR) on

mouse skeletal muscle PolyA+ RNA. The reaction for synthesizing

the 1st strand cDNA consists of 2.0 mL of AccuScript RT buffer,

100 mM dNTP mix (25 mM each), 0.1mg mouse skeletal muscle

polyA RNA, 100 ng of reverse exon-specific primer in a final

volume of 16.5 mL. To denature the mRNA, the reactions were

first incubated at 65uC for 5 min, followed by 25uC for 5 min. We

then added 2.0 mL of 100 mM DTT, 1.0 mL AccuScript Reverse

Transcriptase, and 2.0 Units of RNase Block ribonuclease

inhibitor in that order. The reactions were incubated at 42uC
for an hour, and terminated by heat inactivation at 75uC for

15 min.

To amplify the second strand cDNA, 2 mL of reverse

transcription reaction product was transferred into a 50 mL PCR

mixture consisting of 5 mL 106 PfuUltra PCR Buffer, 2.0 mL

25 mM magnesium chloride, 0.4 mL dNTP’s 25 mM each,

100 ng of forward and reverse primers and 0.1 mL of PfuUltra

Taq 2.5 U/mL. PCR cycling began with template denaturation

and hot start Taq activation at 95uC for 1 min, followed by 40

cycles of 95uC for 30 sec, 55uC for 30 sec and 68uC for 3 min

each, and then termianted by an extension step at 68uC for

10 min. The PCR products were analyzed on 1.5% agarose gels,

and cloned into the pGEM-T TA cloning vector for sequencing.

The obtained sequences were then mapped to mouse genome

using UCSC genome browser for splice junction analyses. Mouse

skeletal muscle PolyA+ RNA, PfuUltra II fusion HS DNA

Polymerase and AccuScript High Fidelity 1st-Strand cDNA

Synthesis Kit were purchased from Stratagene, and pGEM-T

TA cloning vector from Promega.
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Supporting Information

Figure S1 MMES distribution for Human RNA-seq. Compar-

ison of MMES distribution between Exon Splicing Junction (ESJ,

red lines) and Exon Randomly Junction (ERJ, blue lines) for

Human RNA-seq dataset. Mapped reads are divided into 3

categories: 0 mismatch (triangle), 1 mismatch (cross) and 2

mismatches (diamond).

Found at: doi:10.1371/journal.pone.0008529.s001 (0.02 MB

PDF)

Figure S2 Comparison of MMES for uniquely mapped reads

(square) and non-uniquely mapped reads (triangle). (A) Mouse

dataset, (B)Human dataset.

Found at: doi:10.1371/journal.pone.0008529.s002 (0.29 MB

PDF)

Figure S3 Pie chart of non-consecutive junctions. Nonconsec-

utive exon junctions (skipped junctions) are divided into 5 groups,

according to number of covering reads (R).

Found at: doi:10.1371/journal.pone.0008529.s003 (0.14 MB

PDF)

Figure S4 ROC curve of logistic regression model. (A), (B)

Receiver Operating Characteristic (ROC) curves for logistic

regression model without and with MMES feature, respectively.

Blue dots indicate 10 cross-validation runs, red solid line is average

curve (C) Validation rates of commonly predicted junctions

(‘‘Common’’, blue), MMES-based empirical method (‘‘P0.01_uniq’’,

green), logistic regression model without MMES feature (‘‘LR

(MMES-) uniq’’, red)’’ and logistic regression model with MMES

feature (‘‘LR (MMES+) uniq’’, pink).

Found at: doi:10.1371/journal.pone.0008529.s004 (1.28 MB

PDF)

Figure S5 Examples of false positive. (A) A junction between

exon2 and exon4 (the first exon is indexed as 0) of Tnnc2

(uc008nvz.1) is covered by 6 reads but with p-value = 1, and

therefore is rejected by MMES statistic model (cutoff p-

value = 0.01). (B) Screen shot form UCSC genome browser. We

design exon specific primer pair (forward primer on exon2 and

reverse primer on exon 4) and carry out RT-PCR on mouse

muscle total RNA. 23 randomly picked clones from the PCR

product are sequenced, without observing the anticipated junction

(p,0.05).

Found at: doi:10.1371/journal.pone.0008529.s005 (0.70 MB

PDF)

Figure S6 Examples of false negative. (A) A junction between

exon1 and exon3 of gene Polr2d (uc008eim.1) is covered by 1 read

but with significant p-value = 8.961025. (B) This junction is

confirmed by 3 independent EST sequences. (C) A junction

between exon1 and exon3 of gene Mcat (uc007xbf.1) is covered by

1 read but with significant p-value = 661026. (D) This junction is

supported by 2 independent EST sequences. Skipped exon is

indicated with red arrow.

Found at: doi:10.1371/journal.pone.0008529.s006 (0.63 MB

PDF)

Figure S7 Single nucleotide frequency distribution of ESJ, ERJ

and rESJ. Coordinates (59 to 39) of oligo from last 21bp of

upstream exon are indexed from 221 to 21, and coordinates (59

to 39) of oligo from first 21bp of downstream exon are indexed

from 1 to 21.

Found at: doi:10.1371/journal.pone.0008529.s007 (0.75 MB

PDF)

Figure S8 Compare mapped reads distribution among ESJ, ERJ

and rESJ. For each database, mapped reads were divided into 3

categories: 0-mismatch (exact match), 1-mismatch and 2-mis-

match. The mapping position of each mapped read was

represented by its middle-point. (A) ESJ vs ERJ, (B) ESJ vs rESJ,

(C) ERJ vs rESJ.

Found at: doi:10.1371/journal.pone.0008529.s008 (0.82 MB

PDF)

Table S1 Distribution of mapped reads over exon junctions.

Each read is represented by its midpoint. (A) Mouse dataset. (B)

Human dataset.

Found at: doi:10.1371/journal.pone.0008529.s009 (0.02 MB

PDF)

Table S2 List of selected false positive exon junctions and

primers.

Found at: doi:10.1371/journal.pone.0008529.s010 (0.03 MB

PDF)

Table S3 Simulation of false positive hits based on random

model. Read length varies from 10 to 50. Number of mismatch

ranges from 0 to 5.

Found at: doi:10.1371/journal.pone.0008529.s011 (0.02 MB

PDF)

Table S4 Distribution of dinucleotide frequency across ESJ,

rESJ and ERJ.

Found at: doi:10.1371/journal.pone.0008529.s012 (0.07 MB

PDF)
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