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Abstract

Background: A small fraction of dietary protein survives enzymatic degradation and is absorbed in potentially antigenic
form. This can trigger inflammatory responses in patients with celiac disease or food allergies, but typically induces systemic
immunological tolerance (oral tolerance). At present it is not clear how dietary antigens are absorbed. Most food staples,
including those with common antigens such as peanuts, eggs, and milk, contain long-chain triglycerides (LCT), which
stimulate mesenteric lymph flux and postprandial transport of chylomicrons through mesenteric lymph nodes (MLN) and
blood. Most dietary antigens, like ovalbumin (OVA), are emulsifiers, predicting affinity for chylomicrons. We hypothesized
that chylomicron formation promotes intestinal absorption and systemic dissemination of dietary antigens.

Methodology/Principal Findings: Absorption of OVA into MLN and blood was significantly enhanced when OVA was
gavaged into fasted mice together with LCT compared with medium-chain triglycerides (MCT), which do not stimulate
chylomicron formation. The effect of LCT was blocked by the addition of an inhibitor of chylomicron secretion, Pluronic L-
81. Adoptively transferred OVA-specific DO11.10 T-cells proliferated more extensively in peripheral lymph nodes when OVA
was gavaged with LCT than with MCT or LCT plus Pluronic L-81, suggesting that dietary OVA is systemically disseminated.
Most dietary OVA in plasma was associated with chylomicrons, suggesting that these particles mediate systemic antigen
dissemination. Intestinal-epithelial CaCo-2 cells secreted more cell-associated, exogenous OVA when stimulated with oleic-
acid than with butyric acid, and the secreted OVA appeared to be associated with chylomicrons.

Conclusions/Significance: Postprandial chylomicron formation profoundly affects absorption and systemic dissemination of
dietary antigens. The fat content of a meal may affect immune responses to dietary antigens by modulating antigen
absorption and transport.

Citation: Wang Y, Ghoshal S, Ward M, de Villiers W, Woodward J, et al. (2009) Chylomicrons Promote Intestinal Absorption and Systemic Dissemination of Dietary
Antigen (Ovalbumin) in Mice. PLoS ONE 4(12): e8442. doi:10.1371/journal.pone.0008442

Editor: Mauricio Rojas, Emory University, United States of America

Received July 30, 2009; Accepted November 28, 2009; Published December 24, 2009

Copyright: � 2009 Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by NIH grants 1P20RR021954-01A2 (E.E.) and 1R21EY018952-01A1 (J.W.). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Erik.eckhardt@uky.edu

Introduction

Our diet contains many potentially antigenic proteins. The

majority of these are enzymatically degraded, but a small fraction

survives and enters the body through as yet largely unknown

mechanisms. In healthy individuals, this usually leads to systemic

immunological tolerance (‘‘oral tolerance’’), but in sensitized

individuals, absorption can cause significant morbidity, such as with

celiac disease or food allergies. Intestinal antigen absorption thus is

highly important in health and disease, but knowledge of the

mechanisms is limited. Mechanisms involved in sampling of gut

micro-organisms, such as transcytosis of particulate matter across

epithelial microfold-cells [1] or protrusion of dendritic cell extensions

across the intestinal epithelium [2] are not known to be involved in

the absorption of soluble dietary antigens, and paracellular leakage

across the epithelium is unlikely to occur in healthy individuals due to

the presence of strong tight junctions [3,4].

Recently, it was found that intestinal epithelial cells (IEC)

internalize dietary antigens, such as egg-hen albumin (ovalbumin;

‘‘OVA’’), at the apical surface and secrete part of the antigens from

the basolateral surface in association with vesicles (exosomes) [5–7].

This would allow dendritic cells in the lamina propria to sample the

antigens, by internalizing the exosomes. The physiological relevance

of exosomal antigen absorption is unclear, and it is not known

whether this mechanism is regulated by food intake.

IEC secrete a distinct class of large lipoprotein particles in the

postprandial state, the chylomicrons [8,9]. These particles enable

transport of intestinally absorbed, poorly soluble long-chain

triglycerides (LCT) from the gut to other tissues. Dietary short-

or medium-chain triglycerides (MCT) do not require chylomicron
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formation for their absorption and do not stimulate chylomicron

secretion. Interestingly, chylomicrons are drained via intestinal

lymphatics and are therefore transported through mesenteric

lymph nodes (MLN), before reaching the bloodstream at the level

of the left-subclavean vein. Postprandial chylomicron formation

stimulates mesenteric T-cell proliferation [10,11], which has

typically been attributed to mitogenic effects of fatty acids. We

have recently demonstrated that chylomicron formation promotes

intestinal absorption of bacterial lipopolysaccharides (LPS) [12],

and that LPS is transported through the MLN. LPS transport

likely occurred in association with chylomicrons, which are known

to bind LPS [13,14]. Interestingly, lipoproteins with structural

similarity to chylomicrons, HDL, bind many different proteins and

peptides [15,16], and dietary antigens, such as OVA, peanut

albumins, and milk caseins, have emulsifying properties [17–20],

which suggests that protein antigens may also have affinity for

chylomicrons.

We therefore hypothesized that intestinal absorption of dietary

OVA is enhanced if the OVA is ingested in the context of

chylomicron formation. We observed indeed that dietary LCT

enhanced OVA absorption compared with MCT, and that the

effect of LCT was entirely sensitive to an inhibitor of chylomicron

secretion, Pluronic L-81 [21]. We also observed that plasma

chylomicrons contained most of the dietary OVA, suggesting that

these particles mediated systemic antigen dissemination. This was

reflected by strongly enhanced antigen specific proliferation of T-

cells in peripheral, non-gut draining lymph nodes. Lastly, in vitro

studies with CaCo-2 cells showed that chylomicron secretion

correlated with basolateral OVA secretion, suggesting that this

mechanism may contribute to antigen absorption. Collectively,

these data reveal a novel absorption mechanism for dietary protein

antigens, which may profoundly affect immune responses to

dietary antigens.

Results

Dietary LCT promote intestinal absorption of dietary OVA
in a chylomicron-dependent manner

To test whether dietary LCT promote intestinal antigen

absorption in a chylomicron-dependent manner, we gavaged

fasted mice with 125I-OVA and [3H]-retinol as a chylomicron

marker [22–24], together with either LCT, MCT, or LCT plus the

inhibitor of chylomicron secretion, Pluronic L-81 (3% by volume).

Kinetics experiments were performed to confirm that Pluronic L-

81 effectively blocks intestinal absorption of retinol, and they

revealed that peak retinol levels were obtained near 2 h after

gavage (not shown). We therefore decided to analyze blood and

MLN content of OVA and retinol at 90 minutes after gavage. As

shown in Figure 1, dietary LCT significantly increased intestinal

absorption of OVA into blood and MLN, compared with MCT,

and the effect of LCT was blocked by Pluronic L-81. Retinol

absorption mirrored OVA absorption (Figure 1), suggesting that

OVA was absorbed and transported in a chylomicron-dependent

fashion. Notably, OVA and retinol were both increasingly

transported through the MLN, through which chylomicrons are

transported. Figure 2B further illustrates the potency of Pluronic L-

81 in its inhibiting effect of chylomicron secretion.

Since lack of LCT might lead to delayed OVA appearance in

the plasma, we also performed a kinetics experiment, in which

fasted mice were gavaged as in Figure 1, except that 125I-OVA was

replaced with 25 mg unlabeled OVA. Plasma samples were

obtained from the submandibular vein at 30, 60, 120 and 240

minutes after gavage, and analyzed for the presence of OVA by

Western blotting. As shown in Figure 3, OVA levels were

Figure 1. Chylomicron formation promotes intestinal OVA
absorption. Fasted mice were gavaged with a dispersion of 0.05 ml
125I-labeled OVA (black bars) in PBS plus 0.15 ml of either LCT, MCT, or
LCT plus 6 ml of Pluronic L-81 (Pl-81). Radioactivity in the entire plasma
per mouse (top panel) and in pooled MLN per mouse (bottom panel)
was measured 90 minutes later. Another group of mice was gavaged
with identical solutions, except that 125I-OVA was replaced with [3H]-
retinol (white bars). Shown are averages6S.D. of 4 mice per
experimental group; * indicates statistically significant differences
between feeding groups (P,0.05; ANOVA, Bonferroni’s posthoc
analysis). The figure shows a representative outcome of two repeats.
doi:10.1371/journal.pone.0008442.g001

Figure 2. Chylomicron formation promotes intestinal absorption
of full-length, antigenic OVA. Fasted mice were gavaged with 0.2 ml
emulsions as described in Figure 1, except that 125I-OVA was replaced with
25 mg OVA. Blood samples were obtained from the submandibular vein at
indicated time points and analyzed for OVA by Western blotting.
doi:10.1371/journal.pone.0008442.g002
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significantly higher in the LCT group at all time points, compared

to mice gavaged with MCT or LCT+Pl-81.

Together, these data suggest that dietary LCT promote protein

antigen absorption in a chylomicron-dependent manner.

Chylomicron formation promotes systemic dissemination
of dietary OVA

To determine whether the absorbed radioactivity represented

antigenic OVA, and whether the absorbed antigen is system-

ically disseminated, we injected CFSE-labeled DO11.10 T-cells

isolated from antigen-naive mice into antigen-naive BALB/C

mice. After 24 h, the mice were fasted before receiving a single

gavage with 25 mg OVA in 0.2 ml PBS, or emulsions of 0.05 ml

PBS with 0.15 ml of either LCT, MCT, or LCT+Pluronic L-81.

Food was withheld for another 6 hours. Two days later, inguinal

lymph nodes were isolated, and T-cell proliferation was

determined by measuring CFSE labeling intensity in

CD4+KJ1-26+ cells. As shown in Figure 3, OVA gavage with

LCT resulted in the most robust proliferation, which was

completely blocked by Pluronic L-81. Control experiments in

which mice were gavaged with similar emulsions without

antigen did not show DO11.10 T-cell proliferation (not shown).

Thus, chylomicron formation caused increased systemic dis-

semination of dietary OVA.

Intestinally absorbed OVA is associated with plasma
chylomicrons

The increase in systemic dissemination of dietary OVA as a

result of chylomicron formation prompted us to test whether

chylomicrons themselves were involved in transport, and hence

dissemination, of dietary OVA. We therefore tested whether

chylomicrons in the plasma are enriched with dietary OVA. Such

an association between chylomicrons and OVA would not be

unexpected given the emulsifying properties of this antigen [17],

predicting affinity for oil-in-water emulsion particles such as

chylomicrons. Fasted mice were gavaged with 25 mg OVA in

0.2 ml LCT/PBS emulsion, and plasma, collected 1 h later, was

fractionated by FPLC. The chylomicron fraction eluted immedi-

ately after the void volume in the first peak, as illustrated by the

fact that plasma from mice injected with the lipoprotein lipase

inhibitor Poloxamer P-407 1 h before the gavage, which causes

plasma chylomicron accumulation, yielded a much larger first

peak (Figure 4) without affecting the height of other peaks.

Fractions of the eluate obtained from non-Poloxamer treated mice

Figure 3. Chylomicron formation promotes systemic dissemination and antigen presentation of dietary antigen. Naı̈ve BALB/C
mice were injected with 2.56106 CFSE labeled T cells from DO11.10 TCR transgenic mice. After 24 h, the mice were fasted (4 h) and gavaged
with OVA (25 mg) in 0.2 ml PBS or 25 mg OVA in 0.05 ml PBS+0.15 ml of either MCT, LCT, or LCT plus Pl-81. Mice were then fasted for an
additional 6 h. Three days later, inguinal LN cells were isolated, stained with anti-CD4 and KJ1-26 (TCR clonotypic antibody), and analyzed by
flow cytometry. Histograms show representative CFSE dilution profiles of gated CD4+, KJ1-26+ T cells as a measure of cell division. The % of cells
under markers M1 and M2 represent cells which have not or have undergone cell division respectively. Each panel represents a typical result of
three experimental repeats.
doi:10.1371/journal.pone.0008442.g003
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were subsequently analyzed for the presence of OVA by

immunoprecipitation. Interestingly, virtually all dietary OVA

eluted with the chylomicrons in the first peak (Figure 4), suggesting

that chylomicrons indeed transport dietary OVA. This could have

accounted for systemic antigen dissemination, as observed in

Figure 3.

CaCo-2 cells secrete cell-associated OVA during
chylomicron formation

To explore how chylomicron formation promotes antigen

absorption, we studied OVA secretion by CaCo-2 cells under

conditions which preclude paracellular OVA leakage. First,

however, CaCo-2 cells on glass slides were incubated for 1 h with

20 mg/ml Alexa-red OVA to determine OVA uptake. Fluorescent

staining could be observed in association with the cell membrane

and with vesicular structures (Figure 5A). Next, we determined

whether chylomicron formation promotes basolateral release of

OVA from CaCo-2 cells. Fully differentiated cells, grown for three

weeks on Transwell membranes, were incubated overnight with

10 mg/ml OVA on the apical side. Unbound OVA was then

thoroughly washed from both surfaces with serum-free medium,

and the apical chamber received 0.5 mM taurocholate and

1.6 mM oleic acid, butyric acid, or oleic acid plus 0.2% Pl-81.

After 16 h, the basolateral medium was collected and analyzed for

OVA. As shown in Figure 5B, cells incubated with oleic acid

secreted more OVA than cells incubated with butyric acid or with

oleic acid plus Pl-81. To verify whether the secreted OVA was

associated with chylomicrons, we performed immunoprecipitation

with protein-A coupled to Sepharose, with or without prior

addition of anti-OVA antibody. Strikingly, pull-down with anti-

Figure 4. Plasma chylomicrons transport dietary OVA. Fasted
mice were gavaged with 0.2 ml LCT-containing emulsions also
containing 25 mg OVA. Plasma was isolated 1 h later, and 55 ml were
fractionated via FPLC. The grey line of the chromatogram shows the
elution profile of a mouse injected i.p. with Poloxamer P-407 1 h prior
to gavage to inhibit chylomicron clearance, which caused a milky
plasma appearance (inset) and a greatly increased first peak. The solid
line shows the elution profile of a mouse not previously injected with
Poloxamer P-407. The fractions of this mouse, indicated by the vertical
separators, were subjected to immunoprecipitation for detection of
OVA (lower panel).The experiment was repeated three times with
similar outcomes.
doi:10.1371/journal.pone.0008442.g004

Figure 5. Uptake and secretion of OVA in association with chylomicrons by intestinal epithelial cells. (A) CaCo-2 cells were incubated
with 20 mg/ml Alexa-red OVA for 1 h at 37uC. Nuclei were stained with DAPI (blue). (B) CaCo-2 cells on Transwell filters were incubated overnight at
the apical side with 0.1 mg/ml OVA, washed from both sides, then incubated apically with 1.6 mM oleic acid (OA), butyric acid(BA), or oleic acid plus
Pl-81 (2 ml/ml). Basolateral medium was collected 16 h later, and OVA was detected by immunoblotting. OVA was immunoprecipitated from the
basolateral medium with anti-OVA coupled to protein A-Sepharose (or protein A-Sepharose only), followed by Western blotting of unwashed
precipitate for detection of Apo-B. As shown in (C), ApoB-48 co-precipitated with OVA.
doi:10.1371/journal.pone.0008442.g005
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OVA resulted in significant pull-down of ApoB-48 (Figure 5C)

from the oleic-acid groups. Pull-down with protein-A Sepharose

lacking anti-OVA IgG led to limited (a-specific) pull down of

ApoB-48. Thus, it appeared as if chylomicron secretion was

associated with OVA secretion from IEC and, importantly, that

the secreted OVA was associated with chylomicrons.

Discussion

This study provides evidence for a novel role of dietary fat in the

intestinal absorption of dietary protein antigens. We observed that

dietary LCT promote absorption of OVA into MLN and blood,

and that the effect of LCT is sensitive to inhibition of chylomicron

secretion. We also observed that dietary OVA in plasma is mainly

transported in association with chylomicrons, which likely

mediates enhanced systemic dissemination of the antigen as

reflected by increased proliferation of T-cells in peripheral lymph

nodes not draining the intestine. Finally, we observed that cultured

CaCo-2 IEC acquire OVA and partially secrete OVA during

chylomicron formation. Moreover, the secreted OVA was

associated with chylomicrons. We propose a novel mechanism,

in which chylomicrons transport gut antigens from the intestinal

epithelium via MLN to the circulation. This mechanism, which at

least partially occurs through a novel mechanism of antigen

secretion by IEC on newly formed chylomicrons, could have

profound implications for immune responses to dietary antigens.

The mesenteric lymph drains the gastrointestinal tract, and

mesenteric lymph nodes (MLN) play an important role in

intestinal immunity, notably in the induction of oral tolerance

[25]. Interestingly, after each meal, which almost always contains

LCT, large amounts of chylomicrons are transported through

mesenteric lymph and pass the MLN on their way to the thoracic

duct where they spill over into the left-subclavean vein.

Postprandial chylomicron transport thus leads to a typical milky

appearance of the mesenteric duct. After each meal, antigen

presenting cells and lymphocytes in the MLN are exposed to

chylomicrons, which appear to stimulate mesenteric T-cell

proliferation [10,11]. This has typically been ascribed to mitogenic

properties of free fatty acids [11], but we have previously

demonstrated that dietary LCT also promote chylomicron-

dependent absorption and transport of bacterial lipopolysaccha-

rides (LPS) through the MLN [12]. This potent immune activator

could perhaps contribute to postprandial T-cell activation.

In the present study we provide evidence that not only LPS

from the intestinal microflora, but also T-cell antigens, in this case

dietary OVA, are increasingly transported through the MLN and

through the blood during chylomicron formation. Dietary LCT

appeared to increase OVA absorption compared with MCT,

which does not stimulate chylomicron production, and the effect of

LCT was sensitive to the inhibitor of chylomicron secretion,

Pluronic L-81. The fact that LCT enhanced absorption of OVA

could theoretically be explained by a presumptive effect of long-

chain fatty acids (oleic acid), liberated from triolein, on epithelial

tight junctions. It has indeed been suggested that oleic acid may

cause epithelial damage in vivo [26] and may cause paracellular

leakage in CaCo-2 cells [27]. It cannot be entirely excluded,

therefore, that LCT promoted intestinal OVA absorption by

causing transient tight-junction leakage. Nevertheless, Pl-81

completely blocked the effect of LCT, and this detergent does

not affect the uptake of fat into IEC, but rather prevents the

secretion of chylomicrons [21,28]. Since only fatty acids are taken

up by IEC, and not triglycerides, this would suggest that Pluronic

L-81 does not affect LCT hydrolysis in the gut, does not decrease

fatty acid exposure of IEC, and therefore does not reduce any

fatty-acid related stress that the IEC might experience. Moreover,

in our CaCo-2 studies, we show preliminary evidence for an

absorption mechanism that is independent of leakage, and occurs

through secretion of OVA from the cell upon stimulation with

oleic acid. Thus, we can likely rule out that Pl-81 decreased OVA

absorption simply by decreasing fatty-acid mediated damage of

IEC tight junctions.

We employed a single dose of LCT, and we do not how much

LCT is minimally required for significant antigen appearance in

the plasma. Taking into account the much higher rate of food

intake in mice and extrapolating a mouse’s bodyweight to that of

an average person, the LCT dose was not necessarily unphysio-

logical. Moreover, Pl-81 was able to completely block OVA

absorption, even against the background of the seemingly robust

dose of LCT. In any case, our observation that similar amounts of

dietary MCT reduce antigen absorption at the very least suggests

that MCT could modulate immune responses to dietary antigens

by reducing antigen absorption.

Regardless of the absorption mechanism, our data suggest that

chylomicrons profoundly affect the transport of dietary antigens

through the body. Chylomicrons may act as vehicles for absorbed

antigen, at least in case of OVA, as illustrated by the fact that

virtually all of absorbed OVA in the plasma eluted in the same

peak as the chylomicrons after FPLC analysis of postprandial

blood. The affinity of chylomicrons for OVA is not unexpected

given the emulsifying properties of OVA, which it shares with

many other dietary allergens, such as peanut albumins [18] and

milk casein [19]. We are currently testing whether other relevant

dietary antigens also are transported through the blood in

association with chylomicrons and how this affects immune

responses to the antigens.

Macrophages are known to phagocytose chylomicrons [29,30],

and we hypothesize that this would facilitate antigen capture,

analogous to what has been reported for lipid antigens [31].

Antigen transport in association with chylomicrons through the

lamina propria and the MLN could thus facilitate antigen

sampling by antigen presenting cells, which could perhaps play

an important role in immune responses to the antigen. In this

respect it is interesting that the MLN appears to be a critically

important site for the induction of oral tolerance [25]. Further-

more, chylomicrons are the principal carriers of dietary retinol

[22–24], and this vitamin is known to promote tolerogenic

immune responses at the expense of pro-inflammatory Th17

responses [32–34]. Thus, chylomicrons would not only enhance

antigen delivery, but also delivery of immune modulating

substances, such as retinol and fatty acids. We have observed that

chylomicron formation during antigen feeding indeed strongly

affects immune responses to dietary antigens (unpublished

observations).

Together, these studies reveal a novel role for dietary fat in the

absorption and transport of dietary antigens. Unraveling this

pathway may shed new light on immune responses to dietary

antigens and may provide new insights into the important

phenomena of oral tolerance and food allergies.

Materials and Methods

Materials
125I-OVA was prepared according to a slightly modified Iodine

monochloride procedure [35], using grade V-OVA (Sigma-

Aldrich). [3H]-retinol was purchased from American Radiolabeled

Chemicals. MCT oil was purchased from Novartis, triolein (LCT),

butyric acid, oleic acid and taurocholate from Sigma-Aldrich, and

Pluronic L-81 (an inhibitor of chylomicron secretion [12,21,28]

Dietary Antigen Absorption
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was a gift from BASF chemicals. Poloxamer P-407, a potent

inhibitor of lipoprotein lipase [36], was purchased from Spectrum

Chemical Manufacturing Corporation. Alexa-red OVA and

carboxyfluorescein-succinimidyl ester (CFSE) were obtained from

Invitrogen. Protein-A-sepharose and horseradish peroxidase-

conjugated streptavidin were purchased from Sigma-Aldrich,

biotinylated anti-OVA rabbit IgG from Abcam (ab8389), rabbit

anti-OVA IgG from Millipore (ab1225), goat-anti Apolipoprotein

B (Apo-B) from Calbiochem (178467), the KJ1-26 antibody from

eBioscience (13–5808), and anti-mouse CD4 from BD-Pharmin-

gen (553049).

Cell Culture
CaCo-2 human IEC were purchased from ATTC and were

cultured in 1:1 DMEM:Ham’s F12, supplemented with 5% fetal

calf serum and penicillin/streptomycin/amphotericin (all from

Hyclone). To study OVA uptake by CaCo-2 cells, the cells were

grown on glass slides and incubated with 20 mg/ml Alexa-red

OVA in complete medium for 1 h, fixed with 10% paraformal-

dehyde in PBS, and covered with DAPI-containing Vectashield

(Vectorlabs) before being sealed with a glass coverslip. Cells were

observed with an epifluorescence microscope (model BX50;

Olympus) equipped with a cooled charge-coupled device camera.

To study basolateral secretion of antigen and of chylomicrons, the

cells were seeded in 12- well plates on top of Transwell filter inserts

(Corning Transwell Clear; 3 mm pore size), and allowed to

differentiate for 21 days [37]. To study OVA secretion, CaCo-2

cells were incubated overnight with 10 mg/ml OVA on the apical

side and then washed from both surfaces with cold phosphate-

buffered saline (PBS). Chylomicron formation was induced or

prevented as described elsewhere [12,37]. Briefly, cells were

incubated from the apical side with 0.5 mM taurocholate and

1.6 mM oleic acid, with serum-free medium in the basolateral

chamber. Control cells were incubated with butyric acid instead of

oleic acid or with 2 ml Pl-81/ml. Chylomicron formation was

estimated by sodium-dodecyl sulfate polyacrylamide gel electro-

phoresis (SDS-PAGE) under reducing conditions (no boiling) of

freeze-dried basolateral medium and immunostaining of Apo-B

[12]. The ,250 kDa Apo-B signal represented the ApoB-48

isoform. OVA was detected by immunoblotting after SDS-PAGE

(reduced and boiled samples).

Mouse studies
Male BALB/C mice, 6 weeks old (Jackson Laboratory) were

held in a room with a 12 h light 12 h dark cycle and were used at

8 weeks of age. The syngeneic DO11.10 mice were maintained as

a breeding colony. This strain produces CD4 T-cells in which the

majority expresses a transgenic T-cell receptor recognizing OVA

peptide 323–339 presented on MHC-II [38]. The transgenic T-

cell receptor binds the KJ1-26 antibody. Adoptive transfer

experiments were carried out as described elsewhere [38,39].

Briefly, splenocytes and lymph node cells from DO11.10 mice

were labeled with CFSE and a cell suspension containing 2.5e6

CFSE-labeled DO11.10 CD4 T-cells was then injected into the

tail vein of BALB/C recipients. Proliferation of KJ1-26+CD4+ T-

cells in inguinal lymph nodes of the recipients was estimated by

measuring CFSE staining intensity [40]. All animals were handled

in strict accordance with good animal practice as defined by the

relevant national and/or local animal welfare bodies, and all

animal work was approved by the Institutional Animal Care and

Use Committee of the University of Kentucky.

Isolation of plasma chylomicrons and detection of
associated OVA

Mouse plasma (55 ml) was fractionated by Fast Performance

Liquid Chromatography (FPLC) using a BioRad BioLogic Duo-

flow system equipped with a Superose 6 column. The eluate was

continuously monitored for absorption at 340 nm, and fractions

were collected immediately after the void volume. The largest

plasma aggregates, chylomicrons and some very low density

lipoproteins (VLDL), elute in the first peak. To verify this, some

plasma was analyzed from mice injected with the lipoprotein lipase

inhibitor Poloxamer P-407 (1000 mg/kg) [36] 1 h before the

gavage, which delays clearance of all triglyceride-rich lipoproteins,

including chylomicrons. Low- and high density lipoproteins

(LDL/HDL) elute later, whereas free proteins elute last. OVA in

all fractions was detected by immunoprecipitation using protein-A

Sepharose and rabbit anti-OVA IgG, followed by SDS-PAGE and

immunoblotting with biotinylated anti-OVA IgG and streptavidin-

HRP.
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