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Abstract

The ketogenic diet is a high-fat, low-carbohydrate regimen that forces ketone-based rather than glucose-based cellular
metabolism. Clinically, maintenance on a ketogenic diet has been proven effective in treating pediatric epilepsy and type II
diabetes, and recent basic research provides evidence that ketogenic strategies offer promise in reducing brain injury.
Cellular mechanisms hypothesized to be mobilized by ketone metabolism and underlying the success of ketogenic diet
therapy, such as reduced reactive oxygen species and increased central adenosine, suggest that the ketolytic metabolism
induced by the diet could reduce pain and inflammation. To test the effects of a ketone-based metabolism on pain and
inflammation directly, we fed juvenile and adult rats a control diet (standard rodent chow) or ketogenic diet (79% fat) ad
libitum for 3–4 weeks. We then quantified hindpaw thermal nociception as a pain measure and complete Freund’s adjuvant-
induced local hindpaw swelling and plasma extravasation (fluid movement from the vasculature) as inflammation measures.
Independent of age, maintenance on a ketogenic diet reduced the peripheral inflammatory response significantly as
measured by paw swelling and plasma extravasation. The ketogenic diet also induced significant thermal hypoalgesia
independent of age, shown by increased hindpaw withdrawal latency in the hotplate nociception test. Anti-inflammatory
and hypoalgesic diet effects were generally more robust in juveniles. The ketogenic diet elevated plasma ketones similarly
in both age groups, but caused slowed body growth only in juveniles. These data suggest that applying a ketogenic diet or
exploiting cellular mechanisms associated with ketone-based metabolism offers new therapeutic opportunities for
controlling pain and peripheral inflammation, and that such a metabolic strategy may offer significant benefits for children
and adults.
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Introduction

Pain and inflammation are hallmarks of diverse acute and

chronic diseases. Chronic pain is one of the most commonly

indicated health-related factors leading to poor quality of life [1,2],

and, across all cultures, patients with chronic pain have among the

lowest reported quality-of-life scores of any medical condition

[1,2]. In parallel, accumulating evidence points to inflammation as

not simply a consequence but an active contributor to pathologies

such as atherosclerosis, stroke, metabolic syndrome and cancer

[3]. Without question, a great unmet public health need exists for

safe, effective and non-addictive strategies to reduce pain and

inflammation.

Dietary therapy has long been coveted as a strategy to treat a

variety of clinical conditions, including pain and inflammation.

For example, polyunsaturated fatty acids reduce nociception by

activating peroxisome proliferator-activated receptors (PPARs) [4],

and olive oil polyphenolic compounds reduce experimental

inflammation [5]. In addition to specialized dietary approaches,

chronic caloric restriction reduces inflammation in several models

[6,7]. Benefits of metabolic therapy are demonstrated unequivo-

cally in disorders of amino acid metabolism (such as phenylke-

tonuria), familial hypercholesterolemia, and disorders of fatty acid

transport and oxidation [8,9]. Overall, metabolism has clear

effects on the central nervous system and a host of peripheral

tissues, and strategies that exploit broadly the therapeutic benefits

of metabolism are becoming more compelling in translational and

clinical research [10–12].

Evidence is building steadily on the effectiveness of a ketogenic

diet – a high-fat, low-carbohydrate regimen – in treating epilepsy,

brain cancer, type II diabetes and neurodegeneration [13–15]. For

decades the ketogenic diet has been used successfully to treat

epilepsy, particularly pediatric and medically refractory epilepsy,

and its efficacy has been validated by a host of multi-center,

retrospective and randomized, prospective clinical studies

[13,16,17]. The restricted carbohydrate content of a ketogenic

diet minimizes glucose metabolism and increases ketolysis, i.e., the

use of ketone bodies (acetone, acetoacetate, b-hydroxybutyrate) as

alternate energy sources. Established cellular consequences and

recently hypothesized mechanisms of ketogenic diet therapy

[18–21] coalesce to suggest that a predominantly ketone-based

metabolism may reduce inflammation and nociception as

compared to glucose-based metabolism [12].

To date, published data characterizing the relationship among

ketogenic diets, pain and inflammation are limited. A pilot clinical

study showed that a ketogenic diet reduced inflammation in non-

PLoS ONE | www.plosone.org 1 December 2009 | Volume 4 | Issue 12 | e8349



alcoholic fatty liver disease [22], and a need for more research on

this topic has been noted recently [12,23]. Data characterizing

ketogenic diets and pain are also limited [24], although the use of

anticonvulsant drugs as antihyperalgesic/antiallodynic agents for

neuropathic pain suggests that an anticonvulsant ketogenic diet

might be effective in reducing pain. In the present study we

evaluated the therapeutic potential of a ketogenic diet directly by

quantifying standard measures of pain and inflammation in

juvenile and adult rats. We found that maintenance on an ad

libitum ketogenic diet for three weeks attenuates thermal

nociception and decreases a peripheral inflammatory response

significantly in both age groups. These results indicate that

metabolism-based strategies may offer new therapeutic opportu-

nities with broad clinical implications.

Results

Latency to hindpaw withdrawal from a hotplate is a standard

test for thermal nociception. All animals were tested with one

temperature per day for six days (46–51uC). As expected, all diet

and age groups exhibited a significant decrease in latency to

hindpaw withdrawal as hotplate temperature increased (Figure 1).

There was, however, notable hypoalgesia in the ketogenic diet-fed

groups. Withdrawal latencies were significantly longer at temper-

atures 48–51uC in juveniles (Figure 1, top) and 49–50uC in adults

(Figure 1, bottom). No significant differences were found at other

temperatures. The diet effect appeared to be stronger in juveniles,

with a larger rightward shift of the temperature-response curve

and more highly significant post-hoc comparisons (Figure 1).

Overall, maintenance on a ketogenic diet produced a clear

hypoalgesic effect in juvenile and adult rats as assessed by hot plate

testing.

We quantified peripheral inflammation in response to local

injection of complete Freund’s adjuvant (CFA). Just prior to CFA

injection, hindpaw volumes of juvenile and adult rats maintained

on a ketogenic versus control diet for 3 wk were measured. As

expected, there was no significant right/left asymmetry in baseline

hindpaw volume in any group and thus baseline right/left ratios

were not different than 1.0 (Figure 2). Each animal received a CFA

injection into the right hindpaw and we measured right/left

hindpaw volume 48 h after CFA injection (peripheral inflamma-

tion peaks at approximately 48 h). The right/left ratio significant

increased in all age and diet groups, indicating right hindpaw paw

swelling. However, the ratio (and thus the injected paw volume)

was significantly lower in both age groups fed the ketogenic diet

(Figure 2). The swelling induced by CFA injection was similar in

both age groups on the control diet, and the significant anti-

inflammatory effect of the ketogenic diet was also similar in both

age groups (Figure 2).

To further characterize the peripheral inflammatory response,

we quantified plasma extravasation, a measure of the movement of

fluid to the extravascular space. Consistent with the reduced

hindpaw swelling, ketogenic diet-fed rats of both ages had a

significantly attenuated plasma extravasation response to CFA as

compared to control diet-fed rats (Figure 3). The magnitude of the

effect appeared to be larger in juveniles (extravasation attenuated

by 5067%) than in adults (attenuated by 3168%).

Even with ad libitum feeding, ketogenic diet-fed juveniles had

significantly slower weight gain and growth rate as compared to

juveniles on a control diet (Figure 4A), similar to clinical findings in

pediatric epilepsy [25]; nevertheless, ketogenic diet-fed juveniles

appeared healthy and active. Consistent with their lower body

weight, ketogenic diet-fed juveniles had a significantly lower

baseline hindpaw volume (Figure 4B) and so were injected with a

Figure 1. Hindpaw thermal nociception is decreased in juvenile
and adult rats fed the ketogenic diet. Top: juvenile; Bottom: adult.
All animals were tested on one temperature per day. Increasing hot
plate temperature led to reduced withdrawal latency in all groups, and
temperature-response curves were similar for juveniles and adults on
the control diet (control diet – filled symbols, ketogenic diet – empty
symbols). The ketogenic diet increased latencies in both age groups,
with a more robust effect in juveniles. Analysis of juveniles revealed
significant effects of temperature (F = 100.7, p,0.001) and diet (F = 18.9,
p,0.001), and a significant diet x temperature interaction (F = 7.1,
p,0.001). Analysis of adults revealed significant effects of temperature
(F = 101.0, p,0.001) and diet (F = 4.8, p,0.05), and a significant diet x
temperature interaction (F = 2.7, p,0.05). Numbers of subjects: 12 for
each juvenile group, 14 for adult control diet, 16 for adult ketogenic
diet. *p,0.05, **p,0.01, ***p,0.001; Newman-Keuls comparison to
temperature-matched controls.
doi:10.1371/journal.pone.0008349.g001
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proportional volume of CFA into the paw. In adults, there was no

significant effect on weight (and no difference in hindpaw volume)

between animals fed a ketogenic diet versus control diet (Figure 4A,

B). Thus, hindpaw CFA injection volume was the same in all

adults. The ketogenic diet increased blood ketones strongly and

equivalently in juveniles and adults (Figure 4C). Therefore,

differences in the level of ketosis do not account for the greater

effects of the ketogenic diet in juvenile rats on some of the present

measures.

Discussion

Here we demonstrate hypoalgesic and anti-inflammatory effects

of a ketogenic diet. In juvenile and adult rats we show that ad

libitum feeding of a ketogenic diet reduces nociception, as assessed

by hindpaw withdrawal latency, and peripheral inflammation, as

assessed by CFA-induced hindpaw swelling and plasma extrava-

sation. To date the clinical applications of ketogenic strategies

have focused primarily on its established success with pediatric

epilepsy [13] and emerging success with diabetes [26]; recent

translational research is expanding clinical implications to include

brain cancer, brain injury, and Rett syndrome [14,15,27]. New

therapies are particularly urgent for pain, inflammation and

inflammatory pain, and the present data suggest more transla-

tional research is needed for ketogenic diet therapy and analogous

metabolic treatments.

There are a number of mechanisms thought to underlie the

efficacy of ketogenic diet therapy, but an incomplete understand-

ing of critical cellular mechanisms has hampered efforts to develop

alternate pharmacological strategies and, in parallel, limited

clinical predictions and applications of this type of metabolic

therapy. However, published experimental research and hypoth-

eses regarding the success of ketogenic diet therapy point to its

clinical potential for pain and inflammation [18–21]. With respect

to central pain mechanisms and neuronal activity, ketolytic

metabolism is thought to increase levels of adenosine and/or

GABA, two powerful inhibitory substances in the nervous system,

through augmented oxidative phosphorylation and shifted gluta-

mate:aspartate aminotransferase equilibrium, respectively [18,28].

There is abundant evidence that increasing central inhibition by

activating adenosine A1, GABAA or GABAB receptors produces

hypoalgesia in acute pain tests [29,30]. In addition to central

mechanisms, a high polyunsaturated fatty acid content in

ketogenic diets should enhance potassium conductances in

peripheral neurons through PPAR activation [4,31]. Therefore,

we speculate that mechanistically-separate inhibitory processes in

the central and peripheral nervous system could combine to

mediate ketogenic diet-induced thermal hypoalgesia. Given the

positive effects of adenosine and GABA agonists in treating

chronic inflammatory and neuropathic pain [30,32,33] and the

central hyperexcitability in chronic pain [34], ketogenic diets

might be especially effective analgesics/hypoalgesics for diverse

types of chronic pain. The success of dietary therapy even in

pharmacoresistant epilepsy suggests that it may also be effective for

intractable pain.

In addition to decreased nociception, we show that pretreat-

ment with a ketogenic diet reduces subcutaneous inflammation

significantly in juvenile and adult animals. There are multiple

possible mechanisms. Ketone metabolism results in a decreased

production of reactive oxygen species [35,36], known to contribute

to inflammation [37]. Adenosine acting through A1 and A2

receptor subtypes limits inflammation in a wide variety of

peripheral and central tissues [38,39], including inflammation

due to subcutaneous inflammogens [30,40]. Polyunsaturated fatty

acid-induced PPAR activation inhibits NFkB and AP-1, both pro-

inflammatory transcription factors [20]. It is possible that each is

involved, and more research is needed to elucidate the primary

Figure 2. Hindpaw inflammatory swelling is reduced in juveniles
and adults fed the ketogenic diet. Control diet – filled symbols,
ketogenic diet – empty symbols for juveniles (left) and adults (right).
Hindpaw volumes are shown as right/left ratios, measured just prior to
and 48 h after injection of CFA into the right hindpaw. As expected,
baseline ratios are similar to 1.0 in all groups. CFA-induced swelling was
similar in juvenile and adult rats (71% and 72%, respectively), and was
attenuated significantly by the ketogenic diet in both age groups. Analysis
of juveniles indicated a significant effect of CFA (F = 68.7, p,0.001), and a
significant diet x CFA interaction (F = 5.4, p,0.05). Analysis of adults
indicated significant effects of CFA (F = 183.6, p,0.001) and a significant
diet x CFA interaction (F = 7.5, p,0.05). Numbers of subjects: 7 for juvenile
control diet, 6 for juvenile ketogenic diet, 12 for adult control diet, 11 for
adult ketogenic diet. * p,0.05, *** p,0.001 Newman-Keuls comparisons
to post-CFA controls.
doi:10.1371/journal.pone.0008349.g002

Figure 3. CFA-induced plasma extravasation is reduced in
juvenile and adult rats fed the ketogenic diet. Control diet – solid
bar, ketogenic diet – open bar for juveniles (left) and adults (right).
Values are shown as right/left ratios and so would be near 1.0 for
untreated animals. CFA-induced plasma extravasation was attenuated
significantly by a ketogenic diet in juvenile and adult rats; CFA-induced
plasma extravasation was lower overall in juveniles. *p,0.05, t-test
comparisons to age-matched controls. Number of subjects: 5 for
juvenile control diet, 6 for juvenile ketogenic diet, 10 for adult control
diet, 11 for adult ketogenic diet.
doi:10.1371/journal.pone.0008349.g003
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mechanism underlying this peripheral effect. In addition to specific

cellular mechanisms, overall protein restriction reduces inflamma-

tion in some situations [41,42], and caloric restriction is anti-

inflammatory in general [6,7]. All animals in this study were fed ad

libitum, thus it is unlikely that caloric restriction is occurring in the

present study in the adult animals, a group that showed no

difference in weight but did exhibit significantly reduced

inflammation (and nociception) on the ketogenic diet. Neverthe-

less, a combined calorically-restrictive and ketogenic diet may be

even more effective against inflammation (and potentially

nociception) than either dietary component alone; similar

conclusions have been made concerning the anticonvulsive and

anticancer effects of dietary treatments [14,43]. Furthermore,

although we used the ketogenic diet as a pretreatment, clinical

evidence suggests that it can reduce pre-existing liver inflammation

[22].

In the one published study of nociception and the ketogenic diet,

Ziegler et al. [24] described decreased (rather than increased) tail-

flick latency in rats fed a ketogenic diet. Though both the hotplate

and tail-flick involve thermal nociception, this difference may be

related to methodological differences including rat strain, body part

tested, diet composition, stimulus strength (latencies are generally

longer in our study), and length of dietary treatment (12 wk in

Ziegler et al.). The length of treatment might be particularly

important, as a number of studies using several different measures

have demonstrated non-monotonic effects of ketogenic diets at time

scales of days to weeks [44,45]. These variables should be examined

in future studies, along with other pain modalities.

Complementing our direct experimental evidence, multiple

hypotheses regarding the mechanisms underlying the success of

ketogenic diet therapy coalesce to suggest that this metabolic

treatment will reduce pain and inflammation. Yet despite

widespread interest in dietary therapies for pain and inflammation

(and myriad diseases that implicate inflammation as either a cause

or a consequence of the pathology) systematic study of ketogenic

strategies as anti-inflammatory or hypoalgesic strategies is just

beginning. Unlike myriad dietary regimens with limited or

inconsistent proof-of-efficacy, a ketogenic diet offers recognized

and established clinical benefits [13]. Accordingly, there is a focus

on elucidating critical mechanisms underlying the success of

ketogenic diet therapy in treating epilepsy as well as mechanisms

underlying emerging benefits in clinical conditions such as

diabetes, brain injury, brain cancer and Rett syndrome

[12,14,26,46,47]. The data presented herein suggest that ketogenic

diets offer promising therapeutic potential for diverse inflamma-

tory or painful conditions, across age groups, without the added

difficulty of maintaining caloric restriction. Based on these results

and many decades of clinical experience with diet-based therapies

for pediatric epilepsy, a novel anti-inflammatory and hypoalgesic

application of ketogenic diet therapy (or an analogous future

pharmacological strategy) would be effective, non-addictive and

relatively free of major side effects.

Materials and Methods

Male Sprague-Dawley rats were bred in the Trinity College

vivarium with animals originally purchased from Charles River

(Storrs Mansfield, Connecticut, USA). All experiments were

carried out in accordance with the NIH Guide for the Care and

Use of Laboratory Animals and with approval of the Trinity

College animal care and use committee. Either shortly after

weaning at 21 d or as adults (85–110 d), matched groups of male

Sprague-Dawley rats were switched to a ketogenic diet (AIN-76

Modified, High fat, #3666; Bio-Serv, Frenchtown, New Jersey,

USA) or maintained on their standard diet (Purina 5001;

PharmaServ, Framingham, Massachusetts, USA). Sprague-Daw-

ley rats become ketotic within 5 d of ad libitum feeding of this

particular ketogenic diet [48]. All animals were weighed twice

weekly until the start of testing. All animals appeared healthy and

normally active during dietary treatment.

After 3 weeks, and during continuing dietary treatment, rats

were tested on a hotplate (Columbus Instruments, Columbus,

Figure 4. The ketogenic diet retards growth in juvenile but not adult rats, while inducing equivalent ketosis. A: All groups gained
weight over three weeks. There was no difference in weight gain between diet groups in the adult animals; juvenile animals on the ketogenic diet
gained weight significantly more slowly than those on the control diet. Analysis of juveniles revealed significant effects of time (F = 635.1, p,0.001)
and diet (F = 17.6, p,0.001), as well as a significant time x diet interaction (F = 241.8, p,0.001), whereas for adults, there was a significant effect of
time (F = 62.7, p,0.001) but not diet (F = 1.2, n.s.) and no significant interaction (F = 1.2, n.s.). Numbers of subjects: 12 for each juvenile group, 14 for
adult control diet, 16 for adult ketogenic diet. B: Like body weight, baseline paw size (before CFA injection) was lower with the ketogenic diet in
juveniles but not in adults. Numbers of subjects as in Fig. 2. C: Plasma levels of the ketone body b-hydroxybutyrate were similarly elevated in juvenile
and adult rats. Analysis revealed a significant effect of diet (F = 49.6, p,0.001) but not age (F = 0.8, n.s.) and no significant interaction (F = 0.8, n.s.).
Number of subjects = 7–9. *p,0.05, **p,0.01, ***p,0.001 Newman-Keuls (A,C) or t-test (B) comparisons to age-matched controls.
doi:10.1371/journal.pone.0008349.g004
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Ohio, USA) at each integer temperature between and including

46u and 51uC; one temperature was tested per day, in ascending

order. Based on preliminary testing, this temperature range started

at a temperature that rarely produced a nocifensive response

within 60 s (46uC) and went up in integers to the temperature that

produced a response by approximately 10 s in control diet animals

(51uC). To quantify thermal nociception at each temperature, rats

were placed on the hot plate and the latency recorded to hindpaw-

associated nocifensive behavior, typically suspension of the

hindpaw or hindpaw-directed licking. Once such signs were

observed, animals were removed immediately. To prevent any

tissue damage, rats that reached 60 s without a response were

removed and scored as 60 s.

After 4 weeks of dietary treatment, rats received an intraplantar

injection of CFA (a suspension of heat-killed Mycobacterium

tuberculosis, undiluted) in the right hindpaw to induce a consistent

and sustained local inflammation. Hindpaw sizes were measured

by volume displacement and paralleled total body size (Figure 4,

right); the amount of injected CFA was adjusted accordingly to

give an equivalent dose per paw size. CFA injection volume

ranged from 100 ml (juveniles on ketogenic diet) to 190 ml (adults).

Hindpaw size was measured by volume displacement just before

and at 48 h after injection, a time-point selected to approximate

the maximal inflammatory response; diet treatments were

continued during this 48 h interval.

After final volume measurements, the dye Evans Blue was

injected intravenously (60 mg/kg in a tail vein) to assess plasma

extravasation (fluid movement from the intra- to the extravascular

space), a major component of the inflammatory response. Tail

vein injections were unsuccessful in four rats, and these were

excluded from analysis. Two h after injection, rats were sacrificed

by anesthesia overdose. After allowing intravascular dye to drain,

hindpaw tissue was soaked in formamide at room temperature for

several days to leach out extravascular dye. Duplicate aliquots of

formamide were measured for optical density at 630 nm to

quantify the level of Evans Blue. For juveniles, the same rats were

used for pain and inflammation studies (baseline paw measure-

ments and CFA injections occurred 1 d after the last hot plate

test); for adults, separate groups were used. In all cases, CFA

injection occurred after approximately four weeks of dietary

treatment.

In a separate cohort of animals, trunk blood was collected after

3.5–4 wk of dietary treatment to assess levels of circulating

ketones. These animals were not injected with CFA or Evans blue.

Plasma b-hydroxybutyrate was measured with a Precision Xtra

monitor and ketone test strips (Abbott Laboratories; Abbott Park,

Illinois, USA).

Chemicals and CFA were purchased from Sigma-Aldrich (St.

Louis, Missouri, USA). Data were analyzed with unpaired t-test or

two-way repeated-measures analysis of variance as appropriate.

Data are presented as mean6standard error.
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17. Hallböök T, Köhler S, Rosén I, Lundgren J (2007) Effects of ketogenic diet on

epileptiform activity in children with therapy resistant epilepsy. Epilepsy Res 77:
134–140.

18. Masino SA, Geiger JD (2008) Are purines mediators of the anticonvulsant/
neuroprotective effects of ketogenic diets? Trends Neurosci 31: 273–278.

19. Sullivan PG, Rippy NA, Dorenbos K, Concepcion RC, Agarwal AK, et al.

(2004) The ketogenic diet increases mitochondrial uncoupling protein levels and

activity. Ann Neurol 55: 576–580.

20. Cullingford TE (2004) The ketogenic diet; fatty acids, fatty acid-activated
receptors and neurological disorders. Prostaglandins Leukot Essent Fatty Acids

70: 253–264.

21. Bough KJ, Schwartzkroin PA, Rho JM (2003) Caloric restriction and ketogenic

diet diminish neuronal excitability in rat dentate gyrus in vivo. Epilepsia 44:
752–760.

22. Tendler D, Lin S, Yancy WS Jr, Mavropoulos J, et al. (2007) The effect of a low-
carbohydrate, ketogenic diet on nonalcoholic fatty liver disease: a pilot study.

Dig Dis Sci 52: 589–593.

23. Maalouf M, Rho JM, Mattson MP (2009) The neuroprotective properties of

calorie restriction, the ketogenic diet, and ketone bodies. Brain Res Rev 59:
293–315.
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