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Abstract

Next-generation sequencing technologies promise to dramatically accelerate the use of genetic information for crop
improvement by facilitating the genetic mapping of agriculturally important phenotypes. The first step in optimizing the
design of genetic mapping studies involves large-scale polymorphism discovery and a subsequent genome-wide
assessment of the population structure and pattern of linkage disequilibrium (LD) in the species of interest. In the present
study, we provide such an assessment for the grapevine (genus Vitis), the world’s most economically important fruit crop.
Reduced representation libraries (RRLs) from 17 grape DNA samples (10 cultivated V. vinifera and 7 wild Vitis species) were
sequenced with sequencing-by-synthesis technology. We developed heuristic approaches for SNP calling, identified
hundreds of thousands of SNPs and validated a subset of these SNPs on a 9K genotyping array. We demonstrate that the 9K
SNP array provides sufficient resolution to distinguish among V. vinifera cultivars, between V. vinifera and wild Vitis species,
and even among diverse wild Vitis species. We show that there is substantial sharing of polymorphism between V. vinifera
and wild Vitis species and find that genetic relationships among V. vinifera cultivars agree well with their proposed
geographic origins using principal components analysis (PCA). Levels of LD in the domesticated grapevine are low even at
short ranges, but LD persists above background levels to 3 kb. While genotyping arrays are useful for assessing population
structure and the decay of LD across large numbers of samples, we suggest that whole-genome sequencing will become
the genotyping method of choice for genome-wide genetic mapping studies in high-diversity plant species. This study
demonstrates that we can move quickly towards genome-wide studies of crop species using next-generation sequencing.
Our study sets the stage for future work in other high diversity crop species, and provides a significant enhancement to
current genetic resources available to the grapevine genetic community.
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Introduction

The aim of genetic mapping studies is to identify loci that

underlie phenotypic variation. Genetic mapping studies are critical

for improving crops through marker-assisted breeding and for our

understanding of the relationship between genotype and pheno-

type [1]. Genome wide association (GWA) mapping [2] and

genomic selection (GS) [3] are increasingly being adopted for crop

improvement and they often require large numbers of genetic

markers. One of the main challenges in agricultural genetics is to

access and use the tremendous genetic variation present in

germplasm collections and in the wild, as crop species are far more

diverse than the vertebrate systems used in biomedical research.

To do this, approaches for applying next generation sequencing

technology to non-model systems need to be developed [4].

The first step towards GWA and GS is to discover large numbers

of genetic markers, generally single nucleotide polymorphisms

(SNPs), across the genome. This initial step of large-scale SNP

discovery is already underway in several organisms. For example, in

humans the International HapMap Project currently boasts over 3

million SNPs (http://www.hapmap.org/), and similar projects are in

progress for Arabidopsis thaliana (http://walnut.usc.edu/2010), rice

(http://irfgc.irri.org) and maize (http://www.panzea.org/). While

previous SNP discovery initiatives relied on laborious and relatively

expensive sequencing and genotyping platforms, SNP discovery has

become less time consuming and much more cost-effective since the

introduction of next-generation sequencing (ABI’s SOLiD, Illumina’s

Genome Analyzer and Roche’s 454). SNP discovery using next-

generation sequence data is still in its infancy, but several studies have

already demonstrated that large numbers of high quality SNPs can be

identified in a cost effective manner using next-generation sequence

data [5–9]. Deep sequence coverage across many samples is generally

desired in order to identify high quality SNPs. To achieve an increase

in coverage, the portion of the genome that is sequenced can be

reduced by constructing reduced representation libraries (RRLs).

RRLs are generated by digesting each sample with a common

restriction enzyme before sequencing and they have been useful for

large-scale SNP discovery in several organisms [8–11].

After large-scale SNP discovery, it is crucial to gain an

understanding of the pattern of linkage disequilibrium (LD) and
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population structure in the species of interest. The strategy

underlying GWA and GS is to genotype enough markers across

the genome so that functional alleles will likely be in LD with at

least one of the genotyped markers [12]. Thus, an assessment of

the rate of LD decay is essential in estimating the number of SNPs

required for GWA and GS studies. For example, it has been

shown that 500,000 SNPs provide reasonable power for GWA in

humans [13] and that 140,000 SNPs provide reasonable coverage

of the 125 Mb Arabidopsis thaliana genome [14]. An evaluation of

population structure in the species of interest is also crucial: it

allows the selection of germplasm for a mapping population that

will maximize genetic diversity, and thus the number of QTL that

can be detected. Numerous studies have recently used genome-

wide SNP data to characterize patterns of population structure in

domesticated species as a starting point for GWA and GS [15–17].

Here we describe the initial steps we have taken towards

genome-wide genetic mapping studies in the world’s most

economically important fruit crop, the grapevine (genus Vitis).

The grapevine is a long-lived woody perennial consisting of dozens

of species whose natural habitat spans the northern hemisphere

[18]. The cultivated grapevine, V. vinifera, represents one of the

earliest domesticated fruits [19] and there are currently ,19

million acres under vine (http://faostat.fao.org/). Previous

characterizations of the genetic structure of the grapevine have

been restricted to small numbers of microsatellites [20] or a few

hundred informative SNPs [21–23]. The grapevine is diploid, has

a relatively small genome size (475 Mb) and was recently

sequenced by two independent groups [24,25]. Genetic mapping

in the grapevine has relied almost exclusively on linkage mapping,

which is time-consuming because of the grapevine’s long

generation time (generally 3 years). These considerations make

the grapevine an ideal candidate for assessing the utility of next-

generation sequencing and genotyping arrays in characterizing

genome-wide patterns of genetic diversity of a high-diversity,

domesticated plant species in order to move rapidly towards GWA

studies.

Here we describe a simple and rapid procedure for identifying

hundreds of thousands of SNPs from 11 V. vinifera cultivars and 6

wild Vitis species. From these data, we assess patterns of

segregation within and between V. vinifera and wild Vitis species

and provide the most comprehensive analysis of LD decay in V.

vinifera to date. We also describe the design of a SNP genotyping

array for the grapevine that assays 8898 SNPs (the Vitis9KSNP

array). We show that the Vitis9KSNP array provides sufficient

high-quality genotypes to successfully capture the genetic structure

within and between the V. vinifera cultivars and wild Vitis species.

Our analyses suggest that the use of SNP arrays for WGA studies

will be inadequate for high-diversity plant species in which LD

decays rapidly, as in the grapevine. We suggest a stronger focus on

experimental design in the anticipation that future mapping

populations will be cost-effectively whole-genome sequenced in the

near future.

Results

We generated reduced representation libraries (RRLs) from 17

grapevine DNA samples (10 cultivated V. vinifera varieties, 6 wild

Vitis species and the reference genome (inbred Pinot Noir) – see

Table S1 for details on samples) by digesting each sample with the

restriction enzyme HpaII, which has proved useful in the

generation of RRLs by others [26,27]. The generation of RRLs

permits high-coverage sequencing of a small, similar fraction of the

genome across samples. Each RRL was sequenced on a single lane

of Illumina’s Genome Analyzer to produce 57.3 million 36-bp

reads (2.6 Gb of DNA sequence). We trimmed off the last 4 bases

of each read and aligned the 32 bp reads to the reference genome

using ELAND (Illumina Inc). In total, 68% of the reads

successfully mapped to the reference genome: 57% mapped

uniquely, 11% mapped to multiple locations (repetitive) and 32%

provided no alignment (no match). Figure 1 provides a summary

of the alignment results and the proportion of reads carrying the

HpaII sequence tag across the 17 samples.

The sequencing was clearly enriched for successfully digested

fragments as 81% of the sequence reads began with the HpaII

sequence tag (CGG). Figure 2 summarizes the extent to which the

sequencing of the RRLs resulted in higher than expected coverage

of a small fraction of the genome. We observed a strong

enrichment of reads mapping to HpaII digested fragments between

40 bp and 250 bp (Figure 2A), which is likely the result of PCR

and cloning biases in the Illumina system. In addition, we

compared the observed coverage to the coverage expected if no

enrichment procedure had been performed (Figure 2B). Our

enrichment procedure resulted in more bases covered at 0x and

$8x than expected if no enrichment procedure had been

performed (Figure 2B; see Methods for details). Thus, the use of

RRLs concentrated the sequencing on a smaller portion of the

genome which provided high enough coverage for reliable SNP

calling.

After aligning all of the reads to the reference genome and

applying some preliminary filters (see Methods), we identified

469,470 SNPs, which we refer to as our 470K SNP set. Figure 3

demonstrates that SNPs were infrequent within the first 3 bp of

reads and enriched towards the ends of reads in our 470K SNP

set. The former observation is explained by our library

preparation procedure: 81% of reads begin with the CGG-tag

and we are therefore unlikely to observe polymorphism within the

first 3 bp of reads. The latter observation, however, is consistent

with the effects of sequencing error: errors are concentrated

towards the ends of reads [5,8,28]. This suggests that our 470K

SNP set contains false positives which are disproportionately

represented at the ends of reads. We found that implementing a

strict filter that disregards evidence of polymorphism from the

ends of reads resulted in unacceptably high false negative SNP call

rates. We therefore investigated several methods that help

eliminate the observed read position effect. We found that the

two most effective methods were the application of a quality score

(Q) score threshold and a threshold on the p-value from a

genotypic contingency test. The genotypic contingency test is

applied to the read counts at a particular SNP (reference vs.

alternative allele across samples) which are represented as a

contingency table (see Supplementary Methods S1 for details).

Figure 3 demonstrates that these methods are effective in

eliminating the bias of SNP discovery towards the ends of reads.

Selecting SNPs with average Q scores $20 and contingency test p-

values #0.01 results in a set of 71,397 SNPs which we refer to as

the 71K SNP set. The 470K and 71K SNP sets are publicly

available at [ftp://brie4.cshl.edu/pub/vitis_plosone_2009_snps/].

SNPs were most often called with coverage from fewer than all 17

accessions. In the 71K SNP set, for example, 95% of SNPs were

assayed from $7 accessions (see Figure S1). Figure 4 presents the

degree of shared polymorphism between the European cultivated

V. vinifera cultivars and the wild Vitis species for the 71K SNP set.

To assess patterns of LD decay in Vitis, we used a set of simple

rules to call genotypes from the Illumina GA sequence data (see

Methods). We restricted our analysis to the 10 cultivated V. vinifera

samples, as each of the wild Vitis species was represented by a

single sample and there may be significant differences in LD decay

between species. Levels of LD are generally low in V. vinifera
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(r2,0.2) even at short physical distances (Figure 5A). To determine

at what distance LD decays to background levels, we calculated

background LD as the degree of LD between SNPs on different

chromosomes. We then compared background levels of LD to the

observed pattern of LD decay up to 40 kb. Figure 5A demon-

strates that while LD is generally low across all distances it remains

above background levels to ,10 kb. To formally test at what

distance LD is no longer distinguishable from background LD

levels, we compared the observed distribution of r2 values in each

bin to the 20,000 r2 values generated from comparisons of SNPs

on different chromosomes using a Mann-Whitney U test (see

Methods for details). Figure 5B shows that p-values for these

comparisons are consistently highly significant out to ,10 kb and

then begin to decay towards non-significant values.

We designed a custom Infinium SNP genotyping array

(Illumina) that assays 8898 SNPs selected from the 470K set by

relying on several criteria described in Table S2 and Supplemen-

tary Methods S1. We refer to this SNP array as the Vitis9KSNP

Figure 2. HpaII digestion results in an enrichment of genomic regions with high read coverage. Panel A presents two overlapping
fragment size distributions. The size distribution of fragments from an in silico HpaII digestion are shown in blue and the size distribution of the in
silico digested fragments to which reads were successfully mapped is shown in orange. Panel B compares the observed amount of the genome
sequenced at each level of coverage to the expectation at random. The random expectation was generated assuming that coverage follows a Poisson
distribution (see Methods for details). The inset in gray demonstrates that the observed coverage begins to exceed the random expectation at 8x
coverage. SNPs were called from positions with $10x coverage.
doi:10.1371/journal.pone.0008219.g002

Figure 1. Alignment results of Illumina GA reads to the grapevine reference genome. The total number of reads generated for each
sample is found in the box to the right. The upper bars in the barplot indicate the proportion of reads belonging to each of the categories in the
legend. Reads aligning with 0 to 2 mismatches were included for SNP discovery. Reads mapped repetitively and reads with no match were discarded.
The lower bars (dark grey) show the proportion of reads beginning with the HpaII tag. The wild Vitis samples are shown in italics.
doi:10.1371/journal.pone.0008219.g001
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array. To date, we have genotyped 156 samples with the array and

the 94 pairwise comparisons between replicate samples give an

average concordance of 99.75%. We compared genotype calls

from the Illumina sequence data to genotype calls from the

Vitis9KSNP array for the 17 samples (see Methods for details on

genotype calling). For 36,904 genotypes called from both datasets,

we observe 97.7% concordance. Table 1 summarizes these

concordance results by genotype class.

To investigate patterns of population structure, we performed

principal components analysis (PCA) on 14,325 SNPs from the

Illumina GA sequence data, which were chosen without regard to

the pattern of segregation among the 17 wild and cultivated

grapevines (Figure 6A; see Methods for details). In Figure 6A, the

first PC, which accounts for 20.7% of the variance, separates wild

from V. vinifera accessions, while the second PC differentiates

among wild species. The exception is V. sylvestris, the wild ancestor

of the domesticated V. vinifera, which clusters with the V. vinifera

varieties. We also performed PCA on genotype data generated

from the Vitis9KSNP array for the same set of 17 samples

(Figure 6B). In Figure 6B, the first PC separates wild from V.

vinifera as in Figure 6A. The second PC, however, differentiates

among V. vinifera varieties.

Discussion

WGA and GS studies have generally concentrated on a small

number of organisms with established genotyping arrays. With the

decreasing costs of DNA sequencing and genotyping, we

anticipate that there will be interest in moving rapidly towards

GWA and GS studies in organisms for which relatively little

genetic data currently exists. Particularly in plants, the Germplasm

Repositories of the United States Department of Agriculture

currently house over 500,000 different accessions, presenting an

enormous amount of genetic diversity to be catalogued and an

incredibly large inventory of genetic variation waiting to be

discovered and used. In the present study, we provide a framework

for rapidly and cost-effectively moving from very few genetic

resources, to genome-wide characterization of a species of great

economic and cultural interest, the grapevine.

We generated ,2.6 Gb of DNA sequence using the Illumina

Genome Analyser, a substantial proportion (32%) of which did not

Figure 3. Quality score (Q) and genotypic contingency test thresholds eliminate read position bias during SNP calling. The 470K SNP
set is enriched with SNPs identified from the ends of reads. Panel A demonstrates that this read position bias can be eliminated by applying a Q score
threshold. Panel B demonstrates that the genotypic contingency test also improves SNP calling.
doi:10.1371/journal.pone.0008219.g003

Figure 4. Segregation of SNPs in the 71K SNP set within and
between V. vinifera and wild Vitis species. The proportion of SNPs
polymorphic only within V. vinifera is 68.5%. The proportion segregat-
ing only within wild Vitis species is 53.1%. A substantial proportion
(24.3%) of SNPs shows evidence of segregation within both V. vinifera
and the wild Vitis species. Only 2.7% of SNPs appeared fixed between V.
vinifera and wild Vitis.
doi:10.1371/journal.pone.0008219.g004

Figure 5. LD decay in the grape. Panel A shows the observed LD
decay compared to background LD across 40 kb. LD was calculated as
the median r2 in bins of 1000 comparisons. The background LD is the
median r2 from 20,000 comparisons between SNPs on different
chromosomes. Panel B shows the –log10 p-values from comparing
the distribution of observed r2 values within each bin to the distribution
of background r2 values generated from comparisons between SNPs on
different chromosomes using a Mann-Whitney U test (see Methods for
details).
doi:10.1371/journal.pone.0008219.g005
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align successfully to the available genome sequence (Figure 1).

Some of these unmatched reads likely come from portions of the

genome that are not represented in the current genome, as the

genome sequence is not complete. In addition, genetic variation

among samples (e.g. highly divergent haplotypes, structural and

copy number variation) may result in unaligned reads to the

reference genome. For example, the inbred Pinot Noir, which is

the identical DNA sample used to generate the reference genome,

provided the highest number of successfully aligned reads as

expected (Figure 1). Reads from the distantly related wild Vitis

species matched less often than the cultivated varieties, however

several cultivars (e.g. Plavac Mali) showed a low proportion of

matches. The variation across samples in the proportion of

matches could be due to numerous factors, including variation in

exogenous DNA contamination or quality of the sequence data.

Three lines of evidence strongly suggest that our genomic

reduction procedure was successful. First, 81% of the sequenced

reads begin with the HpaII tag (Figure 1). Thus, most of the

sequence we obtained came from fragments successfully digested

by HpaII. Second, there is an excess of reads that map to HpaII

fragments 40–250 bp in length and a deficit of reads mapping to

HpaII fragments 0–30 bp in length (Figure 2A). It is known that

fragments between 50–250 bp are preferentially amplified on the

flow cell of Illumina’s GA and this explains our enrichment of

reads mapping to fragments in that size range. Finally, Figure 2B

demonstrates that the sequencing of RRLs successfully produced

an excess of bases with high coverage ($8x) compared to what is

expected without any genomic reduction procedure. Overall, we

sequenced 26.4% of the 290 Mb assembled genome to $1x

coverage and obtained no sequence from ,73.6% of the

assembled genome (i.e. 0x coverage). SNPs were identified only

from positions with $10x and #1000x coverage, which

represented only 2.3% of the assembled genome. (A very small

portion of the genome was sequenced at .1000x coverage

(0.01%)). Although we call SNPs from only 2.3% of the assembled

genome, the generation of an equivalent amount of sequence data

without an enrichment step would have made large-scale SNP

discovery impossible as the required coverage would not have

been obtained.

Our genomic reduction procedure and subsequent sequencing

enabled the identification of 470K putative SNPs. The excess of

evidence for polymorphism at the ends of reads in our 470K SNP

Table 1. Concordance of SNP genotype calls.

Vitis9KSNP array

homozygous reference heterozygous homozygous alternative

homozygous reference 24083 (65.26) 285 (0.77) 10 (0.03)

heterozygous 80 (0.22) 4158 (11.27) 41 (0.11)

homozygous alternative 29 (0.08) 408 (1.11) 7810 (21.16)

Concordance was assessed for 36,904 SNPs called from both Illumina GA sequence data and the Vitis9KSNP array. Concordance is found along the diagonal and the
remaining cells represent different categories of non-concordance. The values inside each cell refer the number of SNPs in that category, followed by the percent value
in parentheses. The most common type of non-concordance is found in cases where a SNP is called homozygous from the Illumina data but is called heterozygous from
the array data.
doi:10.1371/journal.pone.0008219.t001

Ill
u

m
in

a

Figure 6. Principal components analysis (PCA) plots from grapevine SNP data. The first two PCs are shown with the proportion of the
variance explained by each PC in parentheses. Panel A shows a PCA plot generated from 14,325 SNPs called from the Illumina GA without regard to
segregation pattern. Panel B shows a PCA plot from the Vitis9KSNP array data, whose SNPs were chosen purposely to distinguish among V. vinifera
cultivars.
doi:10.1371/journal.pone.0008219.g006
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set closely resembles the previously described distribution of errors

across read positions: the sequencing error rate increases towards

the ends of reads [28]. This suggests that the simple SNP calling

procedure we implemented to generate the 470K set often does

not accurately distinguish between true SNPs and error (Figure 3).

Our use of SNP calling criteria based on quality score and the

genotypic contingency test (see Methods for details) eliminated this

read position bias and resulted in our 71K SNP set. It is also worth

noting that indels at the ends of reads may not inhibit alignment

and can in some instances be mistaken for SNPs in downstream

analyses. SNP calling from short-read sequence data is currently in

its infancy, and more sophisticated algorithms exist [6,29] and will

continue to be developed. The fact that the grapevine is highly

heterozygous and significantly more genetically diverse than many

of the organisms in which SNPs have been called from short-read

sequence data [5,7,8], makes SNP calling more challenging. In

addition, our genome reduction procedure makes it impossible to

eliminate the effects of PCR bias as we expect reads to begin and

end at the same positions. However, we have demonstrated that a

set of simple heuristics can generate a useful data set rapidly and

without excessive computational demands. The generation of 71k

high-quality SNPs represents a significant enhancement of current

genetic resources available to the grape genetics community.

We find relatively few fixed differences (2.7% of SNPs) and a

considerable degree of shared polymorphism (24.3% of SNPs)

between V. vinifera and wild Vitis species (Figure 4). The wild Vitis

species are primarily from North America, but results remain

largely the same when Vitis amurensis, the only Eurasian wild

species in the present study, is excluded from analysis (data not

shown). Moreover, this high degree of shared polymorphism is

likely an underestimate since polymorphism was often missed due

to low read counts. Despite being geographically isolated for more

than 20 million years, there is strong evidence of significant

degrees of shared polymorphism between North American wild

grapevine species and European cultivated grapevines. This

observation supports the view that grapevine species have

maintained large effective population sizes for millions of years

and that, despite having undergone domestication and breeding,

V. vinifera cultivars still harbor variation that dates back tens of

millions of years.

We found that LD decays to background levels at inter-SNP

distances of ,10 kb (Figure 5). Consistent with previous reports

[21,30], levels of LD in V. vinifera are low, even at short inter-SNP

distances. The median r2 for SNPs within 50 bp of each other is

only 0.18, for example. This striking observation suggests that the

effective population size of the domesticated grapevine is

extremely large and historical recombination has fragmented the

V. vinifera genome into very short haplotype blocks. The rapid

breakdown of LD in V. vinifera, together with the presence of

shared polymorphism between V. vinifera and wild Vitis species,

suggests that grapevine domestication did not involve a severe

population bottleneck. Future work assessing levels of diversity and

LD decay in V. sylvestris, the ancestor of V. vinifera, will allow us to

quantify more accurately the severity of the domestication

bottleneck in the grapevine.

The consequence of the observed rapid LD decay is that genetic

mapping in the cultivated grapevine will not follow other

organisms’ paths towards genome-wide mapping studies. To date,

the path towards GWA and GS has begun with genotyping

microarrays that carry tag SNPs, SNPs that effectively capture

neighboring variants through LD [31]. The grapevine, however,

has such low LD that most functional alleles would not be tagged

by a genotyped marker from an array-based assay. Thus, we

anticipate that whole-genome sequencing will be required for well-

powered genome-wide approaches in the grapevine. There are

two other reasons why this is a reasonable way to move forward.

First, we found that the quality scores from the Vitis9KSNP array

are influenced by the number of SNPs present in the probe

sequence (Figure S2). This observation suggests that it may be

difficult to obtain high-quality genotype data using genotyping

microarrays on high-diversity plant species. Second, because the

grape is a long-lived perennial that generally produces fruit 3 years

after planting, the focus should now be on establishing a mapping

population that effectively captures the diversity within the

grapevine, paying careful attention to experimental design (e.g.

number of replicates, number of environments, etc.). It is likely

that by the time sufficient phenotype data is collected from such a

mapping population, the sequencing costs will be minimal

compared to the costs of establishing and phenotyping the

population. Thus, we argue that it is most effective to now

concentrate on establishing grapevine mapping populations that

will allow for well-powered genetic mapping studies in the future

and to exploit the anticipated low future costs of whole-genome

sequencing.

To assess the genetic structure of the grapevine, we have

designed the Vitis9KSNP array which we are currently using to

genotype ,1200 V. vinifera and ,250 wild Vitis species from the

USDA’s grape germplasm collection. We selected SNPs discov-

ered by Illumina GA sequencing to include on the array based on

a number of criteria (Table S2 and Supplementary Methods S1)

and observed 97.7% concordance between genotype calls from the

Illumina GA data and the genotype calls from the Vitis9KSNP

array (Table 1). Table 1 demonstrates that the most common type

of error (82% of errors) involves cases in which a SNP is called

homozygous from the Illumina GA data but is called heterozygous

from the array data. The likely reason for the excess of non-

concordant genotypes in these two classes is the presence of

polymorphism in HpaII sites: an allele at a SNP will not be

sequenced if it is linked to an allele that disrupts the HpaII site at

the start of the sequence. Thus, calling heterozygotes from RRLs is

necessarily complicated by the presence of polymorphism within

the restriction site, especially in highly heterozygous species like

the grapevine. Overall, however, the high concordance rates

suggest that the array is providing genotypes that are consistent

with the Illumina GA sequence data.

Designing a SNP array to assess the genetic structure of an

entire genus is challenging; only a few SNPs that show fixed

differences between two species may be necessary to distinguish

between them. We intentionally introduced an ascertainment bias

during SNP selection for the Vitis9KSNP array and favored SNPs

that segregate within the cultivated V. vinifera, but also chose a

smaller set of SNPs that show fixed differences between each wild

species and the V. vinifera samples (Table S2). Selecting SNPs for

the array strictly based on quality without regard to segregation

patterns results in large numbers of SNPs differentiating the wild

Vitis species. This is apparent in the PCA plot generated from

14,325 SNPs chosen without regard to the pattern of segregation

among wild and cultivated grapevines (Figure 5A). For this

unbiased SNP set, there is essentially no differentiation among V.

vinifera until PC4, which accounts for only 7.4% of the variance

(Figure S3). When PCA is performed on the same set of samples

using the biased set of SNPs from the Vitis9KSNP array, PC1

distinguishes between wild Vitis species and V. vinifera, and PC2

accounts for 11.8% of the variance and provides clear separation

of the V. vinifera cultivars (Figure 5B). The exception is the wild

species V. sylvestris, the known progenitor of V. vinifera [18], which is

found close to the V. vinifera as expected. Inclusion of additional

samples that we have genotyped with the array demonstrates that

Grapevine Genomics
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the Vitis9KSNP provides power to distinguish between V. vinifera,

hybrids and wild species (Figure S4) and even resolves relation-

ships among diverse wild species (Figure S5).

The relative positions of the V. vinifera samples along PC2 in

Figure 5B suggest that geography may have an influence on the

genetic structure of the domesticated grapevine as PC2 reflects the

longitude from which these cultivars are believed to have

originated. For example, cultivars from Western Europe (Pinot

Noir, Gewurztraminer, Riesling, Ehrenfelser and French Colom-

bard) are concentrated at the top of PC2 while cultivars of eastern

origin are found at the bottom of PC2 (Plavac Mali from Croatia;

Kadarka from Hungary; Muscat of Alexandria from Egypt;

Malvasia from Greece and Thompson Seedless from Iran). The V.

sylvestris sample in Figure 5B is from Tunisia, so its position along

PC2 is also consistent with the longitudinal gradient. Only a small

number of accessions have been analyzed here and the results

from our analyses of Vitis9KSNP array data from the entire

USDA grape germplasm collection promises to provide a more in-

depth view of the genetic structure of the cultivated grape.

Having assessed the diversity of the grapevine using a whole-

genome sequencing approach as well as a genotyping array, it is

evident that the choice between using either of these two

technologies depends very much on the purpose of the study at

hand. The design of a high-quality genotyping array with millions

of SNPs for GWA in the grapevine is, arguably, an impossible task

because of the difficulties associated with assaying diversity across

such a diverse genus. It is our view that next-generation

sequencing should and will be primarily utilized for GWA studies

in high diversity crop species. On the other hand, customized SNP

arrays, such as the Vitis9KSNP in this study, will be valuable for

preliminary assessments of germplasm collections and for breeders

to verify their material.

Methods

SNP Discovery by Illumina GA Sequencing
Genomic DNA was extracted with DNeasy Plant Mini Kits

(Qiagen) from young, lyophilized leaves, cambium tissue or leaf

bud tissue. Details about the 17 DNA samples are provided in

Table S1. DNA samples were amplified with bacteriophage Phi29

DNA polymerase provided in the Genomiphi whole-genome

amplification kit (GE Healthcare). We performed a genome

complexity reduction step by fully digesting each sample with the

restriction enzyme HpaII (recognition sequence = CCGG) to

generate reduced representation libraries (RRLs). HpaII is a

methyl-sensitive enzyme, but the genome amplification step prior

to restriction digestion eliminates methylation and HpaII therefore

behaves as a non-methyl-sensitive enzyme in this case. The

standard library preparation for Illumina’s 1G Genome Analyzer

was then performed for each RRL with one alteration: size

selection by gel excision was not performed as our experience

suggests that it makes no difference in sequence quantity or quality

(Ed Buckler, unpublished data). Each RRL was sequenced on a

single lane of the Genome Analyzer with 36 cycles to produce 57.3

million reads. The sequences generated in this study have been

submitted into the NCBI short read archive (SRA accession:

SRA009211.21). Each 36 bp read was first shortened to 32 bp (a

requirement for the alignment tool) and aligned to the grape

reference genome [24] using Illumina’s ELAND alignment tool. In

this manner, we detected 2,271,594 positions in the genome where

2 or more alleles were observed (i.e. putative SNPs).

To obtain a robust set of SNPs from this set of 2,271,594

putative SNPs, we implemented a series of preliminary filters.

First, we rejected a putative SNP if the read count for the minor

allele(s) was #5% of the total read count. This filter aims to

distinguish between sequencing error, which should be found at

low frequency, and true polymorphism. While this filter likely

rejected true low-frequency SNPs in some cases, this is of little

concern since we were primarily concerned with identifying

intermediate-frequency SNPs. Some putative SNPs were covered

by .50,000 reads. Putative SNPs covered by extremely high read

counts are more likely to be non-allelic, i.e. the result of paralogy:

although a set of reads may align to a single genomic location

according to the genome sequence, they in fact are derived from

multiple genomic locations that are misrepresented as a single

sequence in the currently available genome sequence. To mitigate

the paralogy problem, we implemented a second filter whereby

putative SNPs were rejected if the total read count was .1000.

This second filter also aids computational speed. Third, we

implemented an arbitrary read count requirement and rejected

SNPs with total read counts ,10. Finally, when 3 or 4 alleles were

observed, we rejected putative SNPs if the sum of the 3rd and 4th

most common alleles was $2% of the total read count. We then

considered only the two most common alleles as we are only

interested in identifying bi-allelic SNPs. The implementation of

these preliminary filters resulted in 469,470 SNPs, which we refer

to as our 470K SNP set. From the 470K SNP set, we identified a

71,397 high-quality SNPs which we refer to as the 71K SNP set.

The 71K SNP set was established by choosing SNPs from the

470K set with average Q scores $20 and genotypic contingency

test p-values #0.01. See Supplementary Methods S1 for a detailed

explanation of the genotypic contingency test.

Coverage Analysis
A significant proportion (31.1%) of the grape genome sequence

has not been assigned to a chromosome. Another 7.9% of the

genome is assigned to chromosomes, but not anchored to a

chromosomal location. For our coverage analysis, we considered

only the 60.9% of the genome sequence that is assigned and

anchored to locations on chromosomes 1 to 19. We refer to this

portion of the genome as the ‘‘assembled genome’’.

A total of 17,326,203 reads (554,438,492 bp) were successfully

mapped to the assembled genome. We generated the observed

coverage distribution by calculating the coverage for every base in

the assembled genome (see Figure 3B). The observed number of

bases with no coverage was 234,673,000 bp. Bases can have no

coverage because no reads mapped to their location, or because

reads cannot be mapped to their location. The latter scenario

applies to bases that are unknown (i.e. bases assigned ‘N’ in the

genome sequence) and for bases that lie within repetitive regions.

We subtracted the number of unknown bases (12,848,811 bp) and

the number of bases within repetitive regions (31,282,949 bp) to

obtain a more accurate observed number of bases with no coverage

(190,541,240 bp). We obtained an estimate of the amount of

repetitive sequence in the assembled genome from http://

www.genoscope.cns.fr/externe/Download/Projets/Projet_ML/data/

annotation/repeats/.

To generate the expectation from sequencing at random

without the use of RRLs, we followed the Lander-Waterman

model whereby coverage follows a Poisson distribution if sequence

is obtained at random from the genome [32]. Similar to the

manner in which we obtained the observed number of bases with

no coverage above, we calculated the ‘‘mappable portion’’ of the

assembled genome by subtracting the number of unknown bases

and the number of bases within repetitive regions from the total

number of bases in the assembled genome. Thus, we consider

14.6% of the assembled genome essentially unmappable and

exclude it from our calculation of the Lander-Waterman coverage
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distribution. The random coverage distribution was generated

from a poisson distribution with l= 2.14, where l is the mean

coverage. The mean coverage was obtained by dividing the

286,454,112 bp of sequence that maps to the assembled genome

by the 258,954,041 mappable bases of the assembled genome.

Segregation Patterns
We assessed the pattern of segregation within and between V.

vinifera and wild Vitis species using read count data from the 71K

SNP set. For this analysis, V. sylvestris, the wild progenitor of V.

vinifera, was included in the V. vinifera group. SNPs with $1 read

carrying the reference allele and $1 read carrying the alternative

allele within V. vinifera were identified as ‘‘segregating’’ or

‘‘polymorphic’’ within V. vinifera. The same criteria were applied

to the wild Vitis species. Fixed differences were identified as SNPs

with one allele present exclusively in V. vinifera and the other allele

present exclusively in the wild Vitis species.

LD Decay
We called genotypes from the raw Illumina GA read data as

follows. A genotype was called only if the read count for an

individual at that locus was $4 reads. Individuals were called

homozygous if they carried $4 reads for one allele and 0 reads for

the other allele. Individuals with $4 reads carrying both alleles

were called heterozygous. For the analysis of LD decay, only the

10 V. vinifera samples were included. D’ is an unreliable measure of

LD with small sample sizes and we therefore only present r2

values. SNPs with $2 missing genotypes were excluded. Singleton

SNPs were excluded. Using these criteria enabled us to include

16,486 SNPs and provided sufficient resolution to assess LD decay.

The genotype calls are likely sufficiently reliable since comparisons

between r2 values generated from this SNP calling method and

from the stricter SNP calling method described below under

‘‘Vitis9KSNP array’’ were highly correlated (r2 = 0.95, p,1610215).

A table of r2 values and their respective inter-SNP distances was

sorted by inter-SNP distance. We calculated the median r2 in

sequential bins of 1000 observations along this table and plotted

this value against the mean inter-SNP distance for each bin.

Background LD was assessed by calculating 20,000 r2 values

between pairs of SNPs on different chromosomes. Pairwise LD

was calculated using the R package ‘‘genetics’’ which incorporates

maximum likelihood phase estimates into the estimation of LD

[33].

Vitis9KSNP Array
We called genotypes from the Illumina sequence data and

compared them to genotype calls from the Vitis9KSNP array. We

attempted to find a set of rules for calling genotypes from the

Illumina sequence data that would provide a sufficient number of

SNPs for comparison while minimizing the false positive rate. An

individual was called a homozygote at a locus if there were. = 5

reads from that individual mapping to that locus and all these

reads carried the same allele at that locus. An individual was

considered heterozygous at a SNP if it had $8 reads mapping to

the position and if it passed the heterozygosity test (see

Supplementary Methods S1 for details of the heterozygosity test).

Genotypes were considered missing data if they failed these

conditions. This genotyping scheme results in 820,612 genotype

calls from the Illumina sequence data. Genotypes from the

Vitis9KSNP array were called using Illumina’s BeadStudio

software. Our observations suggest that larger sample sizes

improve genotype calling. We therefore included 139 samples in

addition to the 17 samples sequenced by the Illumina GA when

calling genotypes with BeadStudio. Only high-quality genotype

calls are useful in assessing concordance between data sets. We

therefore visually inspected genotype cluster plots in Beadstudio

and decided on a set of strict quality thresholds (GenCall

score$0.5; GenTrain score$0.7) for SNP calling. The use of

these thresholds resulted in 69,078 genotype calls from the

Vitis9KSNP array. The total number of genotypes called from

both the Illumina sequence data and the Vitis9KSNP array was

36,904.

Principal Components Analysis
Principal components analysis (PCA) was performed using the

prcomp command in R [34]. Genotypes were called with the

BeadStudio software. Genotype calling included 139 samples in

addition to the 17 samples sequenced by the Illumina GA. From

visually inspecting genotype clusters, we decided on the following

genotype quality thresholds for PCA analysis: GenCall score$0.15

and GenTrain score$0.5. We excluded SNPs with call rates ,0.8

and SNPs that were monomorphic. The application of these

criteria resulted in a set of 5840 SNPs used for PCA analysis.

We called genotypes for SNPs in the 71K SNP set from the

Illumina sequence data. To do so, we employed the SNP calling

criteria described under the heading ‘‘LD decay’’ of the Methods

section above. SNPs called in ,14 of the 17 samples were

excluded. This resulted in a set of 14,325 SNPs for PCA analysis.

Supporting Information

Methods S1 Supplementary Methods

Found at: doi:10.1371/journal.pone.0008219.s001 (0.10 MB

PDF)

Figure S1 The distribution of assayed accessions for the 470K

and 71K SNP set. In many cases, reads covering a SNP are only

obtained from a fraction of the total number of samples

sequenced. The histograms partition SNPs by the number of

accessions from which reads were obtained.

Found at: doi:10.1371/journal.pone.0008219.s002 (0.01 MB

PDF)

Figure S2 The effect of neighboring polymorphisms on array-

based SNP call quality. Each SNP on the Vitis9KSNP array is

queried by a probe sequence that is complementary to the 50 bp

of sequence adjacent to each SNP. SNPs within this adjacent

probe sequence may reduce probe-sequence hybridization and

thus result in poor quality SNP calling. The GenTrain score, along

the Y-axis, is a metric of SNP quality assigned to every SNP on the

Vitis9KSNP array by Illumina’s BeadStudio software. The

number of SNPs from the 71K set within each SNPs’ probe

sequence is shown along the X-axis. The boxplot demonstrates

that the GenTrain Score decreases as the number of SNPs present

in the probe sequence increases. Thus, obtaining reliable genotype

calls using SNP arrays in highly diverse species will be challenging.

Found at: doi:10.1371/journal.pone.0008219.s003 (0.16 MB

PDF)

Figure S3 Plots of the first 10 PCs generated from 14,325 SNPs

chosen without regard to the pattern of segregation among wild

and cultivated grapevines. The proportion of the variance

explained by each PC is in parentheses above each plot.

Found at: doi:10.1371/journal.pone.0008219.s004 (0.08 MB

PDF)

Figure S4 A PCA plot of 100 grapevine accessions. The SNP

data were generated from the Vitis9KSNP array and only the first

2 PCs are shown. The proportion of the variance explained by

each PC is shown in parentheses. The V. vinifera, hybrid Vitis
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cultivars and wild Vitis species are easily distinguishable along

PC1. PC2 distinguishes among V. vinifera cultivars. V. sylvestris, the

ancestor of V. vinifera, is found among the V. vinifera cultivars as

expected.

Found at: doi:10.1371/journal.pone.0008219.s005 (0.03 MB

PDF)

Figure S5 A PCA plot of 50 wild Vitis accessions. The SNP data

were generated from the Vitis9KSNP array and only the first 2

PCs are shown. The proportion of the variance explained by each

PC is shown in parentheses.

Found at: doi:10.1371/journal.pone.0008219.s006 (0.03 MB

PDF)

Table S1 Additional information on grape DNA samples used in

the present study

Found at: doi:10.1371/journal.pone.0008219.s007 (0.20 MB

PDF)

Table S2 Criteria used to choose the 8988 SNPs assayed by the

Vitis9KSNP custom genotyping array

Found at: doi:10.1371/journal.pone.0008219.s008 (0.09 MB

PDF)
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