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Abstract

With the advent of high-throughput technologies for measuring genome-wide expression profiles, a large number of
methods have been proposed for discovering diagnostic markers that can accurately discriminate between different classes
of a disease. However, factors such as the small sample size of typical clinical data, the inherent noise in high-throughput
measurements, and the heterogeneity across different samples, often make it difficult to find reliable gene markers. To
overcome this problem, several studies have proposed the use of pathway-based markers, instead of individual gene
markers, for building the classifier. Given a set of known pathways, these methods estimate the activity level of each
pathway by summarizing the expression values of its member genes, and use the pathway activities for classification. It has
been shown that pathway-based classifiers typically yield more reliable results compared to traditional gene-based
classifiers. In this paper, we propose a new classification method based on probabilistic inference of pathway activities. For a
given sample, we compute the log-likelihood ratio between different disease phenotypes based on the expression level of
each gene. The activity of a given pathway is then inferred by combining the log-likelihood ratios of the constituent genes.
We apply the proposed method to the classification of breast cancer metastasis, and show that it achieves higher accuracy
and identifies more reproducible pathway markers compared to several existing pathway activity inference methods.
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Introduction

The introduction of affordable microarray technologies for

measuring genome-wide expression profiles has led to the

development of numerous methods for discriminating between

different classes of a complex disease, such as cancer, through

transcriptome analysis [1–4]. Especially, there have been signif-

icant research efforts to identify differentially expressed genes

across different phenotypes [5–9], which can be used as diagnostic

markers for classifying the disease states or predicting the outcome

of medical treatments [1–4,10–12]. However, finding reliable gene

markers is a challenging problem, and several recent studies have

questioned the reliability of many classifiers based on individual

gene markers [13–19]. The small sample size of typical clinical

data that are used to build a classifier is one of the major factors

that make this problem difficult. We often have to search for a

small number of good marker genes among thousands of genes

based on a limited number of samples, which makes the

performance of traditional feature selection methods quite

unpredictable [20]. The inherent measurement noise in high-

throughput experimental data and the heterogeneity across

samples and patients make the problem even more formidable.

One possible way to address this problem is to interpret the

expression data at the level of functional modules, such as signaling

pathways and molecular complexes, instead of at the level of

individual genes. In fact, one of the weaknesses of many gene-

based classification methods is that the marker genes are often

selected independently, even though their functional products may

interact with each other. Therefore, the selected gene markers may

contain redundant information, and they may not synergistically

improve the overall classification performance. We can alleviate

this problem by jointly analyzing the expression levels of groups of

functionally related genes, which can be obtained based on

transcriptome analysis [21–23], GO annotations [24], or other

sources. In fact, several studies [23,25–28] have shown that

pathway markers are more reproducible compared to single gene

markers and they can provide important biological insights into

the underlying mechanisms that lead to different disease

phenotypes. Furthermore, pathway-based classifiers often achieve

comparable or better classification performance compared to

traditional gene-based classifiers.

To use pathway-based markers in classification, we need a way

to infer the activity of a given pathway based on the expression

levels of the constituent genes. Recently, a number of pathway

activity inference methods have been proposed for this purpose.

For example, Guo et al. [25] proposed to use the mean or median

expression value of the member genes to infer the pathway

activity. Tomfohr et al. [28] and Bild et al. [23] used the first

principal component of the expression profile of the member genes

to estimate the activity of a given pathway. More recently, Lee et

al. [26] proposed a method that predicts the pathway activity using

only a subset of genes in the pathway, called the condition-

responsive genes (CORGs), whose combined expression levels can

accurately discriminate the phenotypes of interest.
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In this paper, we propose a novel method for probabilistic

inference of pathway activities. For a given pathway, the proposed

method estimates the log-likelihood ratio between different

phenotypes based on the expression level of each member gene.

The activity level of the pathway is then inferred by combining the

log-likelihood ratios of the genes that belong to the pathway. We

apply our method to the classification of breast cancer metastasis,

and demonstrate that it can achieve higher accuracy compared to

several previous pathway-based approaches. Furthermore, we

show that the proposed pathway activity inference method can

find more reproducible pathway markers that retain the

discriminative power across different datasets.

Methods

Datasets
We obtained two independent breast cancer datasets from

large-scale gene expression studies by Wang et al. [11] (referred as

the ‘‘USA’’ dataset in this work) and van’t Veer et al. [10] (referred

as the ‘‘Netherlands’’ dataset). Wang et al.’s dataset [11] contains

the gene expression profiles of 286 breast cancer patients from the

USA, where metastasis was detected in 107 of them while the

remaining 179 were metastasis-free. The other dataset studied by

van’t Veer et al. [10] contains the gene expression profiles of 295

patients from the Netherlands, where 79 had metastasis and 216

were metastasis-free. In this study, we did not consider the follow-

up time or the occurrence of distant metastasis.

To obtain the set of known biological pathways, we referred to

the MSigDB (Molecular Signatures Database) version 2.4 (updated

April 7, 2008) [21]. We downloaded the canonical pathways in the

C2 curated gene sets, which contains 639 gene sets obtained from

several pathway databases, including the KEGG (Kyoto Encyclo-

pedia of Genes and Genomes) database [29] and the GenMAPP

[30]. These gene sets are compiled by domain experts and they

provide canonical representations of biological processes. The set

of pathways obtained from the MSigDB covers more than 5,000

distinct genes, where 3,271 of them can be found in both

microarray platforms used by the two breast cancer gene

expression studies in [10,11].

Probabilistic Inference of Pathway Activity
For each pathway, we first identified the genes that were

included in the expression profiles in the two breast cancer

datasets. The genes that were not included in these datasets were

removed from the gene set for the given pathway. Consider a

pathway that contains n genes G~ g1, g2, . . . , gnf g after remov-

ing the genes whose expression values were not available. Given a

sample xj~ x1
j ,x2

j , . . . ,xn
j

� �
that contains the expression levels of

the member genes, we estimate the pathway activity aj as follows

aj~
Xn

i~1

li xi
j

� �
, ð1Þ

where li xi
j

� �
is the log-likelihood ratio (LLR) between the two

phenotypes of interest for the gene gi. The LLR li xi
j

� �
is given by

li xi
j

� �
~log f 1

i xi
j

� �.
f 2
i xi

j

� �h i
, ð2Þ

where f 1
i xð Þ is the conditional probability density function (PDF)

of the expression level of gene gi under phenotype 1, and f 2
i xð Þ

is the conditional PDF under phenotype 2. The ratio li xi
j

� �
is a

probabilistic indicator that tells us which phenotype is more likely

based on the expression level xi
j of the ith member gene gi. We

combine the evidence from all the member genes to infer the

overall pathway activity aj~
Pn

i~1 li xi
j

� �
. The pathway activity

aj can serve as a discriminative score for classifying the sample xj

into different phenotypes based on the activation level of the given

pathway. Conceptually, we can view this approach as computing

the relative support for the two different phenotypes using a Naive

Bayes model [31,32] based on the gene expression profile of the

pathway.

In order to compute the LLR value li xi
j

� �
, we need

to estimate the PDF f c
i xð Þ for each phenotype c[ 1,2f g. We

assume that the gene expression level of gene gi under phenotype c
follows a Gaussian distribution with mean mc

i and standard

deviation sc
i . These parameters were estimated based on all

available samples xi
j that correspond to the phenotype c. The

estimated PDFs can then be used for computing the log-likelihood

ratios. In practical applications, we often do not have enough

training data for reliable estimation of the PDFs f 1
i xð Þ and f 2

i xð Þ.
This may make the computation of LLRs sensitive to small

changes in the gene expression profile. To avoid this problem, we

normalize the li xi
j

� �
as follows

blli xi
j

� �
~

li xi
j

� �
{m lið Þ

s lið Þ
, ð3Þ

where m lið Þ and s lið Þ are the mean and standard deviation of

li xi
j

� �
across all samples, respectively. Figure 1 illustrates the

overall procedure for inferring the activity of a given pathway.

Discriminative Power of Pathway Markers
In order to compare the proposed pathway activity inference

scheme with other existing methods, we performed the

following experiments. In our first experiment, we selected the

top 50 differentially expressed pathways using the method

proposed by Tian et al. [22]. To assess the ability of a given

pathway in discriminating between different phenotypes, Tian

et al. computes the t-test statistics scores for all member genes

and take their average to compute an aggregated score T that

can serve as an indicator of the pathway’s discriminative power.

After prescreening the top 50 pathways that have the largest

absolute T values, we computed the activity score for each of

these pathways using the proposed inference method as well as

other methods. The obtained pathway activity scores were then

used to compute the t-test statistics score for each pathway

marker. The t-test scores were used to assess the discriminative

power of pathway markers and to compare different inference

methods.

In this work, we compared five different pathway activity

inference methods: the mean and the median methods [25], the

PCA-based method [23,28], the CORG-based method [26], and

the inference method proposed in this paper. For the mean,

median, and CORG-based methods, we computed the score T
by averaging the t-test scores of the expression values of the

member genes. For the PCA-based method, we computed T by

averaging the absolute t-test scores of the gene expression values,

since the PCA can naturally combine expression values

regardless of whether they are positively correlated or negatively

correlated with the phenotype of interest. For our proposed

method, we computed T by averaging the t-test scores of the

LLRs of the member genes, since we estimated the pathway

Pathway-Based Classification
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activity score based on LLRs instead of the original expression

values.

We also evaluated the robustness of each inference method in

identifying good pathway markers, by ranking the pathways using

one of the two breast cancer datasets, and then assessing the

discriminative power of the pathways based on the other dataset.

Again, t-test statistics of the pathway activity scores were used to

compare different inference methods.

In our second experiment, we computed the t-test statistics

scores for all 639 pathways without any prescreening, and

compared the effectiveness of different pathway activity inference

methods based on the computed scores. As in the first experiment,

we also evaluated the robustness of each inference method for

finding effective pathway markers, by ranking the pathways

according to the t-test scores estimated using one of the datasets,

and then evaluating their discriminative power on the other

dataset.

Evaluation of Classification Performance
In order to evaluate the classification performance of the

proposed pathway activity inference method, we performed the

following cross-validation experiments.

For within-dataset experiments, the samples in a dataset were

randomly divided into five subsets of equal size, where the samples

in four of these subsets were used for training the classifier and the

remaining subset was used for assessing the classification

performance. This has been repeated by using each subset as

the test set to obtain more reliable results. The training set was

divided again into three equal-sized subsets. Two thirds were used

for ranking the pathway markers and building the classifier (the

‘‘marker-evaluation’’ dataset), and one third of the training set was

used for feature selection (the ‘‘feature-selection’’ dataset). All

samples in the training set were used to estimate the PDFs of the

gene expression values under different phenotypes. To build the

classifier, we evaluated each pathway based on the discriminative

power of its activity score to classify samples. The pathways were

sorted in increasing order of the p-value. After ranking the

pathways, we built the classifier, either based on logistic regression

or LDA (linear discriminant analysis), as follows. Based on the

marker-evaluation dataset, we first constructed the classifier with

only one feature, namely, the pathway marker with the lowest p-

value. The performance of the classifier was then measured by

computing the AUC (Area Under ROC Curve) [33] on the

feature-selection dataset. Next, we enlarged the set of features by

selecting the pathway marker with the lowest p-value among the

remaining pathways. A new classifier was trained using the

selected features on the marker-evaluation dataset and its

classification performance was again assessed on the feature-

selection dataset. The added pathway marker was kept in the

feature set if the AUC increased, and it was removed otherwise.

Figure 1. Probabilistic inference of pathway activity. For each gene in the pathway, we estimate the conditional probability density functions
(PDFs) under different phenotypes. Based on the estimated PDFs, we transform the expression values of the member genes into log-likelihood ratios
(LLRs) to obtain a LLR matrix from the gene expression matrix. The LLR matrix is then normalized, and the pathway activity is inferred by combining
the normalized LLRs of its member genes.
doi:10.1371/journal.pone.0008161.g001
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We repeated the above process for all pathway markers to

optimize the classifier. The performance of the optimized classifier

was evaluated by computing the AUC on the test dataset. These

experiments have been repeated for 100 random partitions of the

entire dataset. We report the AUC, averaged over 500

experiments, as the overall performance measure of the classifi-

cation method at hand. The overall process of the within-dataset

experiment is illustrated in Fig. 2A.

In order to evaluate the reproducibility of the pathway markers

across different dataset, we performed cross-dataset experiments,

where one dataset was used for selecting the pathway markers,

and the other dataset was used for building the classifier based on

the selected markers and evaluating its performance. First, we

selected the optimal set of features (i.e., pathway markers) based on

one dataset, by optimizing the AUC metric. The process for

selecting the feature set was similar to the one used in the within-

dataset experiments. The samples in the other dataset were

divided into five subsets of equal size. Four fifths of samples were

used to train the classifier using the selected features, and one fifth

of samples were used to evaluate the performance of the

constructed classifier. We repeated this experiment by using each

of the five subsets as the test set and using the rest for training. The

above experiment was repeated for 100 random partitions of the

entire dataset, and the average AUC over the 500 experiments was

reported as the performance measure. It is important to note that

feature selection is performed solely based on the first dataset.

During the cross-validation experiments using the second dataset,

the training set (that consists of four fifths of samples in the same

dataset) is simply used to build the classifier based on the

preselected set of features. The overall goal of these cross-dataset

experiments is to evaluate the reproducibility of the feature set,

selected using the proposed pathway activity inference scheme,

across different datasets. Figure 2B illustrates the overall process of

the cross-dataset experiment.

To compare the proposed method with other existing methods,

we performed the described within-dataset experiments and the

cross-dataset experiments using other pathway activity inference

methods (mean, median, PCA, and CORG). In addition, we also

evaluated the performance of a gene-based classifier that uses

individual genes as diagnostic markers, following a similar

procedure. In this study, we included the top 50 pathway markers

in the initial marker set, which were selected according to the

method in Tian et al. [22] as elaborated in the previous subsection.

For the gene-based classifier, we included the top 50 gene markers

with the lowest p-values in the initial marker set, in order to keep

the maximum number of features identical.

Computing the Area under ROC Curve
In this work, we evaluated the performance of a classifier based

on the AUC (Area Under ROC Curve). The AUC metric has

been widely used for evaluating classification methods, since it can

provide a useful summary statistics of the classification perfor-

mance over the entire range of specificity and sensitivity values. To

compute the AUC, we adopted the method proposed in [33]. For

a given classifier, let x1,x2, . . . ,xm be the output of the classifier for

positive samples, and let y1,y2, . . . ,yn be the output for negative

samples. Then, the AUC metric A for the classifier is given by:

A~
1

mn

Xm

i~1

Xn

j~1

I xiwyj

� �
, ð4Þ

where I :ð Þ is the indicator function. The AUC is actually the

empirical probability that a randomly chosen positive sample is

ranked higher than a randomly chosen negative sample. It can be

shown that the AUC measure is equivalent to the Mann-Whitney

U -test (also called the Wilcoxon rank-sum test) statistics.

Results

Probabilistic Pathway Activity Inference Improves the
Discriminative Power of Pathway Markers

We evaluated the discriminative power of pathway markers,

where the pathway activities were inferred using the proposed

method as well as other inference methods. For effective

comparison of the proposed inference method with other existing

methods, we carried out similar experiments as those performed

in [26] to assess the discriminative power of pathway markers. For

each breast cancer dataset, we first used the method of Tian et al.

[22] to select the top 50 pathways among the 639 pathways

obtained from the MSigDB [21] (see Methods). We computed the

actual activity scores of the top 50 pathways based on each

pathway activity inference scheme, and ranked the pathways

according to their discriminative power. Figure 3 shows the

discriminative power of the top pathways, where the x-axis

corresponds to the number k of top pathways that were

Figure 2. Illustration of the experimental set-up. (A) In the within-dataset experiments, part of the training set, referred as the marker-
evaluation set, is used for ranking the pathway markers according to their discriminative power and building the classifier. The optimal set of features
are selected based on the remainder of the training set, referred as the feature-selection set. The performance of the resulting classifier is evaluated
using the test dataset. (B) In the cross-dataset experiments, one of the datasets is used to find the optimal set of features, and the other dataset is
used to build a classifier based on the preselected features and to evaluate the classifier.
doi:10.1371/journal.pone.0008161.g002

Pathway-Based Classification

PLoS ONE | www.plosone.org 4 December 2009 | Volume 4 | Issue 12 | e8161



considered, and the y-axis shows the mean absolute t-score of the

top k pathways. We compared five pathway activity inference

methods, namely, the CORG-based method [26], PCA-based

method [23,28], mean and median methods [25], and the LLR-

based method proposed in this paper. For comparison, we also

evaluated the discriminative power of the top 50 single gene

markers, which were chosen among the 3,271 genes covered by

the 639 pathways used in this study. The results obtained from the

Netherlands breast cancer dataset [10] and the USA breast cancer

dataset [11] are shown in Fig. 3A and Fig. 3B, respectively. As we

can see from these results, the proposed pathway activity

inference scheme, which computes the pathway activity score

by combining the log-likelihood ratios of the member genes,

significantly improved the power of pathway markers to

discriminate between metastatic samples and non-metastatic

samples. Interestingly, the top gene markers often compared

favorably to pathway markers. On the Netherlands dataset, the

expression levels of the top genes had larger discriminative power

than the pathway activity scores inferred by the CORG, PCA,

mean, and median methods. Only the pathway activity scores

estimated by the proposed method were more discriminative than

the gene expression values. On the USA dataset, gene markers

were more discriminative than pathway markers based on mean,

median, and PCA methods, but less discriminative compared to

pathway markers based on the proposed method and the CORG

method.

To evaluate the reproducibility of pathway markers, we ranked

the markers based on one dataset and evaluated their mean

absolute t-score using the other dataset. Figure 3C shows the result

for ranking the markers based on the Netherlands dataset and

computing the mean absolute t-score of the top k markers using

the USA dataset. Similarly, Fig. 3D shows the result for ranking

the markers based on the USA dataset and computing the mean

score of the top k pathways using the Netherlands dataset. These

results clearly show that the pathway markers selected based on

the proposed inference method retain significantly large discrim-

inative power across different datasets. In fact, in both cross-

dataset experiments, the pathway activity scores computed by the

LLR method were much more discriminative than the activity

scores computed by other inference methods as well as the

expression values of the top gene markers. Altogether, these results

imply that the proposed method can find better diagnostic markers

with higher reproducibility. Also note that the single gene markers,

which had considerably large discriminative power within a

dataset (see Figs. 3A and 3B), lost most of the discriminative power

in a different dataset.

Figure 3. Discriminative power of prescreened pathway markers and single gene markers. (A) Mean absolute t-score of the top
k ~10,20,30,40,50ð Þ markers for the Netherlands breast cancer dataset. Pathway activities have been inferred using five different methods: CORG,
PCA, mean, median, and LLR (proposed method). The discriminative power of the top gene markers was estimated for comparison (labeled as
‘‘Gene’’). (B) Mean absolute t-score of the top markers for the USA breast cancer dataset. (C) The markers were ranked based on the Netherlands
dataset and the mean absolute t-score of the top k markers was computed based on the USA dataset. (D) The markers were ranked based on the USA
dataset and the mean absolute t-score of the top markers was computed based on the Netherlands dataset.
doi:10.1371/journal.pone.0008161.g003

Pathway-Based Classification
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Next, we performed similar experiments for all 639 pathways

and all 3,271 genes covered by these pathways, without any

prescreening (see Methods). The results of these experiments are

shown in Fig. 4, where the x-axis indicates the ratio P% of the top

pathways that were used to compute the mean absolute t-score,

and the y-axis corresponds to the estimated mean absolute t-score

of the top P% pathways. The discriminative power of the pathway

markers and the single gene markers on the Netherlands dataset is

shown in Fig. 4A, and the discriminative power of the markers on

the USA dataset is shown in Fig. 4B. The results obtained from

cross-dataset experiments are summarized in Fig. 4C and 4D. In

Fig. 4C, the markers were ranked according to their discriminative

power on the Netherlands set, and their mean absolute t-scores

were computed using the USA dataset. The results for ranking the

markers based on the USA dataset and computing the scores using

the Netherlands set are shown in Fig. 4D. All these experiments

show that the pathway activity scores measured by the proposed

LLR method are much more discriminative than the scores

computed by other inference methods and also the expression

values of individual genes. Furthermore, we can see that the

pathway markers that were chosen based on the LLR-based

pathway activity scores are more reproducible and their activity

scores retain significant amount of discriminative capability across

independent datasets.

Proposed Pathway Activity Inference Scheme Leads to
More Accurate and Reliable Classifiers

We used the proposed pathway activity inference scheme for

classification of breast cancer metastasis, to evaluate its usefulness

in discriminating different cancer phenotypes. For a fair and

effective comparison with other inference schemes, we again

adopted a similar experimental set-up that was used in [26] to

evaluate the performance of the CORG-based method, a state-of-

the-art pathway activity inference scheme that uses only the

condition-responsive genes in a given pathway. For each breast

cancer dataset, we performed five-fold cross-validation experi-

ments, where four fifths of samples were used for constructing the

classifier and the remaining one fifth of samples were used for

evaluating the classification performance (see Methods). While

constructing the classifier, we used the LLR-based pathway

activity inference method for assessing the discriminative power

of each pathway marker and selecting the optimal set of markers to

be used in the classifier. The constructed classifier also used the

pathway activity scores computed by the proposed inference

method to distinguish metastatic breast cancer samples from non-

metastatic samples. In our experiments, we defined the initial set of

pathway markers as the top 50 pathways selected using the

method by Tian et al. [22] (see Methods). We assessed the

classification performance using the AUC metric. We repeated the

Figure 4. Discriminative power of all pathway markers and gene markers. (A) Mean absolute t-score of the top P% markers for the
Netherlands dataset. (B) Mean absolute t-score of the top markers for the USA dataset. (C) The markers were ranked based on the Netherlands dataset
and the mean absolute t-score of the top P% markers was computed based on the USA dataset. (D) The markers were ranked based on the USA
dataset and the mean score of the top P% markers was computed based on the Netherlands dataset.
doi:10.1371/journal.pone.0008161.g004

Pathway-Based Classification
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five-fold cross-validation for 100 random partitions of the given

dataset, and averaged the resulting 500 AUCs to obtain a reliable

performance measure of the classification method. To compare

the classification performance of different inference methods, we

also repeated the previous experiments using the CORG, PCA,

mean, and median methods for inferring the pathway activities.

For comparison, we also evaluated the performance of the gene-

based classification method. We included the top 50 discriminative

genes in the initial marker set, to keep the maximum number of

features identical for all classification methods.

Figure 5 summarizes the results of the cross-validation

experiments. In the first set of experiments, we used logistic

regression for classifying the samples. The classification results of

different approaches based on logistic regression are shown in

Fig. 5A. The two bar charts on the left of Fig. 5 correspond to the

two within-dataset experiments based on the USA breast cancer

dataset (labeled as ‘‘USA’’) and the Netherlands dataset (labeled as

‘‘Netherlands’’), respectively. In these within-dataset experiments,

the initial set of top 50 markers have been selected using the entire

dataset, in order to reduce the effect of sensitivity in marker

Figure 5. Performance of different classification methods. The bar charts show the average AUCs for different classification methods. Five
pathway-based methods that use distinct pathway activity inference schemes (LLR, CORG, PCA, mean, and median) and a gene-based method were
compared. (A) Classifiers were constructed based on logistic regression. Results of within-dataset experiments based on the USA and Netherlands
datasets are shown in the two charts on the left. The two charts on the right show the results of the cross-dataset experiments. (B) The performance
of different classification methods based on LDA (linear discriminant analysis).
doi:10.1371/journal.pone.0008161.g005

Pathway-Based Classification
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selection when comparing different pathway-based methods. The

cross-validation experiments have been performed based on the

selected initial set of markers (see Methods). As we can see in these

bar charts, the proposed method achieved the highest classification

accuracy among all methods, in both experiments. The CORG-

based method compared favorably to other pathway-based

methods, though outperformed by the proposed method. We

can also see that the gene-based classifier performed very well in

within dataset experiments, which is not surprising if we consider

the high discriminative power of the top gene markers observed in

Figs. 3A and 3B.

The results of the cross-dataset experiments are shown in the

two bar charts on the right of Fig. 5A. The chart labeled as ‘‘USA-

Netherlands’’ shows the results for selecting the features using the

USA dataset, and training/evaluating the classifier using the

Netherlands dataset. Similarly, the chart labeled as ‘‘Netherlands-

USA’’ shows the classification performance for choosing the

feature set using the Netherlands dataset, and training and

evaluating the classifier based on the USA dataset. As we can see,

the proposed LLR-based method outperformed most of the other

methods in both cross-dataset experiments. Only the mean-based

approach showed better performance than the proposed approach

on the Netherlands-USA cross-dataset experiment. These results

show that the proposed pathway activity inference method can

find a better feature set that is more reproducible across datasets,

compared to other activity inference methods. Despite the good

performance in within-dataset experiments, gene-based classifiers

performed typically worse than many pathway-based classifiers,

which shows the poor reproducibility of the feature sets based on

individual gene markers.

We also repeated the entire experiments using LDA (linear

discriminant analysis), instead of logistic regression, for building

the classifiers. The results are shown in Fig. 5B, where we can see

similar trends as in Fig. 5A. The proposed classification method

yielded the highest classification accuracy in both within-dataset

experiments, and it also outperformed other methods in cross-

dataset experiments, with the only exception of the mean-based

inference method in one of the experiments.

Finally, in order to analyze the overall effect of preselecting the

initial marker set, we carried out another set of within-dataset

experiments, where the initial markers were reselected in every

experiment using only the designated training data. The

classification results are shown in Fig. 6A and 6B for logistic

regression and LDA, respectively. As we can see from these

figures, the preliminary marker selection step has important

influence on the overall classification results, where the sensitivity

of the selection method may adversely affect the performance of

the resulting classifiers. However, as we can see from Fig. 6, the

relative performance between different classification methods

showed similar tendency as in the previous set of experiments

(see Fig. 5), and the proposed method consistently outperformed

the other methods in all experiments.

Proposed Method Leads to Robust Classifiers That Yield
Symmetric Results for Dataset Inversion

Ultimately, we want to construct a robust classifier that yields

accurate and consistent classification results on independent gene

expression datasets. Given two independent datasets of similar

size, where one dataset is used for training the classifier and the

other dataset is used for evaluation, a robust classification scheme

would show consistent classification performance if the training set

were interchanged with the test set. However, the USA breast

cancer dataset [11] and the Netherlands dataset [10] had been

obtained from different microarray platforms and also prepro-

cessed using different methods, which makes it practically difficult

to evaluate the robustness of the proposed classification method by

training the classifier based on one of the datasets and evaluating

its performance on the other dataset. For this reason, we

performed the following two-fold cross-validation experiments to

assess the robustness of the proposed approach. First, we randomly

divided a given dataset into two subsets of equal size. One of the

subsets was used to build an actual classifier based on LDA with a

classification threshold of lth~0:5. The classifier was then used to

classify the samples in the other subset and the classification error

rate was computed. Next, we interchanged the training set and the

test set and repeated the previous experiment. In order to find out

Figure 6. Performance of different classification methods. The bar charts show the average AUCs of within-dataset experiments for five
pathway-based methods (LLR, CORG, PCA, mean, and median) and a gene-based method. In these experiments, the top 50 pathways have been
reselected in every experiment using the designated training set. (A) Classification results based on logistic regression. (B) Classification results based
on LDA (linear discriminant analysis).
doi:10.1371/journal.pone.0008161.g006
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whether we can obtain consistent classification performance after

interchanging the training and test sets, we computed the absolute

difference between the two classification error rates. We repeated

this experiment for 250 random partitions of each breast cancer

dataset, and estimated the distribution of the absolute error

difference. For comparison, we carried out the above experiments

using the proposed pathway activity inference scheme as well as

the CORG-based scheme [26]. The proposed classification

scheme resulted in a relatively small average error difference of

0.0414 on the USA dataset, and 0.0324 on the Netherlands

dataset. The CORG-based classification scheme yielded a slightly

higher error difference, whose average was 0.0429 for the USA

dataset and 0.0345 for the Netherlands dataset. Figure 7 shows the

cumulative distribution of the classification error difference on the

two datasets for the respective methods. These results indicate that

both pathway-based classification schemes can lead to the

construction of robust classifiers that yield consistent results on

different datasets, where the proposed scheme compares favorably

to the CORG-based scheme.

Discussion

In this paper, we have proposed a novel probabilistic pathway

activity inference scheme that estimates the activation level of a

pathway based on the log-likelihood ratios (LLRs) of the member

genes. The proposed method can effectively address several

shortcomings of the previous pathway activity inference methods,

thereby improving the discriminative power of the pathway

markers. For example, the methods proposed by Guo et al. [25]

estimate the pathway activity by taking the mean or median of the

gene expression values of the member genes. These methods

cannot effectively capture the coherent gene expression patterns

that may be present within a pathway. For example, suppose a

member gene is positively correlated with a phenotype of interest,

while another gene in the same pathway is negatively correlated

with the given phenotype. In this case, we may lose much of the

discriminative information contained in the respective gene

expression values if we average them out. The PCA-based

inference method used in a number of studies [23,28] can

somewhat relieve this problem. In the PCA approach, the first

basis vector captures the average expression pattern of the

member genes, and the first principal component can estimate

the presence and the strength of this pattern in a gene expression

profile. However, not all the member genes may alter their

expression levels under different phenotypes in a consistent

manner. In fact, some genes may have expression changes that

are irrelevant to the phenotypic change of our interest. To address

this problem, Lee et al. [26] proposed a new pathway activity

inference method that uses only a subset of member genes, called

CORGs (condition-responsive genes), whose combined expression

levels are highly discriminative of the phenotypes. However, the

CORG-method may disregard member genes that have consis-

tent, but not large, expression changes under different phenotypes.

The proposed LLR-based method provides an effective solution

to these problems. First of all, by using the LLR of a member gene,

instead of directly using its expression value, the proposed method

can capture the consistent gene expression changes that are related

to the phenotypic change. Moreover, since the LLR is computed

based on the difference in distribution of the gene expression

values under different conditions, the direction and the amount of

expression changes do not have large effects on the overall

discriminative power of the pathway marker. Furthermore, the

proposed method fully utilizes the available discriminative

information in all the member genes, not just some of them; and

it naturally weights and combines the support from each member

gene in a given pathway to increase the discriminative power of

the corresponding pathway marker. As we have demonstrated in

this paper, the LLR-based pathway activity inference scheme

significantly improves the discriminative power of the pathway

markers, increases the overall classification accuracy, and finds

reliable pathway markers that are more reproducible across

different datasets. Therefore, the proposed method may ultimately

lead to the construction of more reproducible classifiers. The two-

fold cross-validation experiments, where we measured the change

in classification error that resulted from interchanging the training

Figure 7. Robustness of the proposed classification scheme. To assess the robustness of the proposed classification scheme, two-fold cross-
validation experiments have been performed, where we measured the change in classification error after interchanging the training and test sets. (A)
Cumulative distribution of the error difference for the USA dataset. (B) Cumulative distribution of the error difference for the Netherlands dataset.
doi:10.1371/journal.pone.0008161.g007
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and test sets, demonstrated the potential of the proposed scheme

for building robust and reproducible classifiers.

Currently, one limitation of the pathway-based classifiers is the

limited coverage of genes by known biological pathways. We

believe that the classification performance of the pathway-based

methods will be considerably improved once we have a more

complete list of biological pathways. One possible way to

overcome this problem is to identify effective pathway (or

subnetwork) markers by overlaying a protein-protein interaction

(PPI) network with gene expression data and searching for

significantly differentially expressed regions in the given network,

as proposed in [34]. In this work, we assumed that the expression

values of a gene follows a Gaussian distribution. Although this has

been shown to be a good approximation in our experiments, using

alternative distributions that better fit the expression data may

further improve the overall classification performance. For

example, we may consider using gamma distributions as proposed

by Efroni et al. [35].
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