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Abstract

Background: Smell provides important information about the quality of food and drink. Most well-known for their expertise
in wine tasting, sommeliers sniff out the aroma of wine and describe them using beautiful metaphors. In contrast, electronic
noses, devices that mimic our olfactory recognition system, also detect smells using their sensors but describe them using
electronic signals. These devices have been used to judge the freshness of food or detect the presence of pathogenic
microorganisms. However, unlike information from gas chromatography, it is difficult to compare odour information
collected by these devices because they are made for smelling specific smells and their data are relative intensities.

Methodology: Here, we demonstrate the use of an absolute-value description method using known smell metaphors, and
early detection of yeast using the method.

Conclusions: This technique may help distinguishing microbial-contamination of food products earlier, or improvement of
the food-product qualities.
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Introduction

Since the deterioration and quality variation of food and drink

are often associated with microbial activity, several previous

reports have attempted to analyze the smells produced by different

microorganisms. They used gas chromatography (GC)/mass

spectrometry (MS) techniques to detect and discriminate between

these scents [1,2]. While GC is useful for accurately identifying

these odours, the large amount of detailed information generated

is too difficult to analyze on a routine basis. Since the ‘electronic

nose’ offers a more simple solution for gaining specific odour

information, these devices have attracted considerable attention

[3]. The devices electronically mimic the mammalian olfactory

system [4] in which several olfactory receptors respond to smells

[5,6,7,8]. Electronic noses employ several sensors in place of these

receptors. These sensors include conductive polymers [9,10],

semiconductors [4,11,12] and metalloporphyrins [13].

Research has tested the validity of using electronic noses in a

variety of applications [14]. These primarily include testing the

quality of food and drink [3], as well as the direct detection of

microorganisms [15,16]. In the former situation, electronic noses

were used to estimate the freshness of meat [17] and fish [18], or to

discriminate the quality of milk [19]. In the latter case, these

devices were used to test for organisms associated with spoilage,

including bread moulds [9] and anaerobic bacteria [16]. All the

information can be used to check the quality and thereby may aid

in preventing intoxication.

However, two important obstacles still prevent the routine use

of electronic nose measurements: 1. we cannot identify what

differences there are between smells, and 2. we cannot compare

and assemble the data collected between different electronic noses.

The reason behind these obstacles stems from the fact that the

data generated by different electronic noses are sensor specific.

Moreover, current electronic noses are designed to detect certain

smells using different sensors. To understand the difference and to

discriminate between various smells, should we prepare many

sensors against possible smells?

To solve this problem even in cases using a small number of

sensors, we propose using a new smell description method that

combines smell intensity and smell specifications analysis, akin to

how sommeliers describe the aroma of wine.

First, in order to express the criteria of smell intensity as an

absolute value, we propose the development of a standard odour

index. The odour index concept in this study was originally

introduced in the Japanese Offensive Odour Control Law (1971)

and has been used as a means to measure environmental odours. It
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includes information on how much a smell sample can be diluted

to reach the human nose threshold, the lowest concentration

which human noses can detect. The odour index is defined as

10?log10 (dilution rate). This formula was derived by the careful

analysis of the human olfactory recognition system [20]. It has

been shown that humans can not differentiate the intensities of

smells by their liner concentrations. The index 10 implies that

most humans can detect smells in 10-fold dilutions, and an index

of 20 indicates a 100-fold dilution. Using this index, odour from

chewing gum were set around 40 and restrooms odours were set

around 30 in our previous study [21]. These odour indices help us

record and imagine smell intensities as absolute values.

Our second consideration was the criteria of smell specification.

We proposed describing this aspect of odour using known smell

categories provided by standard gasses (metaphor expression).

Using the known smell information provided by standard gases,

the amount of accessible information we can use for describing

smells can increase dramatically. There are, for example, two

common ways to describe the flavour of tea. ‘This flavour is sweet’

and ‘This flavour is like muscat’; the latter metaphor description

enables us to imagine the flavour better.

We enabled an electronic nose, FF-2A (Shimadzu Corporation,

Japan) [21,22], to report on both intensity and specification. The

device, therefore, can calculate a virtual odour index in terms of

standard gas categories.

The FF-2A electronic nose recognized odours and calculate the

odour indices as described below. The device contained 10 metal

oxide semiconductors sensors with different sensitivities and

selectivity for different fragrant substances (Figure 1a) [22]. These

sensors were standardized with 9 standard gases (hydrogen

sulphide, methylmercaptan, ammonia, trimethylamine, propionic

acid, butylaldehyde, butylacetate, toluene and heptane). From the

Figure 1. Measurement scheme and calculation methods. (a) Nine standard gases were introduced to the smell sensor array in FF-2A
electronic nose system. The FF-2A used multivariate analysis to calculate the vectors of the standard gases. After yeast volatile samples were
introduced and their vectors were calculated, the standard gas vectors were used to calculate the indices and similarities of yeast volatile samples. (b)
Calculation method of odour index, total odour index and similarity. After all the vectors were calculated (left), the indices were calculated using
virtual sample concentrations for each axis (right). Similarity was calculated using the angles between the different sample vectors.
doi:10.1371/journal.pone.0007939.g001
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sensor signals, 9 standard gas vectors were built in the space of a

10 sensor dimension. Then volatiles samples were measured and

the information obtained was compared with the standard gas

vectors. Finally, the data were described in terms of the standard

gas categories (odour indices in standard gas categories). The

calculation method for the indices was as shown in Figure 1b and

as described in the Methods section mentioned below. The odour

indices were quickly calculated by projecting the vectors against

the standard gases categories.

Moreover, the FF-2A was installed with a trap tube for

concentrating smells and removing water vapour, which can

affect the measurement value (Figure 1a) [22]. This system can

maintain constant sample humidity and thereby, increase the

reproducibility of the measurements. Depending on the aim of the

analysis, use of this trap tube is optional.

In this study, we challenged FF-2A with early detection of yeast

and confirmed whether the combination method, absolute-value

intensity and metaphor specification, is useful for detection and

discrimination of microorganisms. To determine the lowest yeast

concentration detectable, we measured the volatiles from samples

obtained from 102 to 107 cfu/ml in the Glucose-Yeast-Peptone

(GYP) media. In addition, to investigate the advantage of

combining intensity and specification, we tested 2 other methods,

i.e. total odour index (using smell intensity only) and similarity

against other samples (using smell specification only).

Materials and Methods

Microorganisms and Culture Conditions
Saccharomyces sp. (yeast) and Lactococcus lactis SNW-1 (lactic

acid bacteria) were provided by Sanwa Norin Co. Ltd. These

microorganisms were cultured in GYP media (1.0% glucose, 0.5%

yeast extract, 0.5% peptone, 0.01% MgSO4, 0.0005% MnSO4,

0.0005% FeSO4, and 0.002% NaCl). Both microorganisms were

cultured to 1.0 McFarland and then diluted to the indicated

concentrations with the media.

Measurements of Standard Gases and Volatile Samples
The electronic nose was calibrated using the 9 standard gases as

described, following which 2 ml of the samples (consisting of

microorganisms and medium) were collected in 2-liter PET bags

filled with dry nitrogen. The bags were allowed to equilibrate for

1 h at 25uC. The headspace volatiles were collected and diluted

with dry nitrogen in new 2-liter PET bags. These diluted samples

were introduced into the trap tube for 60 s and then exposed to

the array with pure nitrogen gas. All the samples were measured

four times and the final three measurements were used for analysis.

Approximately 90 min were required to obtain the first data

reading.

Calculations
The virtual concentration for each standard-gas axis was

calculated by projecting the vector obtained to the axis

(Figure 1b). The odour index for each category was calculated

using equation (1).

Odour index in standard gas category~10:log10 Cs=Ctð Þ ð1Þ

Cs represented the virtual concentration compared to the

standard-gas axis and Ct was used to describe the threshold

concentration (the lowest detectable concentration) of the standard

gas by the human nose.

The total odour index, or the smell intensity as a whole, was

calculated from the summation of the 9 standard gas intensities as

in equation (2).

Total odour index~10:log10 S Csi=Ctið Þ i~1{9ð Þ ð2Þ

The similarity was calculated using the angles between the

sample vectors. For this calculation we used the following criteria;

h= 0u, similarity 100%; h.20u, similarity 0%.

Results

Analyses with Absolute-Value Intensity and Metaphor
Expression

Using the combination method, we showed the odour indices of

the yeast volatiles in terms of the 9 standard gases categories

(Figure 2). In the control media, organic acid was the highest

category, and hydrogen sulphide and ammonia constituted the

lower categories (odour index of the GYP media: organic acid,

23.5; hydrogen sulphide, 2.87; ammonia, 0.00). Over 102 cfu/ml,

the indices obtained for the lower categories, hydrogen sulphide

and ammonia, increased with concentration (Figure 2a). Over

104 cfu/ml, the indices for all the categories were higher than

those obtained using the control media. These data suggested that

Figure 2. Odour index changes generated by yeast volatiles
determined by 9 standard gases categories. The graph (a) and
radar chart (b) depict the values calculated by the odour index
expressed as mean6standard deviation (n = 3). GYP indicates the GYP
control medium. Lact 107 indicates the volatile sample from 107 cfu/ml
of lactic acid bacterium in the GYP medium (bacterium control).
doi:10.1371/journal.pone.0007939.g002
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our electronic nose only required 102 cfu/ml to detect yeast in

culture media using our chosen standard categories.

In Figure 2b, we showed the volatile data in the form of a radar

chart to compare the patterns easily. We included the data

obtained from using lactic acid bacteria (107 cfu/ml) in this chart.

Both microorganisms produced unique radar chart shapes, which

were clearly different from shape generated by the control media.

The analysis using the lactic acid bacteria showed that only the

hydrogen sulphide category increased most when compared to the

control media. Therefore, by comparing the values for the

specifically increased factors, we demonstrated that we were able

to discriminate yeast from lactic acid bacteria using as little as

102 cfu/ml.

Analyses with Total Odour Index
We described the data from yeast volatiles using the total odour

index as the method we did with smell intensity only (Figure 3a).

Different from odour index describing each gas category used

above, the total odour index focuses on the smell intensity of the

whole samples; all the categories were added together. From the

indices obtained using this technique, we were unable to

discriminate between the two microorganisms. Over 103 cfu/ml,

the index was higher than that obtained for the control media, and

increased exponentially as Y = 1.1201 ln(x)+20.039, R2 = 0.9871.

Although the total odour index were unable to provide us with

details related to smell specification, the index can be useful for

estimating the number of yeast over 103 cfu/ml.

Analyses with Similarity
Figure 4 showed the similarity of yeast volatiles compared to the

GYP media alone (a), and against high concentration of yeast (b) in

an attempt to analyze the samples using smell specifications only.

The similarity between samples was calculated using the angles

only between two axes (not including intensity information;

Figure 1b). In our previous study, we learned that when the angle

is 0u, our nose cannot distinguish between the 2 smells and

perceives them as a single smell; this similarity of the 2 smells was

described as 100% by the electronic nose. In contrast, when the

angle is over 20u, we can practically distinguish between the 2

smells and this similarity was described as 0% by the device [21].

The similarities of the yeast volatiles obtained from 102 to

107 cfu/ml compared to the GYP media alone showed that they

were all less than 84% and therefore, clearly different from the GYP

media (99.3%; Figure 4a). Therefore, we can use this method to

detect yeast in the GYP media. On the other hand, the similarities of

the yeast volatiles from 102 to 106 cfu/ml compared to those from

107 cfu/ml ranged from 86% to 53% (Figure 4b). With regard to

the lactic acid bacteria, the similarities of the bacterial volatiles from

102 to 107 cfu/ml ranged from 57% to 64%. Over 105 cfu/ml, the

similarities of yeast volatiles were higher than the range of the lactic

acid bacteria. These results suggested that we would be unable to

differentiate between yeast and lactic acid bacteria using smell

specification only, when the bacterial concentration was less than

105 cfu/ml. The smell from the GYP media may mask the

differences of these volatile specifications.

Discussion

In this paper, we challenged early detection of yeast and

compared the three methods to detect and discriminate yeast

cultures using an electronic nose. The combination method that

uses absolute-value intensity and metaphor specification, was

extremely sensitive and could detect and discriminate yeast at the

same time. Moreover, approximately 90 min were required from

the sample collection to the first data reading. This shorter time

analysis may help fresh food administration especially. Meanwhile,

using the total odour index and similarity alone proved to be

highly concentration dependent and could detect some differences.

However, we could not discriminate between yeast and lactic acid

bacteria using solo methods. We should combine the methods,

smell intensity and specification, to detect and discriminate

microorganisms at the same time.

Absolute-value smell will help record and compare smells in the

development of food and drink products. For example, in the

flavour of cheeses and other fermented foods, in addition to

consistency and quality, there is a growing consumer demand for a

larger diversity [2]. In the wine, Sauvignon Blanc, volatile thiol

group are of particular importance to the varietal character,

imparting passionfruit, grapefruit, in high concentrations, sweaty

or cat’s urine aromas [23]. Our methods will help record smells in

absolute value. Strong working relationships with tasters or

sommeliers may improve the quality of products and create

diversity.

Figure 3. Total odour indices of yeast volatiles against
concentration. These data were calculated using the smell intensities
of all the volatiles in combination. The odour data are expressed as
mean6standard deviation (n = 3). The approximation curve and
correlation coefficient (R2) were calculated using Microsoft Excel 2003.
doi:10.1371/journal.pone.0007939.g003

Figure 4. Similarities of yeast volatiles from 102 to 107 cfu/ml.
The yeast volatiles were compared to the GYP control media (a) and
yeast volatiles generated by 107 cfu/ml (b). The similarities were
calculated using only smell specification. The data are expressed as
mean6standard deviation (n = 3). Lact indicates the volatile samples
collected from 102 to 107 cfu/ml lactic acid bacteria (bacterium control).
doi:10.1371/journal.pone.0007939.g004
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Furthermore, the absolute-value smell will compare the data

from an electronic nose with the data from other electronic noses.

The data from current electronic noses are relative values, since

they have different sensors in each nose. The concept of absolute

value smell is applicable to other electronic noses and will help

gather data and build data bases.

For more useful information, selection of appropriate standard

gasses remains as one of the key issues to be clarified. In this study,

we selected the gasses from odorants related to environment

offensive odours. In order to detect odorant from microorganisms

sharply, GC or GC/MS data in past and current odour studies will

support the selection.

Although we examined only yeast and lactic acid bacteria in this

report, if scientists continue to collect smell data from different

microorganisms using these methods, the resulting database will

undoubtedly prove helpful in improving the safety and quality

control of foods and drink. To compare and assemble such smell

data, we believe that the key is using absolute values and propose

the use of our combination method for the measurement of smells

to assemble these databases.
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