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Abstract

Background: The average nitrogen-to-phosphorus ratio (N:P) of insect herbivores is less than that of leaves, suggesting that
P may mediate plant-insect interactions more often than appreciated. We investigated whether succession-related
heterogeneity in N and P stoichiometry influences herbivore performance on N-fixing lupin (Lupinus lepidus) colonizing
primary successional volcanic surfaces, where the abundances of several specialist lepidopteran herbivores are inversely
related to lupin density and are known to alter lupin colonization dynamics. We examined larval performance in response to
leaf nutritional characteristics using gelechiid and pyralid leaf-tiers, and a noctuid leaf-cutter.

Methodology/Principal Findings: We conducted four studies. First, growth of larvae raised on wild-collected leaves
responded positively to leaf %P and negatively to leaf carbon (%C), but there was no effect of %N or quinolizidine alkaloids
(QAs). Noctuid survival was also positively related to %P. Second, we raised gelechiid larvae on greenhouse-grown lupins
with factorial manipulation of competitors and soil N and P. In the presence of competition, larval mass was highest at
intermediate leaf N:P and high %P. Third, survival of gelechiid larvae placed on lupins in high-density patches was greater
when plant competitors were removed than on controls. Fourth, surveys of field-collected leaves in 2000, 2002, and 2003
indicated that both %P and %N were generally greater in plants from low-density areas. QAs in plants from low-density
areas were equal to or higher than QAs in high-density areas.

Conclusions/Significance: Our results demonstrate that declines in lupin P content under competitive conditions are
associated with decreased larval growth and survival sufficient to cause the observed negative relationship between
herbivore abundance and host density. The results support the theoretical finding that declines in stoichiometric resource
quality (caused here by succession) have the potential to cause a decrease in consumer abundance despite very dense
quantities of the resource.
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Introduction

Predicting the spatial and temporal dynamics of consumer

populations as a function of macronutrient and energy resources

has a long history in theoretical and empirical ecology. Response

to nitrogen (N) has been a particular focus for understanding the

dynamics of terrestrial insect herbivores [1,2,3,4,5], and provides

the mechanistic basis for some proposals that predict herbivore

feeding patterns [4,6]. For example, as predicted by one version of

the plant stress hypothesis [7], boring insect guilds respond

positively to drought stress, as do phloem-feeding insects when

drought stress is intermittent [8], effects that occur because of

enhanced N availability in drought-stressed plants. Likewise, tests

for bottom-up control of terrestrial herbivore populations typically

manipulate soil N availability, sometimes with dramatic enhance-

ment of herbivore densities [9,10,11,12,13,14,15].

Studies of terrestrial arthropod N limitation have frequently

considered N not only in isolation, but in relation to quantities of

plant defensive chemicals and carbohydrates. Nevertheless,

explicit simultaneous consideration of multiple nutritional require-

ments (especially C, N, and P), known as ecological stoichiometry,

has only recently been applied to the interaction of terrestrial

autotrophs and their consumers. In contrast to classical arguments

in favor of N limitation, stoichiometric analyses suggest that plant

phosphorus (P) content may be an important but unrecognized

limiting nutrient for many terrestrial insect herbivores [16,17].

This proposal arises from comparison of the nutrient supply ratio

(i.e. autotroph N:P) to the demand ratio dictated by the relatively

homeostatic physiology of arthropods: the N:P in plant leaves is,

on average, about 21% greater than the N:P of the average

terrestrial insect herbivore [17]. Similar imbalances in consumer-

resource N:P ratios are found in aquatic systems where
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invertebrate heterotrophs have more often proved to be P-limited

[17]. However, it is unclear under what conditions P limitation

should be expected, since P-limitation is not determined by N:P

stoichiometry alone. For example, even when the imbalance in

consumer-resource N:P appears to favor P limitation, protein-

precipitating defensive chemicals (i.e. tannins) or other forms of

defense could promote N limitation [18,19,20].

Relatively few studies have sought evidence for P sensitivity in

terrestrial insect herbivores. In a review of how plant nutrient

stress impacts insect herbivores, Waring and Cobb [21] identified

several fertilization experiments that showed positive responses of

herbivores to leaf P content. A handful of other studies suggest P

limitation or P sensitivity of terrestrial insect herbivores

[2,22,23,24,25,26,27] or have examined the importance of P in

relation to other elements [3,28,29]. Nevertheless, the frequency

and conditions under which heterogeneity in P availability affects

individual fitness or population growth of terrestrial insect

herbivores are relatively unexplored [30].

In this paper we evaluate whether succession-related patterns in

plant nutritional and defensive chemistry underlie a remarkable

pattern of spatially structured herbivory exhibited by several guilds

of lepidopteran herbivores feeding on alpine lupin (Lupinus lepidus

var. lobbii), in which herbivores attack plants in low-density regions

of the expanding lupin population while not damaging much

denser ‘‘core’’ regions [31]. Herbivore attack strongly impacts the

demography and rate of spatial spread at low-density margins of

core patches and in the low-density ‘‘matrix’’ into which lupins are

colonizing [31,32,33,34]. (Photographs of representative site types

are available in Appendix S1.) Because lupin has strong facilitative

effects on soil development [35] and on other plant species

[36,37,38] at Mount St. Helens, these herbivores substantially

impact the pace and pattern of community assembly.

In this paper, we present results from three experiments that

examine whether the nutrient content of lupin leaves may explain

differences in larval abundance between high-density core areas

and low-density margin and matrix areas. In the first experiment,

we quantified larval growth (and where possible, mortality) of

three moth species, representing two leaf feeding guilds, on lupin

collected from the center of a patch comprising the core region

(hereafter ‘‘center’’) and the margins of that patch (hereafter

‘‘margin’’). Because we hypothesize that plant competition for soil

resources may be an important determinant of leaf nutritional

quality, we examined the response of one leaf-tying species to N

and P fertilization and host competitive environment in separate

field and greenhouse experiments. We interpret these results in the

context of a survey comparing lupin leaf nutritional characteristics

between high- and low-density areas. In addition to the fact that N

is less likely to be limiting to herbivores of N-fixing plants, several

observations led us to hypothesize that P stoichiometry could

underlie this spatial pattern: 1) lupins from high-density sites

contain less P than those from low-density [39]; 2) lupins at high-

density sites are P-limited [40,41]; 3) N:P of root-boring and leaf-

tying larvae is less than that of lupin tissues from high-density

patches but similar to that of tissue from low-density patches [31];

and 4) the abundance of orthopterans responds strongly to P

addition at these sites [41].

Materials and Methods

On Mount St. Helens’ Pumice Plain (,1200 m elevation),

adults of the leaf-tying/leaf-mining caterpillars Filatima loowita

(Lepidoptera: Gelechiidae; [42]; misidentified as Chionodes spp. in

Bishop [34]) and Staudingeria albipenella (Lepidoptera: Pyralidae)

mate and oviposit in early June through mid-July, and larvae are

active in July and August. Late instar larvae overwinter and

pupate in spring. The two species (referred to hereafter as

‘‘gelechiid’’, ‘‘pyralid’’, or collectively as ‘‘leaf-tiers’’) have similar

feeding habits and produce indistinguishable damage patterns. As

early instars, they mine individual leaflets, while later instars tie

leaflets together into silken feeding tubes; individual plants (up to

40 cm diameter and 10 cm tall) may host dozens of larvae. Euxoa

extranea (Lepidoptera: Noctuidae) (hereafter, Euxoa) is an external

leaf feeder that mates and oviposits from mid-July until late

August. Larvae develop through the fourth or fifth instar before

winter diapause, then re-emerge and feed in early summer, passing

through 7–8 instars. At Mount St. Helens, all three species appear

to feed exclusively on L. lepidus, avoiding even adjacent L. latifolius.

Photos of the species and experiments are provided in Appendix

S1. All three species were used for an experiment examining

growth on wild-collected leaves, while the gelechiid was used for

two additional feeding experiments.

Performance on Wild-Collected Leaves
Adult Euxoa were trapped on 29 July 2003 and allowed to mate

and oviposit in cages. Sixty-six first-instar larvae were randomly

assigned to each diet treatment (center vs. margin, N = 132) and

placed in 0.75-oz plastic condiment cups on 21 August ( = day 1).

Fresh lupin shoots were field-collected from a single area of high-

density lupin (‘‘center’’) and the nearby (,100 m) low-density

margins (‘‘margin’’) every 1–2 wks and stored at 4uC. See Appendix

S1 for photographs of representative margin and center areas.

Caterpillars were fed fresh leaves, in excess, every four days and were

weighed every 3–7 days starting at day 10. Larvae were maintained in

a growth chamber with the following settings: days 1–36: 16-hour

day, diurnal range 10uC–25uC, mean = 17.1uC; days 36–66: 10-hour

day, diurnal range 7uC–24uC, mean = 14.6uC. Larvae were

sacrificed for nutrient quantification on day 63 (in the 6th or 7th

instar), slightly later than the onset of winter diapause.

For the gelechiid feeding trial 124 first-instar larvae were reared in

pairs in 62 8-oz plastic deli containers. For the pyralid trial, 300 first-

instar larvae were reared in groups of three in 100 plastic containers.

All larvae were collected on the Pumice Plain in early July 2003. Half

of the containers received a vegetative shoot of lupin from the margin

area and half received a shoot from the center. Lupin shoots were

inserted into tubes of water (1.5 ml Eppendorf tubes). Lupin was

collected and stored as for Euxoa. Larvae were maintained in a growth

chamber set for a 16-hour day (diurnal temperature ranging 10uC–

25uC, mean = 17.1uC). They were weighed on days 19 and 35

(gelechiids) and on days 21 and 38 (pyralids).

Comparisons between sites yielded no consistent differences.

Therefore, we focused our analysis on the effects of leaf nutrient

content. To examine the relationship between nutrients and larval

growth, we divided the Euxoa feeding trials into five consecutive

intervals that corresponded to batches of food collected on

different dates, and leaf-tier trials into two intervals. For Euxoa,

separate relative growth rates (RGR) were calculated over each

interval for each larva as the slope of the regression of ln (fresh

mass) on length of the interval in days. Regressions involved three

to four measurements of mass in an interval, thereby dampening

any effects of molting on mass, and avoiding some of the issues

related to analysis of ratio-based measures of growth rate [43,44].

We took the average individual mass (0.00015 g) of first instar

Euxoa weighed en masse as the initial mass for all larvae. To further

ensure against spurious correlations related to ratio-based

variables [43,44], we repeated all analyses using larval mass as

the dependent variable. Because leaf-tying larvae were only

weighed twice (to minimize disruption of their silken feeding

shelters), we calculated individual RGR as [ln (final mass) –

Herbivory, P, and Succession
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ln(initial mass)]/(number of days in interval) over two intervals

(units are g g21 d21, which simplifies to d21). As with Euxoa, we

estimated initial mass as the mean mass of first-instar larvae.

Plant material for feeding trials was collected from at least 20 plants

per date and usually consisted of shoots with 5–10 leaves at various

stages of development. Only shoots lacking insect damage were

collected, but during the August 2003 Euxoa experiment, nearly all

margin plants in the food collection site had damaged portions and

thus collection was probably biased toward less palatable material.

Carbon (C) and N content of ground samples were measured on

a Perkin-Elmer 2400 CHN analyzer and P was quantified using

persulfate digestion and ascorbate-molybdate colorimetry as

described previously (Fagan et al. 2004). Quinolizidine alkaloid

(QA) profiles were measured as described in Appendix S2. The

relationship between elemental ratios, density, and date was

analyzed with multiple regression on untransformed data.

To examine the relationship between leaf characteristics and

larval growth, we regressed RGR on the corresponding mass

percentages of leaf nutrients (%C, %N, and %P) and total QA

concentration. Because leaf data were collected by food batch

(species 6 diet source 6 time interval) rather than by larva, our

analysis is focused on mean RGR of larvae feeding on each diet in

each food interval, yielding a total of 18 data points (five Euxoa

intervals 6 two diets + two leaf-tier intervals 6 two species 6 two

diets), each representing 15–86 larvae. For the leaf-tying

caterpillars, intervals spanned multiple food batches, so leaf data

were averaged (weighted by time fed on a batch) for each interval.

Because the mean RGR was estimated using the same animals

across multiple time intervals, we accounted for repeated measures

at the group level by nesting interval within each species 6 diet

source combination in a mixed-effects model [R model: lme(rgr ,
alkaloids + P + N + C, random = , interval | group_id), where

group_id = species 6 diet source combination]. By nesting

interval within group identity we also control for differences in

rearing temperature among intervals, and for the observation that

larval mass-specific growth rate [45] and leaf nutrient content may

decline as development progresses through the growing season.

Model simplification was performed by deleting the least

significant term and comparing the log likelihoods of the nested

models using ANOVA [46]. We also regressed RGR on atomic

ratios (C:N, C:P, and N:P), using the same mixed-effect model, to

allow comparison of our results to the rapidly growing literature

relating nutrient stoichiometry to consumer growth. Results for

atomic ratios are presented in Appendix S3 and are similar to

those involving mass percentages. As an alternative to analyzing

RGR, we also analyzed mean mass and individual mass as the

response variable using a mixed effects model with interval date

and larval identity as random effects variables.

To better understand whether differences in growth between

larvae feeding on different diets during identical time intervals

were attributable to differences in leaf characteristics, we

calculated the difference in RGR between center and margin for

each interval, and regressed this on the difference in leaf

characteristics calculated for each time interval. We accounted

for repeated measures at the group level by regressing RGR on

group identity, then using the residuals of this regression to

calculate RGRcenter - RGRmargin.

Greenhouse Fertilization and Competition Experiment
Filatima females collected from the field on June 18, 2003 were

allowed to oviposit on potted lupin plants. On July 1 ( = day 1),

eggs were redistributed so that 12 greenhouse grown plants from

each of 8 treatment combinations had 1–3 eggs. The number of

larvae per plant was later reduced to 1. Plant treatments were in a

two-way factorial design with competition (presence or absence of

the grass Deschampsia caespitosa) and N or P fertilization (top-water

application of control, N, P, or N + P fertilizer solutions) as the

main treatments. We applied fertilizer once near the beginning of

the experiment. All plants received 100 ml of 5% Hoagland’s

solution minus the N and P components. N addition treatments

received N at a rate of 3.9 mg/kg; all non-N plants were fertilized

with N at 5% of this level. P addition treatments received P at a

rate of 6 mg/kg soil; all non-P plants received P at 2.5% of this

level. N and P application rates mimicked the highest N and P

concentrations observed on the Pumice Plain. Plants were 7

months old (and at a typical stage attacked by leaf-tiers) at egg

placement. To prevent escape, clear plastic containers with holes

in the top were affixed to each pot.

On days 22 and 43 after placement of eggs, we removed larvae and

weighed them. Larvae reside in webbed retreats, whose disruption for

more frequent weighing would have compromised the experiment.

Because of escape and mortality, only 43 larvae survived until day 43.

After the second weighing larvae were starved for 3 days and dried at

60uC. Leaf samples from each host plant were collected at day 43 and

dried at 60uC. Leaves and larvae were ground and analyzed for C, N,

and P content as described above. Analyses were conducted on final

dry mass at day 46 and on RGR (calculated as [ln(2nd weight) 2 ln(1st

weight)]/21 days]. Treatment effects on mass and RGR were

compared with ANOVA and the relationship of mass to leaf %C,

%N, %P, and N:P was examined using regression. Nutrient

measurements and RGR were normally distributed, while larval

dry mass at day 46 was squared to meet regression assumptions.

Field Fertilization and Competition Experiment
To test further the effects of competition and P addition on

lupin palatability, we manipulated P availability and competitors

in high-density center sites that received P or not beginning in

2003. These plots, including P addition rates, are described in Gill

et al. (2006) and Bishop et al. (unpublished manuscript). Twelve

,equal-sized plants within each P addition and control plot were

selected for the removal experiment, of which six had all

competing plants within 10 cm removed in 2003 by cutting plants

off at ground level (see Appendix S1 for photograph). P was again

added and removal zones maintained in June 2004. First instar

gelechiid larvae were obtained from matrix and margin plants in

late June 2004. On July 7, six larvae were placed on 4 plants in

each of the control, removal, and P addition + removal treatments

at all four sites, for a total of 48 plants and 288 larvae. Six larvae/

plant were used because plants typically host multiple larvae, and

preliminary experiments led us to expect high predation rates on

larvae, which we did not attempt to control. The P addition

without removal treatment was omitted because of a shortage of

larvae. Because larvae are extremely difficult to re-capture in the

field (owing to their underground retreats), we measured

proportion of each plant consumed at day 21 as an index of

larval growth and survival. Because of the much faster consump-

tion rate of multiple larvae and later instars, % damage reflects

growth and survival rather than compensatory feeding. Damage as

a function of treatment (3 levels) was analyzed using a generalized

linear model with mixed effects, utilizing the glmmPQL command

in the MASS package (R 2.8.1, R Foundation for Statistical

Computing, 2008). A quasi-poisson distribution was used to

account for poisson-distributed data with overdispersion, and data

were grouped within site, which was included as a random effect.

Natural Variation in Leaf Nutrient and Alkaloid Content
To understand the likely consequences of larval performance as a

function of leaf nutrient content for the spatial distribution of

Herbivory, P, and Succession
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herbivores, we characterized the nutrient content of plants from a

wider sample of high- and low-density patches. Plant material was

collected from throughout center and low-density matrix and margin

areas between mid-June and late September in 2002 and 2003. In

2002, low-density matrix and margin sites were combined, whereas in

2003, margin sites were tracked separately. Shoots were combined

into a bulk sample for each density6date combination, and analyses

were performed on a subsample of each bulk sample. C, N, P, and

QAs were quantified as described above.

Results

Performance on Wild-Collected Leaves
To test whether natural variation in lupin nutritional value may

affect the spatial distribution of herbivores via an effect on larval

performance, we raised larvae of all three species on leaves collected

from patches of different densities (center vs. margin). However,

comparisons of growth on center vs. margin material were

inconsistent, with higher performance on margin material in some

intervals, on center material in others, and no difference in some

(results not shown). We therefore focus analyses on the relationship of

growth and mortality to leaf nutritional characteristics.

Multiple regression of RGR on leaf characteristics for the

combined guilds revealed significant effects of %P and %C but not

of %N or total QAs (Figs 1a, 1b; Table 1, % denotes mass

percentage). As expected, effects of C:P and C:N were nearly identical

to those of %P and %N (Appendix S3; all ratios are molar ratios).

Plant %P had a positive relationship with caterpillar RGR (P = 0.008)

while %C had a negative effect (P = 0.009; Table 1). Regressions for

Euxoa alone showed marginally significant effects of %P and %C

Figure 1. RGR is related to %P in wild-collected leaves. RGR (d21) is closely related to leaf % P (a) but not leaf %N (b). Each point represents the
mean of 15–86 individual larvae fed a particular batch of food. Groups of larvae feeding on different diets during the same time interval are
connected by lines. Filled symbols represent feeding on leaves from high-density center areas.
doi:10.1371/journal.pone.0007807.g001

Table 1. Regression analysis of nutritional effects on herbivore RGR (d21) or mass (mg).

Effect Mean Coefficient P-value

WILD LEAF EXPERIMENT

Euxoa & leaf-tier RGRa, b, c %P 0.17 0.94 0.008

N = 18, DF = 1, 9 %C 44.7 20.02 0.009

Alkaloids 0.0044 21.45 0.106

RGR difference (center – margin) (Euxoa & leaf-tiers)d Alkaloid Difference 20.0025 26.75 0.054

r2 = 0.72, N = 9, F = 7.8, DF = 2,6, P = 0.021 %P Difference 0.0097 0.77 0.037

GREENHOUSE EXPERIMENT

Gelechiid dry mass (mg) with competitors e N:P 37.5 2.40 ,0.0001

r2 = 0.73, N = 23, F = 17.0, DF = 3,19, P,0.001 N:P2 20.027 ,0.0001

%P 0.11 58.2 0.002

Sources were either high-density center or the low-density matrix (in 2002 the matrix sample included some samples from the margin). Regression coefficients are
shown in the Day and Center vs. Matrix columns.
aLinear Mixed Effects model with time interval and group identity (species6diet source) as random effects. No r2 is available for a mixed effects model. See Materials and
Methods for model.

bMean RGR (d21): Euxoa: 0.114, leaf-tiers: 0.142, combined: 0.128.
cDropping %N had no effect on model fit (model comparison by ANOVA: p = 0.668).
dRGR was first regressed on group identity to account for repeated measures, then the residuals were used to calculate RGRcenter 2 RGRmargin. Dropping %N had no

effect on model fit (ANOVA: F = 1.17, DF = 1, p = 0.327).
eDry mass was squared to meet regression assumptions. Mean dry mass = 8.7 mg (with competitors). Molar ratio was used for N:P, and %P had a low correlation to N:P
(r = 20.11). Dropping any of the terms in this model dramatically increased the AIC.

doi:10.1371/journal.pone.0007807.t001
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(N = 10, P = 0.08 and P = 0.07, respectively) but not %N or alkaloids

(Appendix S3). Regression analysis of Euxoa mortality (leaf-tier

mortality was not available) also revealed a significant positive effect

of leaf %P on survival, but not of %N, N:P, or alkaloids (for %P:

P = 0.015, r2 = 0.54; See Appendix S4). In a preliminary experiment

in 2002, Euxoa mortality was also higher on center plants than on

margin plants (Appendix S5). For leaf-tiers analyzed alone,

regressions revealed a significant negative effect of N:P (N = 8,

P = 0.010) and marginally significant effects of %P and C:P (P = 0.08)

(Appendix S3). Analysis of ln(mass) (with date and larval identity as

covariates) for the combined guilds yielded similar results to those for

RGR (Appendix S4). Analyses of mass for separate guilds were not

significant for leaf-tiers, while for Euxoa there was a significant positive

effect of %P (P = 0.03, Appendix S4).

Pairwise differences in RGR between center and margin during

each feeding period were compared as another way to control for

the expected declines in larval mass-specific growth rate and leaf

nutrient content through the growing season. Differences between

center and margin RGR were strongly correlated with center-

margin differences in tissue %P (analysis of all three species; partial

r2 = 0.61 for RGR), but only weakly correlated with differences in

%N (Table 1). Differences in alkaloid content also explained

significant variation in RGR in the pairwise analysis (partial

r2 = 0.34) but not in most other analyses.

Greenhouse Fertilization and Competition Experiment
As a second test of whether leaf nutritional value may affect the

spatial distribution of herbivores via an effect on larval

performance, we manipulated lupin leaf quality through altering

competition and soil N or P. There was a significant positive effect

of P addition on larval RGR and final dry mass of gelechiid leaf-

tiers (Fig. 2a; RGR: P = 0.022; F = 5.9, DF = 1,29; dry mass:

P = 0.023; F = 5.0, DF = 1,33), and for dry mass there was a

significant interaction between plant P, N, and competition

(P = 0.025, F = 5.5, DF = 1,33). However, treatments had little

effect on leaf nutrient content (%N, %P, C:N, C:P, or N:P), except

in the presence of competition, where P addition increased leaf %P

and %N (%P: P = 0.02, F = 6.1; %N: P = 0.03, F = 5.2; DF = 1,

21). Regression of gelechiid RGR and dry mass on leaf nutrient

concentration revealed a positive effect of leaf %P and a quadratic

relationship to plant N:P for larvae feeding on lupins in

competition with grasses, but not for plants without competitors

(Figs. 2b–d; Table 1). The quadratic term reflects a hump-shaped

relationship between larval mass and plant N:P, with larvae

growing especially slowly at very high N:P, but also at low N:P.

Field Fertilization and Competition Experiment
We tested whether removal of plant competitors or addition of P

improved larval performance on plants in the field at the center of

core patches. There was a strong positive effect of competitor

removal on larval survival: of 37 plants that were re-located, 16

hosted surviving larvae, and fourteen of those with survivors were

plants whose competitors had been removed (Competitor removal

only: N = 6 plants; removal + P addition: N = 8 plants; 11 plants

were lost because markers were overgrown or damaged by elk; re-

located plants were distributed across all patch x treatment

Figure 2. Greenhouse fertilization and competition treatments. a) Treatment effects on larval dry mass (mean 6 SE, n is shown above each
point) at 46 days. There are significant effects of P and N6P6competition. Panels b–d: The effects of leaf (N:P)2 and %P on larval dry mass at 46 days
are highly significant (P,0.0001; P = 0.002; Table 1) with grass competitors (b,c) but not without competitors (d). The legend in (b) applies to (c) and
(d).
doi:10.1371/journal.pone.0007807.g002

Herbivory, P, and Succession
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combinations, and plants with surviving larvae were evenly

distributed across sites). Because the larvae often hide in the soil

or in intricate woven tunnels, they are difficult to retrieve in the

field. Therefore, we quantified the proportion of the plant tied and

consumed as an indicator of larval survival and growth. Inspection

of plants with higher damage suggested a greater number of active

larvae. Leaf damage was significantly greater in both the P

addition + removal treatment and with removal alone than in the

controls (generalized linear regression mixed effects model, with

plot as a random effect, DF = 31; t = 2.52, P = 0.017; and t = 2.00,

P = 0.054) (Fig. 3). The two treatments did not differ from each

other.

Natural Variation in Leaf Nutrient and Alkaloid Content
To understand the consequence of the effects of leaf P on larval

performance for the spatial distribution of herbivores, we

characterized the nutrient content and QAs of plants from a

wider sample of high- and low-density patches. N and P

concentrations were highest on the earliest dates measured

(May), and became more dilute as shoots matured (Fig. 4,

Table 2); Over most dates in both 2002 and 2003 leaf %P and %N

were significantly higher in low-density matrix and margin plants

than in center plants, while N:P was lower in matrix but not

margin (Table 2). (In 2002, we did not distinguish between

‘‘matrix’’ and ‘‘margin’’; samples were combined for these two

types of site). The same pattern was also documented in 2000 [39]

and, for N, in an independent sample from 2002 (Gill et al. 2006).

However, on several dates in 2003 (Fig. 1) caterpillar food from

margin areas was lower in N and P content than food from center

areas (also see Table 2), whereas non-food collections around these

dates display the typical pattern (Fig. 4). Because damage was very

high in August 2003 in the pre-defined food source area, the

remaining undamaged material available as a food source was

probably relatively unpalatable low-nutrient foliage.

As with other lupins, the alkaloid profile of L. lepidus is

dominated by quinolizidine alkaloids (QAs). The major QAs

observed were 3-hydroxylupanine and tigloyl- and angeloyl esters

of hydroxylupanines. Minor alkaloids included the pyrrolidine

alkaloid ammodendrine, as well as lusitanine, dihydroxylupanine

and its angeloyl and tigloyl esters. Total alkaloid content ranged

from undetectable to a high of 0.02% of dry mass (Appendix S2).

Alkaloids in plants where herbivores had been excluded with

pesticide were near 0, indicating that alkaloid production is

induced by insect feeding (Appendix S2). However, with only five

herbivore exclusion samples, this difference was only marginally

significant (repeated-measures ANOVA, P = 0.08, DF = 1,8,

F = 4.0). The lack of detectable alkaloids in many leaf samples

indicates that harvesting shoots for feeding experiments did not

substantially induce alkaloid production. Maximum alkaloid

accumulations occurred in matrix and margin plants in both

years, although the average matrix plant was significantly higher in

alkaloids only in 2002 (Appendix S2). Highest concentrations

occurred in late July and early August, during the most intense

period of leaf-tier activity.

Discussion

Pyralid and gelechiid leaf-tier abundance has been inversely

related to host density at Mount St. Helens in each of the last 15

years (1993 through 2007) [33]. The same pattern has been

documented for root-boring Lepidoptera, not included in this

study, and for Euxoa cutworms in two outbreak years [31]. These

guilds differ in many aspects of their biology, including the tissue

they feed upon, their exposure to enemies, and in phenology,

leading us to hypothesize that increasing patch density or age

causes differences in plant nutritional quality that affect all of these

guilds similarly. We therefore considered whether variation in leaf

nutrient or quinolizidine alkaloid (QA) content might explain the

inverse relationship to host density.

Herbivore Fitness Increases with %P
We detected strong relationships between larval growth and leaf

%P (and in some cases leaf N:P), and a lack of relationship of

growth to leaf %N, in all species and in both feeding experiments

(Fig. 1 and 2). Growth responded positively to %P in both wild-

collected leaves and in greenhouse plants under competitive

conditions. The result for wild-collected plants was preserved

when we compared the effect of differences in nutrients between

center and margin within each time period, thereby controlling for

ontogenetic shifts in growth rate and leaf P (Table 1; partial

r2 = 0.61). Virtually none of the results depended on whether

analyses were conducted on molar ratios or mass percentages, nor

on whether RGR or larval mass was the dependent variable.

While larval growth rate is only one component of individual

fitness, it is likely to be correlated with overall fitness if it results in

larger adult size (and hence greater fecundity), or if faster

development confers other fitness benefits. In an earlier experi-

ment in which we raised Euxoa on wild-collected leaves and

allowed them to pupate, we observed significantly earlier pupation

and higher pupal mass in rapidly growing larvae (Pearson’s r:

rRGR, mass = 0.42; rRGR, days to pupation = 20.51; P,0.01 for each;

Appendix S5), as well as lower mortality on leaves from matrix

areas, where %P was higher (Appendix S5, Fig. 4). In the

subalpine environment of the Pumice Plain rapid development is

likely to be advantageous because of the short growing season, the

continuous decline in food quality through the summer (Fig. 4,

Appendix S2), and the relatively high risk of predation in high-

density core areas [31,32]. In the single analysis of mortality that

was possible (for Euxoa), we also detected a significant positive

effect of leaf %P on survivorship (Appendix S4). Hence, our

experiments suggest that increased leaf P often increases fitness of

these lupin specialists in the Pumice Plain system.

Figure 3. Field fertilization and competitor removal experi-
ment. Percent leaf area consumed by gelechiid leaf-tiers (mean 6 SE) is
used as an index of survival and growth on plants with competitors
removed the previous summer and competitors removed + P
fertilization. Survival is almost 0 on plants with neighbors. Treatments
not sharing a letter (above error bars) are significantly different
(P = 0.01).
doi:10.1371/journal.pone.0007807.g003
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Plant Density May Determine Distribution of Herbivory
through Effects on P

Leaf P content was nearly always greater in low-density lupin

patches during the two years of this study (Fig. 4) and in 2000 [39].

The negative relationship between patch density and leaf P,

together with evidence for herbivore sensitivity to P, supports the

hypothesis that density-related differences in leaf P stoichiometry

are a likely cause of the inverse relationship between lupin density

and herbivore abundance. The evidence for a relationship

between density, P, and larval growth is further supported by

our experimental manipulations of soil P and competition in the

field and greenhouse. In the greenhouse, growth was sensitive to

N:P only under competitive conditions (Fig. 2), and there was a

significant positive effect of %P even after accounting for N:P. The

mechanism by which plant competition affects larval sensitivity to

P and N:P is unclear and could be related to differences in plant

defense or water relations, but in any case the results suggest that P

stoichiometry is likely to determine herbivore success under the

high-density conditions found in Pumice Plain core areas.

Likewise, in the field under high-density conditions, removal of

plant competitors enhanced larval growth and survival relative to

the control (Fig. 3), and indeed survivorship was ,0 for larvae

introduced to control plants. Our observations of ant, spider, and

bird behavior at these sites suggests that competitor removal did

not deter predator foraging on plants with a 10 cm removal zone.

While the result of this experiment does not provide evidence for

the role of P, it does demonstrate a strong effect of plant density on

larval fitness and the potential for plant quality to exclude larvae

from high-density areas.

It is plausible that effects we have attributed to P could be due to

unmeasured factors, such as plant defense, that are tightly

correlated with P, or to the stoichiometry of P with respect to

unmeasured factors. However, differences in quinolizidine alka-

loids (QAs), the principal defensive chemicals produced by lupins

[47,48], are unlikely to explain density-related patterns of

herbivory in this system or the relationship of growth to P. While

QAs had a significant negative effect in some regression models,

Figure 4. Leaf nutrient concentrations over the 2002 (a and c) and 2003 (b and d) growing seasons, by location. Each point is from a
homogenized bulk collection sampled from many plants. Points with error bars represent the mean (6 SE) of samples from multiple sites on that date
(data from each sample were used in the regression analysis). Matrix refers to low-density areas being colonized by lupins. Plants from matrix areas
were much richer in both %N and %P in both years (P,0.0002; see Table 2). Least squares fits are shown by solid (center) and dotted (matrix) lines.
doi:10.1371/journal.pone.0007807.g004

Table 2. Regression analyses of lupin leaf tissue nutrient and
alkaloid content on date and source.

Day Center vs. Matrixa r2 N

2002 %N 20.0158**** 0.2662*** 0.65 38

%P 20.0013**** 0.0290**** 0.64 36

N:P 0.070* 22.38* 0.14 36

QAs 0.001** 0.0028* 0.52 22

2003 %N 20.0106**** 0.2904**** 0.66 56

%P 20.0010**** 0.0188**** 0.76 56

N:P 0.027* 0.630* 0.15 56

QAs 0.99 0.0011 0.12 24

Sources were either high-density center or the low-density matrix (in 2002 the
matrix sample included some samples from the margin). Regression coefficients
are shown in the Day and Center vs. Matrix columns.
aNegative coefficient indicates a higher value in center plants.
P-values: * = p#0.05, ** = p#0.01, *** = p#0.001, **** = p#0.0001
doi:10.1371/journal.pone.0007807.t002
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neither QAs or their effect were significantly correlated with P and

total QAs were either higher or equivalent in matrix and margin

plants, where most feeding occurs (Appendix S2). In any case, L.

lepidus appears to invest relatively little in QAs, as its total QAs

were 1/10 or less than levels typically seen in other Lupinus species

[49,50]. Such a low level of defense investment is consistent with

other aspects of L. lepidus’ highly colonizing life history.

Successional dynamics underlie the gradient in plant P across

high- and low-density areas of lupin. High-density vegetation

patches that include a high density of lupin have developed around

the oldest colonization foci. Related to their greater age, they

harbor higher plant diversity, more developed soils with greater

soil organismal activity, as well as more diverse and dense

assemblages of vertebrates and arthropods. Surprisingly, soil N

and P availability are similar between the high-density centers of

core patches and the low-density margin and matrix areas

[35,39,40], suggesting that increased plant competition or

immobilization in other pools in center areas is responsible for

lower nutrient levels in center plants. The onset of competitive

interactions may push plant C:P or N:P ratios above a threshold

elemental ratio that can be tolerated by herbivores, paradoxically

protecting lupins from the demographic impacts of herbivores

while lupin growth and fecundity become P-limited. Models of a

lupin-herbivore co-invasion suggest that if herbivory in low-density

margins is intense and fecundity at high density is low enough, the

patch may permanently collapse, whereas at higher fecundity

center areas act as demographic refugia, and spatial collapse is

only temporary or may not occur [33]. Thus, P availability may

influence the demography of colonizing lupins through multiple,

antagonistically acting pathways whose balance determines the

outcome of the co-invasion. Primary successional landscapes

commonly exhibit such heterogeneity in nutrient stoichiometry as

soil and community development accelerates in or spreads from

foci created by initial plant colonists, and it is possible that these

simple gradients promote complex spatial dynamics in colonizing

populations.

The Paradox of Enrichment
The relationship between host density, nutrient stoichiometry,

and herbivore abundance is particularly interesting in light of

recent extensions of Lotka-Volterra predator-prey models that

explicitly incorporate stoichiometric food quality. Unlike models

based only on resource quantity, the stoichiometric model

demonstrates that an autotroph population may reach high

biomass, thereby providing large quantities of food for potential

herbivores, and yet may remain uninvaded by herbivores if high

density results in low stoichiometric food quality [51]. The

existence of such systems has been demonstrated experimentally in

freshwater, but not in any terrestrial system [51]. Our results

support a similar dynamic at Mount St. Helens, where lupin’s

specialist herbivores fail to exploit older patches containing high

lupin biomass because plants at high density possess an

unfavorable P stoichiometry. However, at Mount St. Helens this

effect is likely exacerbated by higher predation risk in high-density

patches.

Because insect herbivores are richer in both N and P than are

autotrophs, stoichiometric studies have largely focused on the

deleterious consequences of ingesting excess C in order to obtain

sufficient N or P. However, studies of orthopterans feeding on

non-optimal foods clearly demonstrate that there is a cost to

ingesting excess protein as well as excess carbohydrates [52], and

studies of aquatic herbivores [53] and two lepidopteran herbivores

[23,27] demonstrate a cost to ingesting excess P. As a result, larvae

may experience declines in fitness at both high and low C:N, C:P,

or N:P [53]. Our greenhouse experiment provides one of the few

examples of a quadratic relationship between growth and N:P.

However, as discussed above, this occurred only under competitive

growing conditions, suggesting that the effect is unlikely to be

caused by N:P stoichiometry alone. In contrast to some previous

studies that employed artificial diets containing unrealistic nutrient

concentrations and ratios, our experiment allowed larvae to feed

freely on entire plants grown under reasonably realistic conditions.

Lacking still are experiments that isolate the effects of P ratios from

other factors while employing realistic dietary conditions.

N-Fixation, P-Uptake, and Herbivory on Legumes
Several other recent studies in natural systems demonstrate that

enhanced P supply or leaf P concentration can affect insect

herbivore population dynamics. For example, Schade et al. [25]

found that the abundance of a leaf-feeding weevil on mesquite

trees increased with decreasing leaf C:P (caused by increased soil

moisture). Campo and Dirzo [54], working in a secondary tropical

forest found that P addition significantly increased foliage P and

herbivory in leguminous trees growing in young P-limited sites, but

not in older, less P-limited sites. As in the present study, these

studies featured legumes as hosts. It has been suggested that

herbivory is especially high on plants with N-fixing symbionts

because they possess higher protein concentrations [55]. In fact, L.

lepidus at Mount St. Helens are relatively rich not only in N but

also in P, despite growing in nutrient-poor soil conditions. Mean L.

lepidus C:N on August 1 was nearly half the median C:N reported

by Elser et al. [17] for a sample of 406 terrestrial plants, and lupin

C:P was 65–80% of the median C:P, making L. lepidus seem an

unlikely host on which to find nutrient limitation. In response to P-

deficient soils, other Lupinus spp. are known to secrete large

quantities of carboxylates and phosphatase in order to obtain

mineral-bound phosphate [56]. It is thus plausible that it is not the

ability of legumes to symbiotically obtain atmospheric N, per se,

that confers their ability to colonize poor soils or their high

palatability to consumers, but rather an ability to extract P from P-

deficient soils [57]. On the other hand, from a stoichiometric

viewpoint, herbivores feeding on legumes may have a particular

difficulty in obtaining sufficient P because increased P supply fuels

increased photosynthesis and N-fixation, resulting in higher N:P,

C:P, or defense:P, and concomitantly a higher cost to the

herbivore of obtaining sufficient P. It remains unclear where

insect herbivores are most likely to be P-limited, but systems

dominated by plants with N-fixing symbioses and with low P

supply are probably good candidates for this phenomenon.

Supporting Information

Appendix S1 Images of herbivores, experiments, and represen-

tative center, margin, and matrix sites.

Found at: doi:10.1371/journal.pone.0007807.s001 (19.94 MB

DOC)

Appendix S2 Description of methods and results for alkaloid

analysis and alkaloid induction experiment. Includes comparisons

between center and matrix sites of quinolizidine alkaloid content

in 2002 and 2003, and results of field induction experiment.

Found at: doi:10.1371/journal.pone.0007807.s002 (0.05 MB

DOC)

Appendix S3 Supplementary regression analyses: analysis of

individual guilds, and of molar nutrient ratios.

Found at: doi:10.1371/journal.pone.0007807.s003 (0.06 MB

DOC)
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Appendix S4 Regression analyses of larval mass as a function of

leaf nutrients, alkaloids, and date, and analysis of Euxoa mortality

in relation to %P. Includes mortality per day in relation to %P.

Found at: doi:10.1371/journal.pone.0007807.s004 (0.07 MB

DOC)

Appendix S5 Results from 2002 Euxoa experiment, including

pupal mass and date of pupation in relation to larval RGR, and

larval mortality on center vs. matrix material.

Found at: doi:10.1371/journal.pone.0007807.s005 (0.04 MB

DOC)
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