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Abstract

The Pandemic (H1N1) 2009 is spreading to numerous countries and causing many human deaths. Although the symptoms
in humans are mild at present, fears are that further mutations in the virus could lead to a potentially more dangerous
outbreak in subsequent months. As the primary immunity-eliciting antigen, hemagglutinin (HA) is the major agent for host-
driven antigenic drift in A(H3N2) virus. However, whether and how the evolution of HA is influenced by existing immunity is
poorly understood for A(H1N1). Here, by analyzing hundreds of A(H1N1) HA sequences since 1918, we show the first
evidence that host selections are indeed present in A(H1N1) HAs. Among a subgroup of human A(H1N1) HAs between
1918,2008, we found strong diversifying (positive) selection at HA1 156 and 190. We also analyzed the evolutionary trends
at HA1 190 and 225 that are critical determinants for receptor-binding specificity of A(H1N1) HA. Different A(H1N1) viruses
appeared to favor one of these two sites in host-driven antigenic drift: epidemic A(H1N1) HAs favor HA1 190 while the 1918
pandemic and swine HAs favor HA1 225. Thus, our results highlight the urgency to understand the interplay between
antigenic drift and receptor binding in HA evolution, and provide molecular signatures for monitoring future antigenically
drifted 2009 pandemic and seasonal A(H1N1) influenza viruses.
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Introduction

Since April 2009, a global outbreak caused by the swine-origin

2009 A(H1N1) influenza virus has spread to numerous countries

[1,2,3,4,5,6,7,8,9,10], which warranted the declaration of ‘‘Pan-

demic (H1N1) 2009’’ by the World Health Organization on June

11, 2009. As of September 6, there had been over 277,607 infected

individuals and at least 3,205 confirmed human deaths worldwide.

The Pandemic (H1N1) 2009 is not the first human pandemic

caused by A(H1N1) influenza virus. During 1918,1919, the

‘‘Spanish’’ A(H1N1) influenza virus swept across the globe,

infected ,25% of the entire population and claimed at least 50

million human lives worldwide [11]. In subsequent years,

A(H1N1) influenza virus continued to circulate among humans

and caused a number of severe outbreaks between 1920s and

1950s [12,13,14,15,16,17,18,19,20], in particular the A(H1N1)

epidemic in 1950,1951 with mortality exceeding those of the

1957 ‘‘Asian’’ and 1968 ‘‘Hong Kong’’ pandemics [18,19,20].

In 1957, A(H1N1) influenza virus disappeared, replaced by a

reassorted A(H2N2) influenza virus [21]. However, the

A(H1N1) influenza virus reappeared in 1977, with a close

genetic and antigenic similarity to those A(H1N1) viruses

isolated in 1950 [22,23,24], and has co-circulated with

A(H3N2) and type B influenza virus to cause seasonal human

epidemics ever since.

The same 1918 pandemic A(H1N1) influenza virus was also

spread to swine during 1918,1919, and became the so-called

‘‘classical’’ swine influenza [8,25,26,27], first isolated in North

American in 1930 [26] and in Europe in 1976 [28,29]. In 1979, a

novel lineage of avian-like A(H1N1) influenza virus, believed to

have derived from closely related Eurasia avian influenza viruses,

emerged in swine in Europe [30] and replaced the classical swine

A(H1N1) virus in this region [31,32,33]. These two classes of swine

A(H1N1) viruses displayed different evolutionary trajectories [34].

In1998, a new triple-reassortant A(H3N2) virus, derived from

North American avian, classical swine A(H1N1) and human

A(H3N2) viruses, caused outbreaks in North American swine

[35,36]. Mixing of the triple-reassortant H3N2 with established

swine lineages gave rise to H1N1 and H1N2 reassortant swine

viruses [37,38]. Since 2007, human infection caused by A(H1N1)

swine virus has become a health concern in the United States [7].

The 2009 A(H1N1) influenza virus has its origin as a reassortant

from a Eurasian avian-like swine A(H1N1) virus and a triple-

reassortant virus circulating in North American swine

[1,2,3,4,5,6,7,8]. As such, the 2009 A(H1N1) virus contains NA

and M from Eurasian avian-like swine A(H1N1) virus, and the

remaining genes from the triple-reassortant virus - PB2 and PA

(avian virus), PB1 (human A(H3N2)), and HA, NP and NS

(classical swine A(H1N1)) [1,2,3,4,5,6,7,8]. In a sense, we are

continuingly living in a pandemic that started in 1918 [27]. Thus,
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it is not surprising for the similarly mild first waves of the 1918 and

2009 pandemics. Notably, the second wave of the ‘‘Spanish’’

influenza in the fall of 1918 became much more lethal, peaked

within one month of the initial introductions in many communities

[11]. This makes influenza virologists and healthcare officials fear

that further mutations in the 2009 A(H1N1) virus could also lead

to a potentially more dangerous second wave in subsequent

months. Thus, in-depth studies on the 1918 pandemic strains as

well as their post-pandemic decedents should provide critical new

insights into the evolution of A(H1N1) in general, and the

pandemic potential of the 2009 A(H1N1) in particular.

HA is one of the two major glycoproteins on the surface of

influenza virus. It is the primary antigen that elicits host immune

response, and is also responsible for binding to sialic-acid receptors

and for mediating viral entry into host cells [39]. The hallmarks of

highly pathogenic influenza viruses among human population

include easy human-to-human transmission as a result of high

affinity of HA for human-like a(2,6) receptors, and significant

difference in sequence and antigenicity of HA with existing

seasonal and vaccine strains [1,2,39]. It has been demonstrated on

1918 A(H1N1) HA that HA1 D190 and D225 are key

determinants for effective binding to human-like a(2,6) receptors

and consequently high infectivity of the virus among human

population [11,40,41,42]. A single mutation D225G reduced the

binding affinity for a(2,6) receptors [41,42] and the infectivity of

the virus [40], while a double variant D190E/D225G rendered

the HA non-binding to a(2,6) receptors [41,42] and the virus non-

infectious [40].

In A(H3N2) virus, HA is the major agent for host-driven

antigenic drift [43,44]. However, it is unclear whether or not and,

if yes, how human immunity imposes selection on A(H1N1) HA.

In order to address this critical issue, we undertook a systematic

computational analysis of the evolution of H1 HA in the region of

HA1, which is the primary target for host immunity selection [43].

Recent years have witnessed an explosive expansion of available

computational methods for phylogenetic analysis of selective

pressure, including a variety of methods that look for different

types of positive selection such as diversifying selection, toggling

selection and directional selection [45,46,47,48,49,50,51,52,53,54]

implemented in software packages such as HyPhy [55], MrBayes

[56,57] and PAML [45]. Here we used PAML 4.0 [45] for

calculation of heterogeneous selection pressure at each codon and

HyPhy [55] for directional selection in 335 non-egg-adapted and

32 egg-adapted human A(H1N1) HA sequences. These sequences

were from A(H1N1) viruses isolated all around the globe between

1918,2009. In addition, we also analyzed 42 classical swine

A(H1N1) HA sequences for their close relationship to the 2009

A(H1N1) HA.

In PAML 4.0 [45], a number of models are available: the

branch models allow the v ratio to vary among branches in the

phylogenetic tree and can be used to detect positive selection on

particular branches [46,58]; the site models allow the v ratio to

vary among sites and can be used to detect positive selection at

particular sites [59,60]; the branch-site models allow the v ratio to

vary both among sites and among branches [61] and can be used

to detect positive selection that affects only a few sites in a few

branches.

In this analysis, a large dataset composed of over 300 sequences

was used to ensure sufficient representative sequences for the total

time span of 91 years, which made it impractical for the use of

branch-site models in our calculations. However, by separating the

sequences into distinct subgroups based on their phylogenetic

relationship and applying the site models in PAML 4.0 [45], we

successfully detected the branch and the specific sites therein that

were under host-driven positive selection. Our study revealed

differential evolutionary trends of A(H1N1) HA since 1918, which

provided molecular signatures for monitoring future antigenically

drifted 2009 pandemic and seasonal A(H1N1) influenza viruses.

Results and Discussion

Phylogenetic Analysis of Human A(H1N1) HA Sequences
Since 1918

It is known that egg-adapted influenza viruses tend to have non-

natural host-associated modifications at certain sites of HA

sequences [62,63,64]. To eliminate the effects of such modifica-

tions in our analysis, we selected only 333 HA sequences of

A(H1N1) viruses between 1918,2009 (as of July 10, 2009) with a

well-documented record that they had never been passaged in

chicken eggs at any stage. Furthermore, intragenic recombination

may give rise to false positives in subsequent detection of positively

selected codons [65], thus the Recombination Detection Program

(RDP3) [66] was used to make sure that all HA sequences used in

this study were free of recombination, agreeing with previous

observations that intragenic recombination is rare for HA [67].

The nucleotide sequences of 333 A(H1N1) HAs in the region of

HA1 including the signal peptide, were analyzed by the ClustalW

method [68]. The phylogeny tree suggested that these HA

sequences belong to two major groups: the majority of HA

sequences from 1918 to 2008 formed group I, and those of the

2009 A(H1N1) together with a strain isolated in 2007 formed

group II (Fig. S1). The separation of the 2009 A(H1N1) HAs from

HAs of established human A(H1N1) viruses between 1918,2008,

including the 1918 pandemic and the seasonal A(H1N1) viruses,

was consistent with the proposed swine origin of HAs in these

viruses [1,2,3,4,5,6,7,8]. The low sequence identity (,73%)

between the 2009 A(H1N1) HA with seasonal and vaccine

A(H1N1) HAs might explain why people were in general

immunologically naı̈ve to the former [8,69]. In fact, there did

not exist cross-reactivity between the 2009 and seasonal A(H1N1)

viruses [8], nor did the vaccination with recent (2005,2009)

annual vaccines provide immune protection against the 2009

A(H1N1) virus [69].

Evidence for Host-Driven Antigenic Drift in Human
A(H1N1) HAs

In order to understand whether host-driven antigenic drift is

imposed on the evolution of HA1 of A(H1N1) virus, we used

likelihood ratio tests (LRT) in the software package PAML 4.0

[45] to identify the presence or absence of positive selection. In this

context, positive selection referred to a significant excess of amino-

acid altering (non-synonymous) substitutions over silent (synony-

mous) substitutions in nucleotide sequences. Large LRT values (or

small p-values) between alternative models and null models, such

as M2a vs. M1a, M8 vs. M7, or M8 vs. M8a, led to the rejection of

the null models.

Since HA sequences of group I was further divided into five

subgroups (Fig. S1), the PAML calculation was carried out on each

of these five subgroups and on group II (Table 1). For group I-i

that included three 1918 pandemic A(H1N1) HAs, in order to

increase the sample size, we also included two partial sequences,

A/London/1/1918 and A/London/1/1919 [11]. Except for the

subgroup I-v, all other subgroups of group I had very low LRT

values and large p-values (Table 1, 2), indicating predominantly

neutral or purifying selection. These results were consistent with

the overall low prevalence of A(H1N1) virus during the period of

1979,2006 [70], and agreed well with a previous study that

focused on 1995,2005 A(H1N1) isolates where no positive

Evolution of A(H1N1) HA
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selection was detected [71]. In sharp contrast, group I-v

2006,2008 had v.10 and LRT.60, which provided strong

evidence for positive selection (Table 1, 2) and agreed with the

necessity to update the A(H1N1) vaccine strain using A/Brisbane/

59/07 for the 2008,2009 season. Group II including 73 HAs of

2009 A(H1N1) and one of 2007 A(H1N1) also had a very low

LRT rate ratio (Table 1, 2). Given the largely nonexistence of

human immunity against the 2009 A(H1N1), the lack of positive

selection among group II was expected. However, with more mild

infections rapidly propagating among human population in the

Table 1. The values of log-likelihood (l), dN/dS, and parameter estimates in CODEML analysis of human A(H1N1) Has.

Model l dN/dS Parameters estimates

I-i 1918,1919 (5 strains)1

M0 (one-ratio) 2806.78 0.516 v= 0.516

M1a (nearly neutral) 2805.91 0.323 p0 = 0.677 (p1 = 0.323), v0 = 0 (v1 = 1)

M2a (positive selection) 2804.19 0.564 p0 = 0.963, p1 = 0 (p2 = 0.037), v0 = 0 (v1 = 1), v2 = 15.421

M7 (beta) 2805.92 0.300 p = 0.005, q = 0.012

M8a (beta&v= 1) 2805.91 0.323 p0 = 0.846 (p1 = 0.154), p = 0.005, q = 0.020, vs = 1

M8 (beta&v.1) 2804.19 0.561 p0 = 0.963 (p1 = 0.037), p = 0.005, q = 7.228, vs = 15.242

I-ii 1979,2000 (45 strains)2

M0 (one-ratio) 22489.23 0.223 v= 0.223

M1a (nearly neutral) 22486.25 0.242 p0 = 0.855 (p1 = 0.145), v0 = 0.113 (v1 = 1)

M2a (positive selection) 22486.25 0.242 p0 = 0.855, p1 = 0.056 (p2 = 0.089), v0 = 0.113 (v1 = 1), v2 = 1

M7 (beta) 22485.63 0.232 p = 0.327, q = 1.074

M8a (beta&v= 1) 22485.63 0.232 p0 = 1 (p1 = 0), p = 0.327, q = 1.074, vs = 1

M8 (beta&v.1) 22485.63 0.232 p0 = 1 (p1 = 0), p = 0.327, q = 1.074, vs = 1

I-iii 2000,2001 (22 strains)2

M0 (one-ratio) 21686.21 0.279 v= 0.279

M1a (nearly neutral) 21684.58 0.261 p0 = 0.793 (p1 = 0.207), v0 = 0.068 (v1 = 1)

M2a (positive selection) 21683.09 0.287 p0 = 0.994, p1 = 0 (p2 = 0.006), v0 = 0.225 (v1 = 1), v2 = 10.636

M7 (beta) 21684.52 0.265 p = 0.046, q = 0.127

M8a (beta&v= 1) 21684.58 0.261 p0 = 0.793 (p1 = 0.207), p = 7.211, q = 98.93, vs = 1

M8 (beta&v.1) 21683.10 0.287 p0 = 0.994 (p1 = 0.006), p = 28.774, q = 99, vs = 10.638

I-iv 2001,2007 (89 strains)2

M0 (one-ratio) 22720.83 0.187 v= 0.187

M1a (nearly neutral) 22709.20 0.181 p0 = 0.883 (p1 = 0.117), v0 = 0.072 (v1 = 1)

M2a (positive selection) 22708.27 0.187 p0 = 0.906, p1 = 0.076 (p2 = 0.018), v0 = 0.085 (v1 = 1), v2 = 1.915

M7 (beta) 22708.99 0.183 p = 0.137, q = 0.612

M8a (beta&v= 1) 22709.40 0.180 p0 = 0.885 (p1 = 0.115), p = 7.871, q = 98.995, vs = 1

M8 (beta&v.1) 22708.82 0.186 p0 = 0.973 (p1 = 0.027), p = 0.375, q = 2.298, vs = 1.936

I-v 2006,2008 (100 strains)2

M0 (one-ratio) 23871.33 0.303 v= 0.303

M1a (nearly neutral) 23813.28 0.241 p0 = 0.828 (p1 = 0.172), v0 = 0.082 (v1 = 1)

M2a (positive selection) 23782.07 0.313 p0 = 0.807, p1 = 0.188 (p2 = 0.005), v0 = 0.083 (v1 = 1), v2 = 11.142

M7 (beta) 23814.21 0.246 p = 0.139, q = 0.427

M8a (beta&v= 1) 23812.40 0.231 p0 = 0.862 (p1 = 0.138), p = 0.497, q = 3.969, vs = 1

M8 (beta&v.1) 23781.55 0.305 p0 = 0.994 (p1 = 0.006), p = 0.180, q = 0.546, vs = 10.554

II 2007,2009 (74 strains)2

M0 (one-ratio) 22374.98 0.277 v= 0.277

M1a (nearly neutral) 22373.20 0.282 p0 = 0.922 (p1 = 0.078), v0 = 0.222 (v1 = 1)

M2a (positive selection) 22372.81 0.282 p0 = 0.922, p1 = 0.035 (p2 = 0.042), v0 = 0.222 (v1 = 1), v2 = 1

M7 (beta) 22373.21 0.281 p = 1.218, q = 3.079

M8a (beta&v= 1) 22374.03 0.282 p0 = 0.945 (p1 = 0.055), p = 3.243, q = 10.201, vs = 1

M8 (beta&v.1) 22372.81 0.282 p0 = 0.946 (p1 = 0.054), p = 3.158, q = 9.900, vs = 1

1Due to the inclusion of two partial sequences of A/London/1/1918 and A/London/1/1919 in this subgroup, the analysis was performed on a total of 187 amino-acid
residues that covered the antigenic and receptor-binding sites in the region of HA1 (51,237) [11]. 2 The analysis was performed on the first 340 residues of HA1

including the signal peptide.
doi:10.1371/journal.pone.0007789.t001
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first wave, the gradually established human immunity might drive

positive selection in future isolates of 2009 A(H1N1) strains.

Identification of Positively Selected Codons in Human
A(H1N1) HAs

In order to understand how H1 HA sequences were positively

selected by human existing immunity, the CODEML [72]

program in PAML 4.0 was used on subgroup I-v in which about

0.6% codons were found to be under positive selection (Table 1,

2). Both M2a and M8 models identified HA1 156 and 190 with

greater than 95% posterior probabilities to be under positive

selection (Table 3). In previous studies, the antigenic structure of

H1 HA (A/PuertoRico/8/1934) had been determined to include

five distinct antigenic sites on the globular domain: Sa, Sb, Ca1,

Ca2 and Cb [73,74] (Fig. 1a). Both of these positively selected

codons were located on the site Sb (Fig. 1b). The focus of positive

selection on the Sb antigenic site was consistent with a cross-

reactivity analysis of various epidemic H1N1 strains using

monoclonal antibodies that it was under much higher pressure

for mutations [74].

HA1 138, 186, 190, 194, 225, 226 and 228 had been previously

shown to affect receptor binding to H1 HA [75,76]. Among them,

two residues, HA1 190 and 225, play predominant roles in

determining the receptor-binding specificity of H1 HA: D190/

D225 for a(2,6) receptors in humans, D190/G225 for a(2,6) and

a(2,3) receptors in swine, and E190/G225 for a(2,3) receptors in

avian [11,39,40,41,42,76]. Although changes at these two sites had

been previously reported to cause antigenic drift in A(H1N1)

epidemic strains [77], it was a somewhat common belief that key

determinants of receptor-binding specificity are in general not

subject to selection. Thus, the strong positive selection at HA1 190

within subgroup I-v is quite unexpected.

Positive Selection of Egg-Adapted Human A(H1N1) HAs
during 1933,1979

To compensate for the lack of non-egg-adapted human

A(H1N1) HAs for the period of 1933,1978, we separately

collected a total of 32 different egg-adapted A(H1N1) HA

sequences between 1933,1979 that were free of sequence

ambiguity (Fig. S2). These sequences as a group were analyzed

by PAML 4.0, as well as two subgroups that covered the periods of

1947,1957 (12 sequences) and 1948,1979 (17 sequences)

(Table 4, 5), keeping in mind of the egg-adapted mutations at

HA1 138, 144, 163, 189, 190, 225, and 226 [62,63,64]. The two

subgroups 1947,1957 and 1948,1979 represented A(H1N1)

viruses circulating in the 1950s and in the 1970s upon its

reemergence in 1977, respectively. Given the close genetic and

antigenic similarity of the reappeared A(H1N1) influenza virus in

1977 with the A(H1N1) viruses isolated in 1950 [22,23,24], it was

of particular interest to investigate whether different evolutionary

trends were adopted by the 1947,1957 and 1948,1979

subgroups.

For both the entire group 1933,1979 and the subgroup

1947,1957, comparisons of M2a-M1a, M8-M7, or M8-M8a

yielded large LRT values and very small p-values, suggesting the

presence of positive selection at about 5% and 3% codons,

respectively (Table 4, 5). However, it is noteworthy that the

subgroup 1948,1979 had much smaller LRT values, suggesting

that the positive pressure of the entire group 1933,1979 be mostly

from the contribution of the subgroup 1947,1957.

We further employed the CODEML in PAML 4.0 to analyze

the positively selected codons in each group. The results were

shown in Table 5 where highlighted in bold were the codons not

known to be possible egg-adapted mutations (HA1 138, 144, 163,

189, 190, 225, and 226) [62,63,64]. For the entire group

1933,1979, HA1 77, 225 and 227 were found to be under

positive selection with greater than 95% posterior probability in

model M8 (Fig. 1b). They were located in the antigenic sites Cb

(HA1 77) and Ca2 (HA1 225 and 227), respectively (Fig. 1b). In

addition, for the subgroup 1948,1979, HA1 225 was found to be

under positive selection with greater than 99% posterior

probability in both models M2a and M8. However, given the

fact that these HAs were from egg-adapted A(H1N1) viruses in

which HA1 225 was one of the most frequently changed site

[62,63,64], and the predominant residue at this site (Table 6),

G225, was commonly found in swine and avian A(H1N1) HAs, it

was possible that the changes at HA1 225 was due to positive

selection imposed by adaptation in eggs. At posterior probability of

90%, HA1 138 and 189 were positively selected as well, however,

both sites were involved in egg-adapted substitutions [62,63,64]. In

sharp contrast, however, HA1 143, 166 and 264 in the subgroup

Table 2. LRT tests for HA1 sequences of human A(H1N1) influenza viruses.

LRT (M2a 2 M1a) (2Dl) (p-values)1 LRT (M8 2 M7) (2Dl) (p-values)1 LRT (M8 2 M8a) (2Dl) (p-values)2

I-i 1918,1919 (5 strains) 3.44 (0.1791) 3.46 (0.1773) 3.44 (0.0318)

I-ii 1979,2000 (45 strains) 0 0 0

I-iii 2000,2001 (22 strains) 2.98 (0.2254) 2.84 (0.2417) 2.96 (0.0427)

I-iv 2001,2007 (89 strains) 1.86 (0.3946) 0.34 (0.8437) 1.16 (0.1407)

I-v 2006,2008 (100 strains) 62.42 (0.0000) 65.32 (0.0000) 61.70 (0.0000)

II 2007,2009 (74 strains) 0.78 (0.6771) 0.80 (0.6703) 2.44 (0.0591)

1We used the degree of freedom of 2 for these LRT tests that is expected to be too conservative. 2 The p-values were calculated from x2 distribution using degree of
freedom of 1 that was then divided by a factor of 2 for the mixture distribution, as suggested by the author of PAML 4.0.

doi:10.1371/journal.pone.0007789.t002

Table 3. Codons under positive selection in HA1 of human
A(H1N1) influenza viruses.

Positively selected sites1

I-v 2006,2008
(100 strains)

M2a 156 (97.5%), 190 (100%)

M8 156 (99.7%), 190 (100%)

1Positively selected sites from PAML 4.0 [45] using Bayes Empirical Bayes
analysis [72]. Only codons with greater than 95% posterior probabilities to be
under positive selection were listed with the corresponding posterior
probabilities shown in parentheses.

doi:10.1371/journal.pone.0007789.t003

Evolution of A(H1N1) HA
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Figure 1. Antigenic structure and positive selection of A(H1N1) HA. a) Antigenic structure of A/PR/8/34 (H1N1) HA (PDB accession code
1RU7 [78]). Five antigenic sites were identified by using a large number of monoclonal antibodies [73,74]: Sa (cyan), Sb (red), Ca1 (yellow), Ca2 (green),
Cb (blue), using H3 HA numbering. The receptor-binding site (RBS) was labeled for reference. b) Codons on A(H1N1) HA that were identified to be
under various selection in PAML and HyPhy analysis.
doi:10.1371/journal.pone.0007789.g001

Table 4. The values of log-likelihood (l), dN/dS, and parameter estimates in CODEML analysis of egg-adapted human A(H1N1) HAs
between 1933-1979.

Model l dN/dS Parameters estimates

1933,1979 (32 strains)1

M0 (one-ratio) 23336.01 0.411 v= 0.411

M1a (nearly neutral) 23283.75 0.336 p0 = 0.705 (p1 = 0.295), v0 = 0.057 (v1 = 1)

M2a (positive selection) 23275.24 0.454 p0 = 0.721, p1 = 0.234 (p2 = 0.046), v0 = 0.079 (v1 = 1), v2 = 3.571

M7 (beta) 23285.56 0.345 p = 0.068, q = 0.129

M8a (beta&v= 1) 23283.78 0.336 p0 = 0.705 (p1 = 0.295), p = 6.100, q = 99, vs = 1

M8 (beta&v.1) 23275.41 0.452 p0 = 0.942 (p1 = 0.058), p = 0.206, q = 0.534, vs = 3.283

1947,1957 (12 strains)1

M0 (one-ratio) 22068.01 0.435 v= 0.435

M1a (nearly neutral) 22056.27 0.337 p0 = 0.689 (p1 = 0.311), v0 = 0.038 (v1 = 1)

M2a (positive selection) 22046.27 0.501 p0 = 0.967, p1 = 0 (p2 = 0.033), v0 = 0.256 (v1 = 1), v2 = 7.651

M7 (beta) 22056.44 0.324 p = 0.012, q = 0.023

M8a (beta&v= 1) 22056.28 0.337 p0 = 0.688 (p1 = 0.312), p = 3.886, q = 99, vs = 1

M8 (beta&v.1) 22046.29 0.501 p0 = 0.967 (p1 = 0.033), p = 34.141, q = 99, vs = 7.667

1948,1979 (17 strains)1

M0 (one-ratio) 21759.58 0.385 v= 0.385

M1a (nearly neutral) 21751.46 0.260 p0 = 0.740 (p1 = 0.260), v0 = 0 (v1 = 1)

M2a (positive selection) 21747.17 0.408 p0 = 0.794, p1 = 0.168 (p2 = 0.039), v0 = 0 (v1 = 1), v2 = 6.226

M7 (beta) 21751.61 0.300 p = 0.005, q = 0.012

M8a (beta&v= 1) 21751.46 0.260 p0 = 0.740 (p1 = 0.260), p = 0.005, q = 2.350, vs = 1

M8 (beta&v.1) 21747.19 0.411 p0 = 0.969 (p1 = 0.031), p = 0.006, q = 0.025, vs = 6.964

1The analysis was performed on the first 337 residues of HA1 including the signal peptide.
doi:10.1371/journal.pone.0007789.t004
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1947,1957 were found to be under positive selection (Table 5),

none of which was among the previously identified egg-adapted

mutations. Antigenically, these codons were located in the

antigenic sites Ca2, Sa and Cb, respectively (Fig. 1b). For their

relatively distant location from the receptor-binding site, HA1 143,

166 and 264 are probably mutations driven by existing human

immunity for antibody escape.

Thus, there appeared to have different evolutionary patterns for

the subgroup 1947,1957 circulating in the 1950s and the

subgroup 1948,1979 circulating mostly in the 1970s. The former

subgroup was subjected to positive selection pressure at HA1 143,

166 and 264 (Table 5), and had a much larger variability at HA1

190, with 25% being non-D190 (Table 6). In marked contrast, the

latter subgroup was probably not under host-driven positive

selection in humans and had highly conserved HA1 190 (94.1%

being D190).

Evolution of Swine A(H1N1) HAs during 1990,2009
Given the swine origin of the 2009 pandemic A(H1N1) HA, we

also analyzed 42 non-redundant, non-ambiguous swine A(H1N1)

HA sequences during 1990,2009 available from GISAID/

Epifludb (Table 7, Fig. S3). The reason that we focused on this

period was mainly for the antigenic stasis of swine A(H1N1) until

1998 [8] since the introduction of the 1918 ‘‘Spanish’’ A(H1N1)

virus into swine [1,2,3,4,5,6,7,8]. Overall, the alternative models

M2a and M8 fitted the data only marginally better than the null

models M1a, M7 and M8a, respectively (Table 7). Thus, it seemed

that swine A(H1N1) HAs during 1990,2009 were not subjected

to strong host-driven positive selection.

Directional Evolution of Human A(H1N1) HAs
In order to test whether directional evolution of protein

sequences existed in the evolution of human A(H1N1) HAs, we

employed a maximum likelihood method developed by Kosa-

kovsky Pond and colleagues [49]. In each subgroup, we used the

oldest HA sequence as the root. In agreement with CODEML

analysis reported in previous sections, among all non-egg adapted

human A(H1N1) HAs, directional evolution was only identified in

the subgroup I-v, at sites HA1 143, 156, 158, 190, 193 and 197

(Table 8, 9). HA1 143 belonged to the antigenic site Ca2 of

A(H1N1) HA, whilst all other sites were located in the antigenic

site Sb (Fig. 1b). Among these sites, HA1 156, 190 and 193 were

identified by CODEML in PAML 4.0 to be under positive

selection with 99.7%, 100%, and 80.9% posterior probability in

model M8, respectively (Table 3). In previous structural studies,

residue HA1 190 in 1934 human A(H1N1) HA and HA1 190 and

193 in 1930 swine A(H1N1) HA were found to directly interact

with bound human-like a(2,6)-receptors [78]. Thus, it remains to

be investigated the impacts of directional evolution at HA1 190

and 193 on receptor binding and antigenic drift.

Table 5. LRT tests and codons under positive selection for HA1 sequences of egg-adapted human A(H1N1) influenza viruses
between 1933-1979.

LRT (2Dl) (p-values) Positively selected sites1

1933,1979
(32 strains)

M2a M2a-M1a 17.02 (0.0002) 77 (95.8%), 225 (98.8%)

M8 M8-M7 20.30 (0.0000) 77 (98.7%), 225 (99.6%), 227 (97.7%)

M8-M8a 16.74 (0.0000)

1947,1957
(12 strains)

M2a M2a-M1a 20.0 (0.0000) 143 (99.3%), 264 (99.6%)

M8 M8-M7 20.30 (0.0000) 143 (99.6%), 166 (95.1%), 264 (99.7%)

M8-M8a 19.98 (0.0000)

1948,1979
(17 strains)

M2a M2a-M1a 8.58 (0.0137) 225 (99.1%)

M8 M8-M7 8.84 (0.0120) 225 (99.8%)

M8-M8a 8.54 (0.0017)

1Positively selected sites from PAML 4.0 [45] using Bayes Empirical Bayes analysis [72]. Only codons with greater than 95% posterior probabilities to be under positive
selection were listed with the corresponding posterior probabilities shown in parentheses. Highlighted in bold were codons that were not associated with egg-
adapted substitutions [62,63,64].

doi:10.1371/journal.pone.0007789.t005

Table 6. Codons at HA1 190 and 225 in human and swine A(H1N1) influenza viruses.

D190 Non-D190 D225 G225 Non-D225/G225

Human 1979,2008 Epidemic (575 sequences) 477 (83.0%)* 98 (17.0%) 565 (98.2%) 2 (0.4%) 8 (1.4%)

Human 1918 Pandemic (5 sequences) 5 (100%) 0 3 (60%) 2 (40%) 0

Human 2009 Pandemic (73 sequences) 73 (100%) 0 69 (94.5%) 1 (1.4%) 3 (4.1%)

Human 1947,1957 (12 strains) (egg-adapted) 9 (75%) 3 (25%) 2 (16.7%) 10 (83.3%) 0

Human 1948,1979 (17 strains) (egg-adapted) 16 (94.1%) 1 (5.9%) 4 (23.5%) 13 (76.5%) 0

Swine 1990,2009 (42 sequences) 41 (97.6%) 1 (2.4%) 28 (66.6%) 12 (28.6%) 2 (4.8%)

*The number of cases that a particular type of residues occurs at each site. Shown in parenthesis was the occurrence in percentage.
doi:10.1371/journal.pone.0007789.t006
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We also performed directional evolution study on egg-adapted

human A(H1N1) HA sequences, and found that in both the entire

group 1933,1979 and the subgroup 1948,1979, multiple

favored mutations of D225RG and G225RD were detected

(Table 8, 9). Given its involvement in egg-adaptation, the

directional evolution at HA1 225 may be the consequence of

egg-adaptation. In contrast, no residues in the subgroup

1947,1957 were identified to be under directional selection.

Evolution of Human and Swine A(H1N1) HAs at HA1 190
and 225

For their predominant roles in determining receptor-binding

specificity of A(H1N1) HA, and the positive selection on HA1 190 in

the subgroup I-v, we further investigated the evolution of HA1 190

and 225 in A(H1N1) strains during 1918,1009. These included

653 non-egg-adapted HAs (five pandemic HAs from 1918,1919,

575 epidemic HAs from 1979,2008, and 73 pandemic HAs from

2009), and 42 swine HAs (Table 6). For the 575 epidemic HAs, HA1

190 was highly variable (17.0% sequences did not have D190), while

HA1 225 was more conserved (only 1.8% sequences did not have

D225) (Table 6). Among all the deviations (a total of 107 cases) from

the ideal D190/D225 combination for human A(H1N1) viruses,

two predominant ones were N190/D225 (69.2%) and V190/D225

(19.6%). At present, we don’t know the exact effects of these

mutations, or in combination with other concurring mutations at or

around the receptor-binding site, on binding to human receptors.

Further experiments are needed to clarify these issues. However, in

previous studies, a single mutation D190N of A(H1N1) HA was

shown to result in a lower binding affinity for human-like a(2,6)

receptors, and a higher binding affinity for avian-like a(2,3)

receptors [64].

The five HA sequences retrieved from victims of 1918

‘‘Spanish’’ A(H1N1) influenza virus shared 98.9% to 99.8%

sequence identity [11]. Among them, there were two non-

synonymous substitutions of D225G, one in A/New York/1/

1918 and the other one in A/London/1/1919 (Table 6). The HAs

harboring the mutation D225G had reduced binding affinity for

human receptors [11,40,41].

In the 73 HA sequences from the 2009 pandemic A(H1N1),

D190 was strictly conserved, while D225 was 94.5% conserved

(Table 6). At HA1 225, the deviations were 1.1% for G225 and

3.3% for E225. Thus, the complete conservation at HA1 190 and

the nearly complete conservation at HA1 225 were consistent to

the importance of these residues in allowing for binding to human-

like a(2,6) receptors [40,41], supporting the substantially higher

human-to-human transmissibility of the 2009 A(H1N1) virus than

seasonal A(H1N1) viruses [5,8].

Therefore, there were two distinct evolutionary trends in host-

driven antigenic drift of human A(H1N1) HAs at residues in the

receptor-binding site: the 1918 pandemic HAs underwent

antigenic drift at HA1 225, while the epidemic HAs undertook

antigenic drift at HA1 190. In the absence of selection, the 2009

A(H1N1) viruses were highly conserved at both HA1 190 and 225,

which was distinct from those two host-selected evolutionary

trends (Table 6). With gradually established immunity among

human population, we wondered how the 2009 A(H1N1) virus

would undergo antigenic drift in the months to come. Thus, we

also looked at the conservation at HA1 190 and 225 in 42 swine

A(H1N1) HA sequences (Table 6). Surprisingly, among these

sequences, D190 was conserved at 97.6%, while D225 and G225

were observed at 66.6% and 28.6%, respectively. The similarly

high variability of HA1 225 in swine A(H1N1) HAs with that of

1918 pandemic HAs was consistent with the relative antigenic

Table 7. The values of log-likelihood (l), dN/dS, and parameter estimates in CODEML analysis of swine A(H1N1) HAs between 1990–
2009.

Model l dN/dS Parameters estimates LRT (2Dl) (p-values)

M0 (one-ratio) 26021.08 0.158 v= 0.158

M1a (nearly neutral) 25949.30 0.217 p0 = 0.864 (p1 = 0.136), v0 = 0.094 (v1 = 1) LRT (M2a-M1a) = 1.24 (0.5379)

M2a (positive selection) 25948.68 0.224 p0 = 0.864, p1 = 0.134 (p2 = 0.002), v0 = 0.095
(v1 = 1), v2 = 3.682

M7 (beta) 25925.79 0.174 P = 0.381, q = 1.768 LRT (M8-M7) = 6.78 (0.0337) LRT (M8-M8a) = 3.40
(0.0326)

M8a (beta&v= 1) 25924.10 0.171 p0 = 0.970 (p1 = 0.030), p = 0.460, q = 2.617, vs = 1

M8 (beta&v) 25922.40 0.177 p0 = 0.995 (p1 = 0.005), p = 0.413, q = 2.052, vs = 2.546

The analysis was performed on the first 338 residues of HA1 including the signal peptide.
doi:10.1371/journal.pone.0007789.t007

Table 8. Directional selection analysis on human A(H1N1) Has.

Tree L Residue P-Value Bias Proportion (%) No. of Sites

Human I-v (100 sequences) 0.474 T 0.0002 32.995 5.4 2

R 0.0002 12.583 11.8 1

V 0.0004 34.478 4.0 2

K 0.0023 29.301 7.2 1

Human 1933,1979 (32 strains) (egg-adapted) 0.613 D 0.0000 78.148 3.4 1

Human 1948,1979 (17 strains) (egg-adapted) 0.091 D 0.0007 133.611 5.1 1

doi:10.1371/journal.pone.0007789.t008
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stasis of swine A(H1N1) until 1998 [8] and agreed well with the

suggestion that the introduction of the 2009 pandemic A(H1N1)

virus into humans be a single event or multiple events of similar

viruses [1,2,3,4,5,6,7,8].

The deviations from the ideal D190/D225 combination in

A(H1N1) HAs might result in reduced binding to human receptors

[11,41,42,64,79]. However, two possibilities, which are not

mutually exclusive, may explain the fact that mutations are

frequently observed at these two sites: one is that other concurring

mutations at or around the receptor-binding site may sufficiently

maintain the receptor binding affinity so that the overall binding

affinity is largely unaffected; the second is that the gain in evading

antibody neutralization far overweighs the reduction in receptor

binding. Due to the overlapping locations of the ever-changing

antigenic sites and the more-conserved receptor-binding site of

HA, there is a constant dilemma of whether or not a residue at the

receptor-binding site should change. Although the involvement of

residues in antigenic drift that are critical for receptor binding was

also observed in HAs of other types and subtypes including

influenza B virus HA [80], H3 [43,44]and H5 HA [44,81], the

interplay between these two opposing forces in HA evolution is still

very poorly understood. Although previous studies on A(H3N2)

HAs suggested covariation of antigenicity and receptor-binding

specificity as a possible mechanism for the antigenic differences

observed in viruses propagated in different cells [82], questions

such as how residues involved in receptor binding are actively

utilized for antigenic drift in influenza evolution in the same hosts

need to be urgently addressed in order for us to comprehend the

powerful strategies that the virus employs for recurring influenza

infections.

Implications for the 2009 Pandemic
By analyzing hundreds of A(H1N1) HA sequences between

1918,2009, our study revealed positive selection in the subgroup

I-v of A(H1N1) HAs. The positively selected codons were located

at HA1 156 and 190 in the Sb antigenic site [83]. It was surprising

that HA1 190, which is critical for receptor-binding specificity of

A(H1N1) HAs, was also under positive selection. Through further

analysis of HA1 190, together with HA1 225, the other critical

determinant for receptor-binding specificity of A(H1N1), we found

that the epidemic HAs and the 1918 pandemic and swine HAs

favored one of these two sites for antigenic drift. Whether the 2009

pandemic A(H1N1) HA will adopt any of these two trends, or use

a novel mechanism that does not involve HA1 190 and 225, will

unfold in the coming months. If the latter is to be used, the 2009

A(H1N1) viruses may maintain their intrinsic high transmissibility,

which, together with mutations in other genes such as NS1 and

PB1-F2 with signatures of elevated pathogenicity [1,2], may suffice

a new disastrous pandemic in the near future.

Materials and Methods

Phylogenetic Analysis of A(H1N1) HAs
We obtained all available HA sequences (over 1,000) of non-

egg-adapted A(H1N1) viruses for the period of 1918,2009 (as of

July 10, 2009) from GISAID/Epifludb. We then removed the

sequences with one or more ambiguous nucleotide sequences

within the HA1 region and deleted identical sequences. This gave

us a dataset of 652 HA sequences that included three 1918

pandemic HAs, 575 epidemic HAs from 1979,2008 that

collectively formed group I, and 73 pandemic HAs from 2009

and one HA from 2007 that belonged to group II. To facilitate the

speed of computing, we further removed closely related sequences

and obtained a dataset of 333 HA sequences. The program RDP3

(http://darwin.uvigo.es/rdp/rdp.html) [66] was used to make sure

that no recombination was present in any of these HA sequences.

The ClustalW method [68] with the MEGALIGN program of

DNASTAR package (www.dnastar.com) was used for phyloge-

netic analysis of H1 HA sequences in the region of HA1 (Fig. S1).

Due to the historic use of eggs for amplification of influenza

viruses before sequencing, there presented a vacuum in sequence

for non-egg-adapted A(H1N1) viruses between 1919 and 1979. In

order to gain insights into the evolution of A(H1N1) viruses for this

period, we separately collected a total of 32 different egg-adapted

A(H1N1) HA sequences between 1933,1979 that were free of

sequence ambiguity (Fig. S2). These sequences were similarly

analyzed while keeping in mind of the possible egg-adapted

mutations at HA1 138, 144, 163, 189, 190, 225, and 226

[62,63,64].

In order to compare the evolution of swine A(H1N1) HA

sequences, we also retrieved 42 unique swine H1 HA sequences

for the period of 1990,2009 that were free of ambiguous

nucleotide sequences (Fig. S3). The reason that we focused on

1990,2009 was that previous studies suggested that swine

A(H1N1) viruses be antigenically stable for the period of 1930 to

1990s [84].

Analysis of Positive Selection by PAML 4.0
The site-specific models implemented in the CODEML

program in PAML 4.0 [45] was used to calculate heterogeneous

selection pressure at amino-acid positions [45,54,72,85]. The

models used in this study were M0, M1a, M2a, M7 and M8. M1a

(nearly neutral), M7 (beta) and M8a (beta and v= 1) were null

models that did not support v.1. In contrast, the alternative

Table 9. Sites found to be under directional selection in human A(H1N1) Has.

Sites Composition Root Preferred Inferred Substitutions

Human I-v (100 sequences) 143 V99T1 V V TR1V

156 G90R9E1 R R GR1E, GR7R

158 N96K4 N K NR4K

190 D67N25V8 D V DR16N, DR4V

193 A52T48 A T AR6T

197 T82K18 T T KR2T

Human 1933,1979 (32 strains) (egg-adapted) 225 G23D9 D D DR1G, GR6D

Human 1948,1979 (17 strains) (egg-adapted) 225 G13D4 G D GR4D

doi:10.1371/journal.pone.0007789.t009
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models M2a (positive selection) and M8 (beta and v), compared to

M1a and M7 respectively, each had an additional class that

allowed v.1. Likelihood ratio tests (LRT) comparing M2a versus

M1a, M8 versus M7, and M8 versus M8a provided test for the

existence of positive selection. In the test, twice the log likelihood

difference, 2Dl = 2(l12l0), was calculated where l1and l0were the

log likelihoods for the alternative model and null model,

respectively. A larger value of LRT over those of x2 distribution

led to rejection of the null models [72]. In order to calculate the

codon-substitution models for heterogeneous selection pressure at

each codon, the Bayes Empirical Bayes (BEB) analysis imple-

mented in CODEML [72] was used, which has been shown to

yield robust results even for small datasets. For all calculations,

multiple runs, each with different initial parameter values, were

performed to ensure optimization and convergence.

Directional Evolution of Protein Sequences Using HyPhy
Each group of A(H1N1) HA sequences aligned by the ClustalW

method (Fig. S1, S2, S3) was input to the PhyML program [86] to

generate an unrooted phylogenetic tree, which was then rooted

using the Treeview software [87] by selecting the oldest sequence

in each group as the root/ancestor. This rooted phylogenetic tree

was used for directional evolution of protein sequences [49]

implemented in the HyPhy [55] software package.

Supporting Information

Figure S1 Phylogenetic tree of 333 HA sequences of A

(H1N1) influenza viruses isolated between 1918,2009 without

egg-adaptation.

Found at: doi:10.1371/journal.pone.0007789.s001 (41.64 MB

TIF)

Figure S2 Phylogenetic tree of 32 HA sequences of egg-adapted

human A(H1N1) influenza viruses isolated between 1933,1979.

Found at: doi:10.1371/journal.pone.0007789.s002 (1.02 MB TIF)

Figure S3 Phylogenetic tree of 42 HA sequences of swine

A(H1N1) influenza viruses isolated between 1990,2009.

Found at: doi:10.1371/journal.pone.0007789.s003 (1.39 MB TIF)
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