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Abstract

Background: Exogenous short interfering RNAs (siRNAs) induce a gene knockdown effect in cells by interacting with
naturally occurring RNA processing machinery. However not all siRNAs induce this effect equally. Several heterogeneous
kinds of machine learning techniques and feature sets have been applied to modeling siRNAs and their abilities to induce
knockdown. There is some growing agreement to which techniques produce maximally predictive models and yet there is
little consensus for methods to compare among predictive models. Also, there are few comparative studies that address
what the effect of choosing learning technique, feature set or cross validation approach has on finding and discriminating
among predictive models.

Principal Findings: Three learning techniques were used to develop predictive models for effective siRNA sequences
including Artificial Neural Networks (ANNs), General Linear Models (GLMs) and Support Vector Machines (SVMs). Five feature
mapping methods were also used to generate models of siRNA activities. The 2 factors of learning technique and feature
mapping were evaluated by complete 365 factorial ANOVA. Overall, both learning techniques and feature mapping
contributed significantly to the observed variance in predictive models, but to differing degrees for precision and accuracy
as well as across different kinds and levels of model cross-validation.

Conclusions: The methods presented here provide a robust statistical framework to compare among models developed
under distinct learning techniques and feature sets for siRNAs. Further comparisons among current or future modeling
approaches should apply these or other suitable statistically equivalent methods to critically evaluate the performance of
proposed models. ANN and GLM techniques tend to be more sensitive to the inclusion of noisy features, but the SVM
technique is more robust under large numbers of features for measures of model precision and accuracy. Features found to
result in maximally predictive models are not consistent across learning techniques, suggesting care should be taken in the
interpretation of feature relevance. In the models developed here, there are statistically differentiable combinations of
learning techniques and feature mapping methods where the SVM technique under a specific combination of features
significantly outperforms all the best combinations of features within the ANN and GLM techniques.
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Introduction

Exogenous small interfering RNAs (siRNAs) can be introduced

into cells, enter endogenous pathways and reduce the amount of

their target RNA [1]. However, not all siRNAs perform this

knockdown function with equal efficacy [2–7]. Many studies have

developed models for siRNA efficacy and a heterogeneous group

of learning techniques have been used in the development of

predictive siRNA models, Table 1 [8–38]. In addition to the

various learning techniques, the number of feature mapping

methods and the number of datasets that have been used to

develop models for siRNAs are also large and heterogeneous,

Table 1. The thirty works enumerated in Table 1 individually

provide more details about the specific approaches being used to

computationally model siRNAs, as well as many other un-cited

works that have developed more precise biochemical understand-

ings of the various siRNA and miRNAs mechanisms. However

together, these works provide a glimpse as to the heterogeneity in

methodologies that have been taken, and while each approach is

certainly valid, modest efforts have been made to synthesize across

approaches to ascertain what commonalities exist and where

enhancements in comparisons can be made among approaches.

Statistical learning techniques have fallen into two broad

categories. The first group of learning techniques involves the
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development of models that classify siRNAs into discrete groups of

more effective and less effective, based on their properties or

features. The second group of learning techniques involves the

development of a regression model that predicts a siRNA’s

effectiveness from a continuous distribution, also based on the

siRNA properties, or feature set. In this second group, three

common learning techniques that have been used to develop

predictive regression models are Artificial Neural Networks

(ANNs), General Linear Models (GLMs) and Support Vector

Machines (SVMs). Here we intend to more closely investigate

what the choice of feature set, learning technique, measure of

model precision or accuracy and statistical test has on making

conclusions about predictive models.

A model is comprised of several components; minimally a model

involves a learning technique, a set of features on which to learn

and then a dataset which contains the features and the outcome (or

outcomes) of interest. Development of models that predict the

effectiveness of small interfering RNAs (siRNAs) are useful for

several reasons. First, and perhaps most trivially, models are used

to develop ever more predictively functional schemes. Second,

models can be used to better understand the system under study.

As a crude sketch of a complex system, the model encapsulates

features that associate with effective or ineffective siRNAs and can

lead to insights into the structures, functions and mechanisms of

siRNAs. Third, the model building procedures can be compared

to determine what combinations of learning techniques and

Table 1. Computational systems used in developing models for predicting effective RNAi.

# Technique(s) class/reg siRNA data set Total Features Reference(s)

1 Rule classification 180–19mers 8 [8]

2 Rule classification 62–19mers 4 [9]

3 Rule classification 46–19mers-train, 34–19mers-test 9 [10]

4 Rule classification 148–19mers 18 [11]

5 Rule classification 249–19mers 12 [12]

6 Rule classification 23–19mers 2 [13]

7 GPBoost, SVM class/reg 204–19mers ? [14]

8 GPBoost, SVM regression 581–19mers ? [15]

9 DT class/reg 398–19mers 11 [16]

10 Rule classification composite 8 [17]

11 ANN regression 2431–21mers 84 [18,19]

12 ANN classification 180–19mers 6 [20]

13 Rule, DT classification 601–19mers 55 [21]

14 GSK SVM classification 94–19mers 84 [22]

15 Rule DT, SVM classification 33–21mers 4 [23]

16 SVM classification 2431–21mers, 581–19mers 84+15+20 [24]

17 ANN regression 581–19mers-train, 2431–21mers-test 200 [25]

18 linear regression 526–19mers 84 [26]

19 linear regression 2431–21mers, 653–19mers 84+84 [27]

20 DRM classification 3277 276-initial 21-final [28]

21 Rule classification 420 and 1220 6+4+16+64 [29]

22 SVM class/reg 2252–21mers, 240–19mers 572 [30]

23 linear regression 2431–21mers 84+ [31]

24 SVM regression 2431–21mers, 579–19mers 1566 [32]

25 Rule, DT, GPBoost, ANN, linear class/reg 2431–21mers, 601–19mers, 238–19mers,
67–19mers

84+84, 22-final [33]

26 SVM classification 2431–21mers, 653–19mers 28 [34]

27 Rule, SVM, RFR regression 3589 41 [35]

28 linear regression 702–19mers 76+3 [36]

29 Rule HS classification 474 subset of 2433–21mers, 99 subset
of 294–21mers, 360 21–mers

4 [37]

30 Rule DT classification 62 21-mers 8 [38]

GPBoost: Genetic Programming and Boosting.
SVM: Support Vector Machine.
DT: Decision Tree.
ANN: Artificial Neural Network.
GSK: General String Kernel.
DRM: Disjunctive Rule Merging.
RFR: Random Forest Regression.
HS: Hierarchical Sorting.
doi:10.1371/journal.pone.0007522.t001
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feature mapping methods that are able to generate significantly

effective models on the data under study. Namely, models are

simply formalized hypotheses and as such models can be

compared in their abilities to explain and predict with associated

measures of precision and accuracy.

Two general criteria are used in the evaluation of a model’s

ability to predict data not seen in model training: model precision

and model accuracy. Model precision is based on the ability to fit

a relationship between predicted and empirically observed

activities (namely the Pearson correlation or R fit of the model

between predicted and observed). Model accuracy is based on the

ability to fit a relationship between predicted and observed that

minimizes the residuals between the predicted and empirically

observed activities (namely the Mean Squared Error or MSE of

the model). Previous studies investigating siRNA activities have

generally not discriminated between machine learning techniques

and feature mapping methods. No general comparisons have

been made to systematically understand the performance of

identical features with different learning techniques or identical

learning techniques with different features for siRNAs. Here the

intention is to more closely investigate the effect of choosing ANN,

GLM and SVM learning techniques and feature mapping

methods in the development of predictive siRNA regression

models from estimates of their precision and accuracy.

Results

I. Individual learning techniques and feature mapping
methods

Ia. training and testing models on the entire

dataset. The three learning techniques of ANN, GLM and

SVM were used to develop predictive models for the same dataset

of 2431 siRNAs across the 5 feature mapping methods of 1)

Position Specific Base Composition (PSBC), 2) Thermodynamics

(THER), 3) N-Grams of length 2 through 5 (NG25), 4) Guide

Strand Structural Features (GSSF) and 5) Guide Strand

Secondary Structure (GSSS). Both training the models and then

testing their precision on the entire dataset resulted in models with

correlations (R) between predicted and observed activities that

ranged from 0.198 to 0.897 (GLM-GSSF and SVM-NG25,

respectively), Table 2. Similarly the entire dataset was used to

determine model accuracies by both training and then testing the

model to determine the Mean Squared Errors (MSE) between

predicted and observed activities that ranged from 0.009 to 0.936

(SVM-NG25 and GLM-NG25, respectively), Table 2.

Ib. 10-fold cross-validation. Since training and testing a

model on the same dataset is not a realistic measure of model

performance 10-fold stratified cross validation was used. Briefly,

cross validation involves partitioning the dataset into M subsets, so

that each subset contains a maximal distribution of the siRNA

activities, and the model was trained on M-1 of these and then

tested on the remaining hold-out subset. This is repeated for each

of the partitions to generate M (mostly) independent estimates of

model performance. Using 10-fold stratified cross validation

resulted in models with correlations (R) between predicted and

observed activities that ranged from 0.152 to 0.643 (GLM-GSSF

and SVM-PSBC, respectively), Table 2. Similarly the 10-fold

cross validation resulted in models with the Mean Squared Errors

(MSE) between predicted and observed activities that ranged from

0.024 to 0.929 (SVM-PSBC and GLM-NG25, respectively),

Table 2. In general 10-fold cross validation model values are

lower for precision and accuracy (decreased R, increased MSE)

than models trained and tested on the entire dataset due to the

overfitting problem.
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II. 365 ANOVA on R and MSE from 10-fold cross
validation replicates

To more completely understand the non-obvious contributions

of both the learning technique and feature mapping methods on

determining model precision and accuracy the results of the ten

individual cross validations were treated as repeated measures

within a complete factorial analysis of variance (ANOVA). For

determining the sources of variation in measures of model

precision, the variance in model correlations (R) were evaluated

under 4 ANOVA model assumptions, Table 3. The first model

MR1 contained marginally significant evidence for the variance in

R being influenced by choice of learning technique alone. The

second model MR2 contained evidence for highly significant

contribution to the variance in R by choice of feature mapping

method alone. The model MR3 containing both learning

techniques and mapping methods, but without interactions

between techniques and features, contained a significantly better

fit to either the MR1 or MR2 model that contained only learning

techniques alone or mapping methods alone, Table 4. Finally the

model MR4, that contained interaction terms between techniques

and methods, had a marginally significantly better fit than the

model MR3, without interaction terms, Table 4.

A similar procedure was used for evaluating the sources of

variation for MSE estimates between the learning techniques and

feature mapping methods. The first MSE model MMSE1 contained

highly significant evidence for the variance in MSE being

influenced by choice of learning technique alone, Table 5. The

second model MMSE2 contained evidence for significant contribu-

tion to the variance in MSE by choice of feature mapping method,

Table 5. The model MMSE3 containing both learning techniques

and mapping methods, but without interactions between tech-

niques and features MMSE4, contained a significantly better fit to

either the MMSE1 or MMSE2 models, Table 6. Finally the model

MMSE4, that contained interaction terms between techniques and

methods, had a highly significantly better fit than the model

MMSE3, without interaction terms, Table 6. In summary, both

Table 3. Individual model ANOVA on correlation (R) cross validation replicates.

Mdl Model formula R2 R.S.S. d.f. F P

MR1 R = technique + error 0.02958 4.5157 2, 147 3.27 0.041

MR2 R = method + error 0.8314 0.7741 4, 145 184.6 ,2.2610216

MR3 R = technique + method + error 0.8734 0.5731 6, 143 172.3 ,2.2610216

MR4 R = technique + method + (technique6method) + error 0.8822 0.5033 14, 135 80.73 ,2.2610216

doi:10.1371/journal.pone.0007522.t003

Table 4. Model comparisons by ANOVA for R.

MdlA MdlB R.S.S.A R.S.S.B d.f.A d.f.B d.f. F P

MR1 MR3 4.5157 0.5731 147 143 4 245.93 ,2.2610216

MR2 MR3 0.7741 0.5731 145 143 2 25.069 4.646610210

MR3 MR4 0.5731 0.5033 143 135 8 2.3414 0.02181

doi:10.1371/journal.pone.0007522.t004

Table 5. Individual model ANOVA on Mean Squared Error (MSE) cross validation replicates.

Mdl Model formula R2 R.S.S. d.f. F P

MMSE1 MSE = technique + error 0.3535 7.9759 2, 147 41.73 4.442610215

MMSE2 MSE = method + error 0.1904 9.8519 4, 145 9.759 5.10761027

MMSE3 MSE = technique + method + error 0.5564 5.3238 6, 143 32.14 ,2.2610216

MMSE4 MSE = technique + method + (technique6method) + error 0.9931 0.0778 14, 135 1540 ,2.2610216

doi:10.1371/journal.pone.0007522.t005

Table 6. Model comparisons by ANOVA for MSE.

MdlA MdlB R.S.S.A R.S.S.B d.f.A d.f.B d.f. F P

MMSE1 MMSE3 7.9759 5.3238 147 143 4 17.81 6.937610212

MMSE2 MMSE3 9.8519 5.3238 145 143 2 60.815 ,2.2610216

MMSE3 MMSE4 5.3238 0.0778 143 135 8 1138 ,2.2610216

doi:10.1371/journal.pone.0007522.t006
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learning techniques and mapping methods contribute to the

source of variation in measures of model precision (R) and

accuracy (MSE), but contribute to various degrees to each.

III. Feature set selection for maximizing precision and
accuracy

Due to the interaction between learning technique and feature

mapping method in determining model accuracy a brute force

survey approach was used to find both precise and accurate

models and limited to the 3 learning techniques and 5 feature

mapping methods. Feature mapping methods were evaluated by

combining and filtering to find combinations of features that

maximized R and minimized MSE under the 3 learning

techniques. The 5 feature mapping methods PSBC, THER,

NG25, GSSF and GSSS were evaluated in all 31 combinations

then filtered across 9 increasingly stringent levels of feature

inclusion and finally measured for R and MSE across the 3

learning techniques by 10-fold cross validation. Combined there

were a total of 837 models evaluated for R and MSE by 10-fold

cross validation. The ANN learning technique had a maximal

value of R = 0.660 with the P+13 feature mapping method (the

method PSBC combined with N-Grams of length 1 through 3) and

minimal values of MSE = 0.025 with the PSBC method. The

GLM learning technique had a maximal value of R = 0.607 and

minimal values of MSE = 0.031 both with the PSBC method. The

SVM learning technique had a maximal value of R = 0.711 and

minimal values of MSE = 0.020 both with the P+25 mapping

method (the method PSBC combined with N-Grams of length 2

through 5), Table 2.

IV. Comparisons among models
IVa. within learning technique, between feature mapping

method comparisons. Within the ANN learning technique,

the feature mapping method that produced the model with the

highest precision is the P+13 method, with a mean R = 0.660

under 10-fold cross validation. The distribution ranges of the 10-

fold cross validation estimates of R are presented in Figure 1, first

grouped by learning technique, then by feature mapping method.

It is apparent in Figure 1 that the variances of the best performing

method, P+13, overlaps with the next most precise method, PSBC

(R = 0.636). Determining whether R = 0.660 is significantly greater

than R = 0.636 is a matter of performing a 2 population t-test for

the comparisons of means between the 10-fold cross validation

estimates of the model R. In this case the H0: x1 = x2 is unable to

be rejected P = 2.26E-01. However, in the case of the comparisons

between the method of P+13 and other methods within the ANN

technique the null hypothesis of equality of means of R, are able to

be rejected with various degrees of statistical confidence, Table 7.

Similar to the comparisons of precision by comparing the means

for R from cross validation replicates, the same comparisons can

be made for the estimates for model accuracy, among the MSEs.

The distribution ranges of the 10-fold cross validation estimates of

MSE are presented in Figure 2, first grouped by learning

technique, then by feature mapping method. It is again apparent

in Figure 2 that the variances of the best performing method,

PSBC, overlaps with the next most precise method, P+13 (MSE

= 0.027). For the ANN technique, the most accurate method,

PSBC MSE = 0.025, is not able to reject the null hypothesis of

equality in the case of method P+13 MSE = 0.027, P = 3.26E-01.

Figure 1. Box-and-whisker diagrams for the cross validation estimates of model precision performance, or Pearson correlation (R).
Boxes encompass the first to third quartile of the distribution. The medians of the distributions are given as horizontal lines within the boxes.
Whiskers encompass the 5% to 95% confidence regions of the distribution. Statistical outliers are shown as open circles. The left side of the diagram
groups the model precision estimates by machine learning technique. The right side of the diagram groups the model precision estimates by feature
mapping method.
doi:10.1371/journal.pone.0007522.g001
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Table 7. Comparison among learning technique and mapping method for building significantly dissimilar models by 10-fold cross
validation.

TEC ANN

MET PSBC THER NG25 GSSF GSSS P+13 P+25 ALL

PSBC 0.636 0.025 8.89E-04** 2.26E-05** 2.20E-09** 1.41E-11** 2.26E-01 3.02E-02* 1.21E-04**

THER 2.76E-03* 0.567 0.029 5.70E-03* 2.31E-08** 7.02E-10** 1.48E-04** 6.00E-01 2.02E-01

NG25 3.30E-05** 1.37E-04** 0.464 0.049 2.44E-05** 1.03E-05** 5.23E-06** 5.13E-03* 6.49E-02

ANN GSSF 2.21E-10** 1.24E-07** 7.87E-03* 0.278 0.038 9.84E-01 3.66E-10** 4.90E-08** 1.60E-07**

GSSS 2.20E-10** 9.99E-08** 8.43E-03* 8.62E-01 0.279 0.038 2.97E-12** 2.22E-08** 1.53E-08**

P+13 3.26E-01 2.01E-01 3.91E-05** 1.07E-05** 1.16E-05** 0.660 0.027 6.85E-03* 2.30E-05**

P+25 1.28E-02* 3.01E-02* 8.99E-01 2.06E-01 2.12E-01 1.86E-02* 0.572 0.047 1.32E-01

ALL 5.47E-05** 1.55E-04** 2.31E-01 2.72E-03* 2.87E-03* 6.31E-05** 3.74E-01 0.524 0.055

PSBC 7.04E-04**

THER 1.45E-11**

NG25 2.21E-12**

GLM GSSF 4.65E-06**

GSSS 4.37E-08**

P+13 3.23E-07**

P+25 4.99E-15**

ALL 1.68E-11**

PSBC 3.20E-01

THER 2.36E-01

NG25 2.59E-04**

SVM GSSF 5.99E-02

GSSS 8.81E-02

P+13 1.35E-02*

P+25 2.42E-04** 4.71E-03*

ALL 6.29E-05**

GLM

PSBC THER NG25 GSSF GSSS P+13 P+25 ALL

1.23E-01

8.68E-02

5.87E-03*

1.34E-03*

1.30E-02*

1.71E-02* 1.54E-06**

3.96E-04**

1.12E-02*

0.607 0.031 9.42E-04** 3.83E-07** 1.44E-10** 1.21E-10** 6.56E-05** 8.09E-06** 9.71E-06**

1.38E-11** 0.511 0.844 1.33E-04** 1.75E-09** 5.22E-09** 2.08E-01 1.39E-02* 3.35E-02*

4.38E-12** 6.90E-03* 0.357 0.929 1.39E-05** 1.86E-04** 1.96E-03* 4.67E-02* 1.48E-02*

1.95E-06** 3.30E-13** 5.06E-14** 0.152 0.115 1.59E-01 1.05E-08** 1.59E-07** 4.77E-08**

2.28E-09** 1.23E-11** 3.28E-12** 1.75E-02* 0.201 0.091 4.71E-08** 1.22E-06** 2.83E-07**

3.92E-07** 2.31E-14** 1.51E-15** 6.80E-06** 4.08E-06** 0.474 0.257 1.61E-01 3.37E-01

7.73E-13** 1.79E-08** 3.43E-06** 3.77E-15** 4.65E-13** 2.20E-16** 0.439 1.109 6.17E-01

1.79E-11** 4.49E-11** 8.81E-11** 1.40E-11** 2.05E-11** 3.57E-12** 3.21E-10** 0.444 2.529

1.58E-04**

1.42E-11**

4.65E-12**

5.65E-06**

4.52E-08**

2.88E-07**

2.24E-06** 7.93E-13**

1.77E-11**
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Again, in the case of the comparisons between the method of

PSBC and other methods within the ANN technique the null

hypothesis of equality of MSE means, are able to be rejected with

various degrees of statistical confidence, Table 7.

Within the GLM technique, the mapping method that results in

the most precise model is the PSBC, R = 0.607, by 10-fold cross

validation replicates. It is striking to note that this method

dramatically outperforms other methods within the GLM

technique, based on the lack of overlap in R estimate distributions,

Figure 1. Consistent with the visual isolation of the PSBC among

the other methods used to build models under the GLM

technique, the t-test comparisons between the PSBC and the

other methods all result in statistically significant rejection of the

null hypotheses of equality of R. Even more striking in the GLM

technique is that the PSBC method is the only technique that

results in predictions of model accuracy (MSE) that are

comparable with the other learning techniques, Figure 2. Some

of the additional methods within the GLM technique result in

dramatic inflation of the MSE, so while the precision of the models

might be comparable, the model accuracies suffer. Statistical tests

of the PSBC method clearly reject the null hypotheses of equality

of the MSEs for other methods within the GLM technique.

Within the SVM learning technique, the method that produces

the highest precision model is the P+25 method, R = 0.711. The

distribution of P+25 method estimates of R only substantially

overlap with the distribution of the P+13 method, Figure 1.

Further statistical tests also suggest that the P+25 method

outperforms all but the P+13 method for model precision,

Table 7. For model accuracies, the SVM technique appears to

provide uniformly smaller distributions of model MSEs, Figure 2.

The most accurate method from within the SVM technique was

also the P+25 method, MSE = 0.020, but there is overlap between

the MSE distributions between the P+25 and P+13 methods,

Figure 2. Statistical tests reject the null hypotheses of equality

between the P+25 method and the other methods, except for the

P+13 method, Table 7.

IVb. within feature mapping method, between learning

technique comparisons. General comparisons among

learning techniques, but within a mapping method will provide

a glimpse of how learning techniques might yield more or less

SVM

PSBC THER NG25 GSSF GSSS P+13 P+25 ALL

6.58E-01

3.28E-01

1.50E-01

8.51E-02

7.33E-01

2.89E-01 9.06E-03*

1.50E-04**

5.95E-05**

5.73E-02 1.57E-05**

1.35E-02*

1.16E-04**

9.55E-02

1.78E-02*

3.69E-07**

5.45E-08**

9.56E-07**

0.643 0.024 2.90E-03* 1.07E-05** 3.09E-09** 2.25E-13** 5.54E-02 4.05E-04** 9.51E-01

5.20E-03* 0.579 0.027 7.74E-03* 7.38E-09** 1.51E-11** 1.01E-04** 1.68E-06** 2.72E-03*

2.09E-05** 2.28E-02* 0.509 0.030 8.41E-08** 6.54E-09** 7.10E-07** 6.74E-08** 9.91E-06**

4.36E-12** 1.47E-08** 9.34E-07** 0.215 0.039 8.25E-02 3.31E-10** 6.30E-10** 2.71E-09**

4.68E-12** 2.47E-08** 3.46E-06** 7.11E-02 0.271 0.038 8.35E-14** 1.56E-14** 2.06E-13**

8.34E-02 3.18E-04** 2.50E-06** 3.97E-10** 2.42E-10** 0.681 0.022 1.07E-01 6.36E-02

1.16E-03* 5.20E-06** 7.78E-08** 2.66E-13** 1.41E-13** 1.86E-01 0.711 0.020 5.24E-04**

1.57E-01 5.08E-02 1.71E-04** 7.15E-13** 2.37E-12** 6.70E-03* 2.85E-05** 0.644 0.025

Diagonal cells from upper left to lower right contain the mean correlations R (upper) and MSE (lower) from the 10-fold cross validation predictions within the learning
technique and mapping method, equivalent to the 10-fold cross validation R and MSE columns in table 2.
Cells above and to the right of the diagonal are the t-test probabilities of the 10-fold cross validations R rejecting the H0: xa = xb, where xa is mean R of combined
technique and method a and xb is the mean R of combined technique and method b.
Cells below and to the left of the diagonal are the t-test probabilities of the 10-fold cross validations MSE rejecting the H0: xa = xb, where xa is mean MSE of combined
technique and method a and xb is the mean MSE of combined technique and method b.
The cells off the upper left to lower right diagonal are unlabeled where P$0.05.
The cells off the diagonal are labeled with a * where P,0.05 and P$0.001 (,5.0E-02 and .1.0E-03).
The cells off the diagonal are labeled with a ** where P,0.001 or 1.0E-03.
Learning technique (TEC) and mapping method (MET) labels are consistent with Table 2.
doi:10.1371/journal.pone.0007522.t007
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effective models with the same group of features. The right hand

portions of Figures 1 and 2 provide this visual glimpse between the

8 feature mapping methods, but focusing on the learning

technique as the factor under study.

The PSBC method provides a uniformly high magnitude of R

with low variance, Figure 1, and a low magnitude of MSE with low

variance, Figure 2, across all learning techniques. Statistically, it is

not possible to reject the different learning technique’s abilities to

build precise (as measured by R) models with the PSBC method,

Table 7. Similarly, the accuracies of the models built with the

PSBC method are not able to be discriminated between the ANN

and SVM techniques, but are able to suggest a higher accuracy

(lower MSEs) of both the ANN and SVM techniques when

compared to the GLM technique, Table 7.

In general within a feature mapping method the ANN and

SVM techniques always outperforms the GLM technique for

precision (higher Rs) and accuracy (lower MSEs) with various

degrees of statistical significance, Table 7. Between ANN and

SVM techniques the SVM provides a higher precision (higher Rs)

models in 6 of the 8 methods, with 2 of those 6 reaching statistical

significance, Table 7. Between ANN and SVM techniques the

SVM provides a higher accuracy (lower MSEs) in 8 of the 8

methods, with 4 of those 8 reaching various degrees of statistical

significance, Table 7.

IVc. within best methods, between learning technique

comparisons. It is apparent that various learning techniques

have variable performance for building precise and accurate

models under different feature mapping methods, but one

objective of building predictive models is finding the modeling

methods that result in the best model outcome. Among the

learning methods, the most precise (highest R) models built under

the ANN technique utilizes the P+13 method, R = 0.660.

Similarly, the most precise model built under the GLM

technique utilizes the PSBC method, R = 0.607, and the most

precise model built under the SVM technique utilizes the P+25

method, R = 0.711. Statistically, the best-method SVM technique

is able to reject the null hypotheses of equivalence between the

best-method ANN technique, P = 9.06E-03, as well as the best-

method GLM technique, P = 1.57E-05. Similarly, the best-method

ANN technique is able to reject the null hypotheses of equivalence

between the best-method GLM technique, P = 1.71E-02, Table 7.

Among the learning methods, the most accurate (lowest MSE)

models built under the ANN technique utilizes the PSBC method,

MSE = 0.025. Similarly, the most accurate model built under the

GLM technique utilizes the PSBC method, MSE = 0.031, and the

most accurate model built under the SVM technique utilizes the

P+25 method, R = 0.020. Much like in comparisons of model

precision, the best-method SVM technique is able to reject the null

hypotheses of equivalence between the best-method ANN

technique, P = 2.42E-04, as well as the best-method GLM

technique, P = 2.24E-05. Similarly, the best-method ANN tech-

nique is able to reject the null hypotheses of equivalence between

the best-method GLM technique, P = 7.04E-04, Table 7.

V. Model combinations
There are several approaches that rely on more than a single model

to make more informed decisions. Algorithms that apply bagging,

boosting, stacking or other error correction methods can improve

model performance by taking the strengths of some models to correct

for other model weaknesses. To determine whether ANN, GLM and

SVM learning technique models generate independent errors in their

predictions, the ALL feature mapping method was used to train a

Figure 2. Box-and-whisker diagrams for the cross validation estimates of model accuracy performance, or Mean Squared Error
(MSE). See Figure 1 for more details.
doi:10.1371/journal.pone.0007522.g002
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model under each of the learning techniques. These models were then

used to learn then predict the same dataset by parallel 10-fold cross

validation. The residuals (residual = observed – predicted) for each of

the 2431 data points was calculated for the ANN, GLM and SVM

techniques. The residuals between models are all highly correlated

between techniques (ANN-GLM R = 0.99, ANN-SVM R = 0.99,

GLM-SVM R = 0.98). Model errors between learning techniques are

apparently highly correlated, suggesting that these 3 models fail in a

similar fashion and would not be suitable candidates for algorithms

that systematically combine models to reduce error.

Discussion

There are several optimality criteria that have been used in

choosing between models and model construction systems. In no

particular order, it is generally considered to be an improvement

to: i) reduce the time of model construction, ii) reduce the

complexity in implementing the method, iii) reduce the relative

number of model parameters, iv) increase the exposure of the

individual parameter contribution to the model for interpretation,

v) increase the predictive precision of the model and vi) increase

the predictive accuracy of the model. Previous comparisons among

learning techniques and feature mapping methods for siRNAs

have not generally used specific statistical methods to discriminate

among the myriad of possible combinations. Here we suggest the

use of and provide a demonstration of statistical models that

maximizes both predictive model precision and accuracy that can

discriminate among the high dimensionality of model space.

Furthermore, from the observations here, it may be difficult to

generalize the contributions of specific features when comparing

among learning techniques as there are significant interactions

among learning technique and feature that contribute to model

performance. Stated plainly, the optimal feature set for maximiz-

ing the performance of a GLM model won’t likely be the same

feature set in an ANN or SVM model, or vice versa, therefore the

learning technique influences what features are ‘‘relevant’’ in the

model. Inferring ‘‘biological relevance’’ from ‘‘model relevance’’

when modeling technique has an influence on the features in the

model is then questionable. Furthermore, any preference for

model interpretability and the selection of a GLM based model

may be somewhat self fulfilling where GLMs tend to perform best

(among other GLMs, but not globally best) with a smaller number

of features when compared to ANN or SVM models.

Overall, multiple tests are presented in Table 7 and the P values

are not corrected for multiple tests. However, there are 28 planned

comparisons within a single learning technique between the 8

presented methods, each among the measures of both precision

and accuracy. If a Bonferroni correction is warranted as a way to

adjust the type-I and type-II error rates, the typically used P value

of 0.05 for the type-I error rate becomes 0.05/28 = 1.79E-03, and

the cells in Table 7 labeled with ‘**’ still exceed this threshold.

Additionally, 10-fold cross validation was used to generate the

multiple replicate estimates of the model performance, but in cases

where additional power is required for comparisons among models

a higher order cross validation can be performed to increase the

replication level and associated power of statistical tests.

It has been shown that the paired t-test is more liberal than the

McNemar’s test for classification learning problems [39], but the

models tested here are regression models resulting in continuously

distributed values and the tests presented in Table 7 are based on a

2 population t-tests without the assumption of homoscedasticity of

population variances and using Welch’s correction for degrees of

freedom. For comparative purposes, the McNemar’s test on these

results can be found in supplementary materials (Table S1), and

consistent with being a more liberal test the McNemar’s test fails to

reject the null hypothesis of equality for 24 R and 12 MSE

comparisons while the 2 population t-test fails to reject 26 R and

17 MSE comparisons. The 2 population t-test is therefore a more

conservative test than McNemar’s, and more appropriate for the

continuously distributed values that result from regression rather

than classification procedures.

It is ill advised to use measures of model precision and accuracy

that result from both training and testing on the same dataset.

However, for comparative purposes these values are presented in

this study, Table 8. Also, the use of a single kind of cross validation

to reduce the problem of over-training models has not been

universally adopted. The comparison of the present approaches to

previously described methods for training and testing regression

learning techniques for the same siRNA dataset are summarized in

Table 8. It should be pointed out that many of the methods

summarized in Table 8 are not being compared on an equal

footing as their training sets were different or the dataset used in

model testing was not available, but this is simply a proposed

mechanism for making comparisons among predictive models

when publishing the method. A complete comparison among

techniques and methods is difficult due to the lack of many

complementary metrics, the lack of availability of the algorithm’s

implementation or both. Adopting a common set of standard

metrics for model comparison might allow ongoing refinements to

be placed in a historical context or comparisons among

approaches to take place in a quantitative fashion. A final

proposal to allow extensible comparisons among a growing

constellation of models would be to publish the individual

replicates from any cross-validation procedure, as standard

population level measures and comparisons such as t-tests (or

other appropriate tests) would be possible across models, when

published separately.

Many of the conclusions here depend on the procedure of cross

validation, and several kinds of cross validation have been

suggested [39,40], including 562-fold and 10610-fold, as well as

the 1610-fold stratified method performed here. To help

determine whether the choice of procedure for cross validation

unduly influences the present results, the PSBC method was used

to compare the mean and standard deviations resulting from

various kinds of cross validation procedures across the ANN, GLM

and SVM techniques, Table 9. In general, lower fold (2-fold, 3-

fold) cross validation procedures tend to provide lower estimates of

the R and higher estimates of the MSE due to their relatively

smaller sizes of training sets when compared to the higher fold (10-

fold, 20-fold) partitions. Also, there are some improvements seen

in the reduction of the standard deviations by increasing fold

partitions to 5, 10 and 20-fold, but there appears to be marginal

benefit, from an estimation of the generalization error perspective,

in progressing past 10-fold. Finally, 10 replicates of 10-fold

(10610-fold) and stratified 10-fold (1610-fold) appear to have

similar properties resulting in similar measures of central tendency

and dispersion, and the 10-fold increased computational cost in

the 10610-fold might then be difficult to justify where learning

algorithms are time intensive.

From ANOVA results, measures of model precision can be

explained rather well by a simple linear combination of (R model

3: R = technique + method + error), with some evidence for

interactions between techniques and methods contributing to the

variance in R. By contrast, measures of model accuracy cannot be

explained by a simple linear combination of technique and

method, the model of that takes interactions between technique

and method into account (MSE model 4: MSE = technique +
method + (technique6method) + error) has a significantly better
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descriptive fit for the data. These observations suggest that finding

highly precise models might simply be a matter of performing a 3-

step process. The first step would be surveying learning techniques

and choosing the technique with the greatest precision. The

second step would involve surveying feature mapping methods and

choosing the method, or feature set, with the greatest precision.

The final step would combine the highly precise learning

technique with the highly precise mapping method for the most

precise model. By contrast, this 3-step process would not be

suitable to finding highly accurate models, due to the large

interaction component between technique and method seen in

contributing to the variance in model accuracies (MSE). Finally, to

address whether any one technique or method had excessive

influence on the ANOVA results, each of the 3 techniques and 5

methods were sequentially removed and the ANOVA repeated

(see supplementary materials Text S1 for regression CV data, Text

S2 for R statistical analysis script on regression CV and Text S3

for results from R analysis on regression, similarly see Text S4,

Text S5, and Text S6 for mean squared error CV data), and

similar conclusions concerning variance partitions can be made

under the leave one out analyses as with the entire dataset.

The degree of variability among learning techniques and feature

mapping methods for measures of both model precision and

accuracy are not equivalent. Overall for measures of precision, the

learning techniques generally perform equally, but there are trends

that suggest SVM techniques are more robust to the presence of

noisy methods (features) than ANN and GLM techniques when

adding other features. These observations would be consistent with

SVM techniques tending to result in large numbers of features for

robust models while ANN and GLM techniques would not be

robust under those larger feature set scenarios, but would instead

be better suited to smaller numbers of features that contain less

noise.

By contrast, for measures of accuracy, there appear to be vast

differences in learning techniques. For accuracy measures, SVM

techniques tend to provide lower variance and smaller magnitude

of errors. ANN techniques tend to provide small magnitudes of

errors, but some feature methods appear to result in higher

variability of accuracy measures. Finally, the GLM techniques

tend to provide low accuracy models, where errors appear to be

additive with the accumulation of more noisy features. The single

exception to this low accuracy in GLM is for the method of PSBC,

which is comparable to, but significantly under performs, the

accuracies seen in the ANN and SVM techniques for this method.

It is unclear to what degree one desirable property of GLM

techniques outweighs ANN and SVM techniques in measures of

precision and accuracy. Namely the explicit contribution of each

feature to the final model in GLMs can be useful, but if model

Table 9. Comparison of model cross-validation procedures on the PSBC feature mapping method across 3 learning techniques.

ANN ANN GLM GLM SVM SVM

Rep Part CV-fold R (sd) MSE (sd) R (sd) MSE (sd) R (sd) MSE (sd)

1 Strat 2 0.620 (2.09E-03) 0.0253 (5.47E-04) 0.586 (2.52E-02) 0.0334 (3.52E-03) 0.622 (7.44E-03) 0.0249 (4.73E-04)

1 Strat 3 0.625 (2.05E-02) 0.0249 (1.00E-03) 0.600 (2.14E-02) 0.0320 (2.13E-03) 0.626 (1.89E-02) 0.0247 (8.31E-04)

1 Strat 5 0.632 (3.19E-02) 0.0247 (2.16E-03) 0.600 (4.07E-02) 0.0315 (3.74E-03) 0.639 (3.46E-02) 0.0240 (1.86E-03)

1 Strat 10 0.636 (3.63E-02) 0.0252 (2.78E-03) 0.607 (4.32E-02) 0.0309 (3.84E-03) 0.643 (3.56E-02) 0.0238 (2.05E-03)

1 Strat 20 0.638 (5.00E-02) 0.0248 (2.85E-03) 0.611 (5.84E-02) 0.0307 (4.79E-03) 0.647 (4.85E-02) 0.0237 (2.71E-03)

1 Rand 2 0.616 (1.70E-02) 0.0258 (5.21E-04) 0.594 (1.19E-02) 0.0326 (1.60E-03) 0.619 (1.40E-02) 0.0251 (9.55E-04)

1 Rand 3 0.630 (2.29E-03) 0.0245 (1.04E-03) 0.604 (1.52E-02) 0.0316 (1.59E-03) 0.639 (4.47E-03) 0.0241 (1.20E-03)

1 Rand 5 0.630 (1.86E-02) 0.0247 (1.85E-03) 0.606 (2.85E-02) 0.0311 (2.65E-03) 0.636 (1.79E-02) 0.0242 (2.01E-03)

1 Rand 10 0.633 (3.84E-02) 0.0244 (2.24E-03) 0.608 (4.31E-02) 0.0309 (3.02E-03) 0.643 (3.56E-02) 0.0238 (2.46E-03)

1 Rand 20 0.637 (4.64E-02) 0.0247 (3.47E-03) 0.609 (5.13E-02) 0.0307 (3.50E-03) 0.646 (4.15E-02) 0.0237 (3.21E-03)

5 Rand 2 0.622 (9.79E-03) 0.0258 (1.26E-03) 0.594 (1.50E-02) 0.0326 (1.91E-03) 0.625 (1.19E-02) 0.0248 (7.22E-04)

5 Rand 3 0.632 (1.61E-02) 0.0250 (1.57E-03) 0.601 (1.97E-02) 0.0317 (1.84E-03) 0.636 (1.77E-02) 0.0242 (1.14E-03)

5 Rand 5 0.634 (2.58E-02) 0.0252 (1.55E-03) 0.605 (2.24E-02) 0.0312 (1.69E-03) 0.638 (1.61E-02) 0.0241 (1.25E-03)

5 Rand 10 0.633 (3.11E-02) 0.0248 (1.81E-03) 0.607 (3.34E-02) 0.0309 (2.15E-03) 0.642 (2.87E-02) 0.0239 (1.98E-03)

5 Rand 20 0.636 (5.12E-02) 0.0249 (3.40E-03) 0.608 (5.00E-02) 0.0308 (3.57E-03) 0.642 (4.82E-02) 0.0238 (3.36E-03)

10 Rand 2 0.622 (8.93E-03) 0.0256 (8.99E-04) 0.592 (1.35E-02) 0.0328 (1.69E-03) 0.625 (1.16E-02) 0.0248 (7.67E-04)

10 Rand 3 0.632 (1.33E-02) 0.251 (1.13E-03) 0.601 (1.68E-02) 0.0316 (1.64E-03) 0.636 (1.40E-02) 0.0242 (9.80E-04)

10 Rand 5 0.633 (2.46E-02) 0.0249 (1.91E-03) 0.606 (2.03E-02) 0.312 (1.67E-03) 0.638 (1.73E-02) 0.0241 (1.54E-03)

10 Rand 10 0.633 (3.59E-02) 0.0248 (2.06E-03) 0.608 (3.03E-02) 0.0309 (2.30E-03) 0.643 (2.78E-02) 0.0239 (2.13E-03)

10 Rand 20 0.636 (4.55E-02) 0.0249 (3.68E-03) 0.610 (4.63E-02) 0.0307 (3.77E-03) 0.644 (4.45E-02) 0.0238 (3.27E-03)

20 Rand 2 0.626 (1.18E-02) 0.0256 (1.18E-03) 0.593 (1.39E-02) 0.0327 (1.70E-03) 0.626 (1.19E-02) 0.0248 (7.08E-04)

20 Rand 3 0.630 (1.48E-02) 0.0250 (1.11E-03) 0.602 (1.67E-02) 0.0316 (1.65E-03) 0.636 (1.40E-02) 0.0242 (9.37E-04)

20 Rand 5 0.633 (2.54E-02) 0.0250 (1.47E-03) 0.606 (2.12E-02) 0.0311 (1.66E-03) 0.640 (1.90E-02) 0.0240 (1.38E-03)

20 Rand 10 0.634 (3.46E-02) 0.0249 (2.53E-03) 0.608 (3.24E-02) 0.0308 (2.46E-03) 0.644 (2.88E-02) 0.0238 (2.06E-03)

20 Rand 20 0.634 (5.05E-02) 0.0250 (3.36E-03) 0.609 (4.96E-02) 0.0307 (3.85E-03) 0.645 (4.58E-02) 0.0238 (3.22E-03)

Rep: replication level; Part: partitioning type, either stratification or random; CV-fold: cross-validation fold level; Bold: is the model cross validation procedure of single
replicate stratified 10-fold cross validation.
doi:10.1371/journal.pone.0007522.t009
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predictive precision and accuracy are quantifiable and lower than

other techniques like ANN and SVM then model transparency

will need to be given a higher priority than precision or accuracy

in determining a desirable learning technique.

There are several limitations to the present study. First, the

available siRNA data for constructing predictive models is limited.

While the dataset under study is rather large, there are few

additional siRNAs that have complete complementarity to their

target mRNAs. So while there are near 600 additional 21-mer

siRNAs with empirically measured activities [33], only 223 of

these have complete complementarity to their respective target

sequences due to a constant terminal dinucleotide DNA sequence

‘‘TT’’ in the siRNA’s 39 most positions, irrespective of whether the

target mRNA possessed an ‘‘AA’’ sequence or not.

Second, it has been suggested that there is a positive association

between a siRNA’s activity and the physical location of the

siRNA’s target location in the mRNA [25]. Therefore when

creating cross validation partitions for siRNAs, keeping siRNAs

that share the same target footprint as siRNAs in the testing set

would result in an upwards bias in estimates for precision and

accuracy for that model. To investigate this possible source of bias,

we implemented a cross-validation system that removed siRNAs

from the training set that shared a target mRNA footprint with

any siRNA in the testing set. In the stratified cross validation

scheme with the SVM technique and P+25 feature mapping

resulted in model R = 0.711 and MSE = 0.020 with an average

number of siRNAs in the training sets of 2187.9, Table 2. Cross

validation that removed siRNAs from the training partition which

share a footprint with any siRNA in the testing partition resulted

in a model with an average among partitions of R = 0.694 and

MSE = 0.021 and an average number of siRNAs in the training

sets of 2009.6. There is no significant difference between model

precision (R: t-test, P = 0.310) or accuracy (MSE: t-test, P = 0.324)

when excluding siRNAs from the training set that overlap with any

of those in the testing set. These model comparison values result

from testing on all 2431 siRNAs, across all partitions, but simply

not all of the siRNAs are used to train the underlying model. So

while there may be significant variance components in siRNA

activity associated with the siRNA’s target, these appear to have

no statistically significant influence on the outcomes of predictive

models when removing overlapping siRNAs from training

partitions, or at least not specifically to the SVM technique

applied to the P+25 feature method. The reduction of predictive

power seen in removing siRNAs from the training set that overlap

with the testing set is similar to the reduction of power seen in

removing siRNAs in general from the training set, similar to the

lower order folds in Table 9, not surprisingly reducing training

data set size reduces model performance.

Third, the degree to which learning technique parameter

tuning, additional features or feature selection methods results in

the production of predictive models is not known. To place the

learning techniques on a more even playing field, the parameters

were optimized using the PSBC feature set, but it is likely that

other optimal parameters could be found in the scenarios of

additional or other features. A combinatory examination of 216

SVM parameter sets across the 8 feature methods (Table S2)

suggests that first, not unpredictably, it is possible to de-tune

effective parameters and produce less effective SVM models and

second, the same general parameters optimized under the PSBC

feature set produce maximally (or nearly so) predictive models

under other feature sets. In general, it is possible to de-tune an

ANN or SVM by choosing suboptimal model parameters to

perform more poorly on the same feature set. Additional features,

for example target secondary structures have been shown to be a

significant factor [25,27,30,32–34] in siRNA activity, and that

feature set was not explored here, however adding target mRNA

secondary structure features does not necessarily result in

improved measures for model precision or accuracy if other

features already dominate the model [32]. There were 279 distinct

feature set combinations across 3 learning techniques for a total of

837 distinct models, but this is beyond doubt not an exhaustive

exploration of model, parameter or feature space.

Certainly other sources of bias and error exist in the present

study, but the intention here is to help determine to what degree the

choice of machine learning technique and feature mapping method

might produce different results in modeling siRNA effectiveness,

possibly accounting for some of the heterogeneity seen in previously

published studies modeling siRNA activity and what features

produce maximally predictive models. These features have then

been interpreted as the most relevant, but this interpretation needs

to be placed clearly in the light of their relevance to a model’s

predictability and not necessarily of their biological relevance. The

methods and techniques presented here are all available for

download from sourceforge.net (http://sourceforge.net/projects/

seq2svm/) as a group of C++ classes and interfaces for their

execution. Finally, to provide access to additional data mining and

learning techniques in a graphical interface, there is also an

executable that transforms a siRNA dataset, by various methods,

into an attribute-relation file format (ARFF), appropriate for use in

the Waikato environment for knowledge analysis (WEKA).

Materials and Methods

Learning Techniques
Three learning techniques were investigated. The first was

artificial neural networks (ANN), as implemented in the FANN

C++ library (http://leenissen.dk/fann/). The second was a

general linear model (GLM), as implemented in the Numerical

Recipes library. The last was a support vector machine (SVM), as

implemented in the libsvm library (http://www.csie.ntu.edu.tw/

,cjlin/libsvm/). Additional techniques for machine learning can

be found as they are implemented at the WEKA package (http://

www.cs.waikato.ac.nz/ml/weka/). Software that performs the

presently described machine learning techniques and analytical

methods can be found at Sourceforge.net (http://sourceforge.net/

projects/seq2svm/). To clarify the language in the present

manuscript the learning processes of ANN, GLM and SVM are

referred to, as a group, as techniques.

Feature Mapping Methods
Five general feature mapping methods were used in this study,

given in the order of their previously determined ability to build

predictive models:

1) (PSBC) position specific base composition. Method 1,

previously described from [32].

2) (THER) thermodynamic parameters from an RNA nearest

neighbor algorithm. Method 2, previously described from

[32].

3) (NG25) N-Grams or motifs of length 2 through 5. Method

11, previously described from [32].

4) (GSSF) guide strand secondary structure-features, a combi-

nation of secondary structure and base composition of the

guide strand proposed by Xue et al., [41]. Method 5,

previously described from [32].

5) (GSSS) predicted guide strand secondary structure. Method

4, previously described from [32].
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Nucleic acid secondary structures were predicted with Vienna

RNA library (http://www.tbi.univie.ac.at/,ivo/RNA/). For

more details in specific features see [32]. Feature mapping

methods result in the production of features or feature sets, and

for clarity these are referred to as the means for their production,

or ‘‘methods’’ rather than as the noun resulting from their

production, or ‘‘feature set’’. However, these can be considered

interchangeable and to maintain consistency with the noun

learning ‘‘technique’’ we use the noun feature mapping ‘‘method’’.

Learning Technique optimization
Learning technique parameters were optimized by using a

course grid search method on the ANN, GLM or SVM techniques

by using the PSBC method alone to maximize the R fit under a 10-

fold cross-validation scheme. Analysis of variance (ANOVA) and

other statistical tests were performed with the R statistical package

(http://www.r-project.org/).

siRNA Data
The 2431 siRNAs of length 21 nucleotides with complete base

pairing to their respective target sequences from a siRNA study

were used as the empirical activity data to study [18,19].
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