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Abstract

Background: Single nucleotide polymorphisms (SNPs) rs7903146 and rs12255372 located within TCF7L2 gene have been
identified as the strongest common genetic risk factors for development of type 2 diabetes (T2D). We hypothesized that
these genetic variants might increase the risk of T2D through regulation of alternative splicing or expression level of TCF7L2
in human adipose tissue.

Methodology/Principal Findings: Expression of 13 assays detecting alternatively spliced forms of TCF7L2 was measured by
quantitative reverse-transcriptase PCR (qRT-PCR) in paired biopsies of omental and subcutaneous adipose tissue from 159
obese individuals (BMI 54.6+/212.2 kg/m2). TCF7L2 expression in both types of adipose tissue was not associated with SNPs
rs7903146 and rs12255372, T2D status and blood levels of glucose or glycosylated hemoglobin (HbA1c). Expression of
assays ‘‘ex12-13’’, ‘‘ex12-14’’ and ‘‘ex13-13a’’ detecting C-terminal alternative exons of TCF7L2 was higher in subcutaneous
compared to omental adipose tissue by 1.46 fold (p = 6.5610215), 1.41 fold (p = 1.461029) and 1.26 fold (p = 4.761026) in
the control group and by 1.86 fold (p = 1.761024), 1.77 fold (p = 7.361024) and 1.58 fold (p = 6.161024) in the T2D group. A
pathway enrichment analysis on transcripts significantly co-expressed with TCF7L2 in a microarray set combined with
individual expression assays, suggested tissue-specific roles of TCF7L2 splicing forms in regulation of transcription, signal
transduction and cell adhesion.

Conclusions: Expression of TCF7L2 alternatively spliced forms may have different functional roles in omental and
subcutaneous adipose tissue but is not associated with SNPs rs7903146 and rs12255372 or T2D status.

Citation: Prokunina-Olsson L, Kaplan LM, Schadt EE, Collins FS (2009) Alternative Splicing of TCF7L2 Gene in Omental and Subcutaneous Adipose Tissue and Risk
of Type 2 Diabetes. PLoS ONE 4(9): e7231. doi:10.1371/journal.pone.0007231

Editor: Per Westermark, Uppsala University, Sweden

Received May 8, 2009; Accepted September 1, 2009; Published September 30, 2009

This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public
domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.

Funding: The study was supported by the Intramural Research Programs of the NHGRI and NCI/NIH. One of the authors (EES) is employed by Pacific Biosciences.
The company did not have a role in funding or oversight of this study, data collection and analysis, decision to publish, or preparation of the manuscript. No
patent can be claimed based on this study.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: prokuninal@mail.nih.gov

Introduction

Common intronic single nucleotide polymorphisms (SNPs)

within the transcription factor 7 - like 2 gene (TCF7L2) have

been identified as genetic factors that significantly increase risk of

type 2 diabetes (T2D) [1,2,3,4]. TCF7L2 belongs to a family of

TCF/LEF transcription factors that interact with b-catenin and

regulate the WNT pathway [5]. Activation of the WNT pathway

leads to increased cell proliferation due to effects of downstream

targets of TCF7L2 such as MYC [6,7] and CCND1 (Cyclin D1) [8].

A complex interplay of activation and repression of the WNT

pathway, orchestrated by different protein isoforms of TCF/LEF

transcription factors, is required for tissue-specific differentiation of

stem cells. For example, differentiation of skin stem cells into either

hair follicle or sebum-producing cells is regulated by expression of

alternatively spliced forms of the LEF1 transcription factor [9].

Similarly, an active WNT pathway is required for myogenesis,

while inactivation of the pathway by a dominant-negative form of

TCF7L2 promotes adipogenesis [10]. Increased adiposity, as

measured by body mass index (BMI), is a strong risk factor for

development of insulin resistance, T2D and cardiovascular disease

[11]. Several studies have reported that patients carrying risk

alleles of the associated SNPs rs7903146 and rs12255372 of

TCF7L2 have lower BMI compared to carriers of non-risk alleles

[12,13,14,15]. Potentially, risk alleles of TCF7L2 might increase

risk of T2D even in lean individuals, or affect diabetes and

adiposity through independent mechanisms.

Non-coding genetic variants can affect mRNA expression and

splicing [16,17]. Several studies attempted to correlate genotypes

of T2D-associated variants of TCF7L2 with mRNA expression of

TCF7L2 in adipose tissue [13,18] skeletal muscle [18], lympho-

blastoid cell lines [18] and pancreatic islets [19,20], but no

consistent associations have been reported. One study detected a

significant decrease in TCF7L2 expression in obese individuals
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with T2D compared to obese controls, but this study was based

only on six samples [13]. We previously catalogued and evaluated

expression of multiple splicing forms of TCF7L2 in several types of

human tissue [21]. We observed tentative association between

expression of several assays for C-terminal exons of TCF7L2 and

genotypes of SNPs rs7903146 and rs12255372 in pancreatic islets

but not in a small set of samples of subcutaneous adipose tissue

[21].

Here, we used 13 assays detecting all known splicing forms of

TCF7L2 to evaluate gene expression in paired biopsies of

subcutaneous and omental adipose tissue from 159 obese

individuals. We evaluated the association between expression of

these assays and genotypes of T2D-associated variants rs7903146

and rs12255372, T2D status, type of adipose tissue, BMI (37.6–

89.6 kg/m2) and blood levels of glucose and glycosylated

hemoglobin (HbA1c). We show that expression of alternatively

spliced forms of TCF7L2 may have different functional roles in

omental and subcutaneous adipose tissue but is not associated with

SNPs rs7903146 and rs12255372 or T2D status.

Results

Characteristics of the T2D and control groups
SNPs rs7903146 and rs12255372 are located in introns 3 and 4

of TCF7L2 gene within the associated linkage disequilibrium (LD)

block and 50 kb apart from each other [1,2,3] (Fig. 1). In our set of

159 Caucasian individuals, the frequencies of risk alleles of both

SNPs were higher in the T2D group (n = 16) than in the control

group (n = 143), 0.41 in T2D vs. 0.26 in controls for rs7903146

and 0.38 in T2D vs. 0.25 in controls for rs12255372 (Table 1).

Similarly to other European sets [1,2,3] and to the European set

(CEU) of the HapMap [22], these two SNPs were in high linkage

disequilibrium (LD) with each other (D9 = 0.88, r2 = 0.73). Samples

in the T2D and control groups were matched by age, gender and

BMI by design but several T2D-related traits were significantly

different between these groups: levels of blood glucose, HbA1c and

homeostasis model of insulin resistance (Homa-IR) were increased,

while the level of HDL cholesterol was decreased in the T2D

group (Table 1).

Test for association between TCF7L2 expression and
genotypes of rs7903146 and rs12255372, T2D status and
blood levels of glucose and HbA1c

Levels of expression of 13 TCF7L2 assays in both types of

adipose tissue were adjusted for age, sex, BMI and blood levels of

glucose and HbA1c. Expression of these assays in each individual

tissue and the ratio of subcutaneous: omental expression was

similar in the control and T2D groups and in carriers of different

genotypes of SNPs rs7903146 and rs1225532 (Table 2 and 3).

Expression of assay ‘‘ex13-13b’’ (Fig. 1) previously studied in

human pancreatic islets [21] was tested but not detected in adipose

tissue (data not shown). Based on the number of samples and the

observed standard deviation in expression of each assay, we had

80% power and 95% confidence to detect a .1.2-fold difference

in expression between groups with risk and non-risk alleles for

each SNP and between the T2D and control groups.

Difference in TCF7L2 expression between omental and
subcutaneous adipose tissues

Expression of several assays was higher in subcutaneous

compared to omental adipose tissue both in the control and

T2D groups: 1.46 and 1.86-fold for assay ‘‘ex12-13’’, 1.41 and

1.77-fold for assay ‘‘ex12-14’’ and 1.26 and 1.58-fold for assay

‘‘ex13-13a’’ (Table 4). Only expression of alternative exon 3a

(assay ‘‘ex3a-4’’) was decreased in subcutaneous compared to

adipose tissue (0.81 fold) in the control group, but not in the T2D

group (0.91 fold) (Table 4). The results for assays ‘‘ex12-13’’, ‘‘13-

13a’’ and ‘‘12-14’’ will remain significant even after adjustment for

multiple tests. Different ways of normalization of TCF7L2

expression (by expression levels of endogenous controls B2M,

GAPDH or both genes together) did not significantly affect the

conclusions (data not shown). The assays ‘‘ex12-13’’, ‘‘13-13a’’

and ‘‘12-14’’ detect two distinct splicing forms that include

alternative exon 12 (Figure 2). The first form (GenBank FJ010174)

includes C-terminal exons 11-12-13-13a and encodes a protein

with a short reading frame terminated by an alternative stop

codon within exon 13a. The second form (GenBank FJ010170)

includes exons 11-12-14 and encodes a protein with a medium

Figure 1. Structure of TCF7L2 gene and location of expression assays. The scheme shows constitutive exons (black rectangles), alternative
exons (white rectangles); linkage disequilibrium (LD) block with associated SNPs rs7903146 and rs12255372; protein domains: ß-catenin-interacting
domain, DNA-binding HMG domain and C-terminal Binding Protein (CtBP)-binding domain; expression assays for detection of alternative splicing
forms of TCF7L2 are indicated by connected arrows: assays TSS1, TSS2 and TSS3 target transcripts produced from alternative transcription start sites
while other assays target alternatively spliced forms with different combinations of exons, * - expression of assay ‘‘ex13-13b’’ was tested but not
detected in adipose tissue.
doi:10.1371/journal.pone.0007231.g001

TCF7L2 in Human Adipose
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reading frame terminated by an alternative stop codon in the

beginning of exon 14 (Fig. 2).

Pathway enrichment analysis of TCF7L2 expression
To better understand the function of TCF7L2 in human adipose

tissue we searched for transcripts that positively or negatively

correlated with expression of TCF7L2. We combined global

expression data measured by microarrays [23] with data for

individual expression assays ‘‘ex7-8’’, ‘‘ex3a-4’’, ‘‘ex12-13’’ and

‘‘ex13-13a’’, generated in the same set of 159 samples of omental

and subcutaneous adipose tissue. On the microarrays, TCF7L2

was represented by 2 probes located within the 39 untranslated

Table 1. Characteristics of the T2D and control groups.

Trait T2D Mean (st.dev) T2D N Control Mean (st.dev) Control N p-value*

Age, years 46.53 (12.42) 16 43.78 (10.04) 143 0.30

Male: female ratio 52.9:47.1 16 47.6:52.4 143 0.68

BMI, Kg/m2 53.62 (15.77) 16 54.77 (11.73) 143 0.49

Cholesterol, mg/dl 167.0 (31.48) 15 189.98 (34.70) 130 0.0091

Triglycerides, mg/dl 205.73 (114.73) 14 168.69 (91.53) 129 0.18

Leptin, mg/dl 43.5 (27.58) 2 58.11 (31.19) 36 NA

LDL, mg/dl 93.6 (32.8) 14 110.77 (29.42) 127 0.016

HDL, mg/dl 37.19 (9.93) 15 46.63(11.65) 130 0.0004

WBC, 6109 cell/l 9.16 (2.55) 15 8.41 (2.11) 139 0.22

Insulin, mg/dl 32.73 (25.53) 8 23.15 (14.16) 102 0.077

Glucose, mg/dl 197.82 (51.19) 16 98.04 (14.25) 143 2.04610237

Homa-IR 316.21 (320.98) 8 102.11 (70.95) 102 5.5861027

HbA1C 8.24 (1.30) 16 5.79 (0.59) 119 1.15610223

Rs 7903146 32 268 0.097

C 0.594 0.738

T 0.401 0.262

Rs12255372 32 286 0.14

G 0.625 0.748

T 0.375 0.252

*Two-sided T-test or Chi-square test (for allele frequencies) not adjusted for covariates and multiple tests.
doi:10.1371/journal.pone.0007231.t001

Table 2. Expression of TCF7L2 in omental and subcutaneous adipose tissues: comparison between T2D and control groups, 119
controls, 16 T2D patients.

Expression assay Ratioa SA:OA p-valueb OA p-valueb Effect in T2Dc SA p-valueb Effect in T2Dc

TSS1 0.054 0.130 + 0.327 +

TSS2 0.069 0.074 + 0.057 +

TSS3 0.050 0.064 + 0.052 +

Ex3a-4 0.106 0.054 2 0.128 +

Ex4-4a 0.200 0.141 + 0.067 +

Ex7-8 0.103 0.050 2 0.150 +

Ex11-13 0.074 0.095 + 0.290 +

Ex11-13a 0.151 0.078 + 0.430 +

Ex12-13 0.194 0.116 2 0.098 +

Ex13-13a 0.185 0.051 2 0.277 +

Ex12-14 0.054 0.055 2 0.051 +

Ex11-14 0.409 0.755 2 0.052 +

Ex13-14 0.134 0.051 2 0.197 +

SA-subcutaneous adipose, OA- omental adipose.
ain paired samples of subcutaneous and omental adipose tissue.
bp-values for univariate analysis, adjusted for age, sex, BMI and blood levels of glucose and HbA1c but not adjusted for multiple tests.
cincrease (+) or decrease (2) in expression in T2D group compared to controls.
doi:10.1371/journal.pone.0007231.t002

TCF7L2 in Human Adipose
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region (UTR) of RefSeq transcript NM_030756. The microarray

probes and the assay ‘‘ex7-8’’ detect a mix of all splicing forms of

TCF7L2, while the assays ‘‘ex12-13’’, ‘‘ex13-13a’’ and ‘‘ex3a-4’’

detect distinct splicing forms that showed difference in expression

between the two types of adipose tissue. There was a significant

correlation between the microarray and TaqMan expression data

in omental adipose tissue: r2 = 0.51 for assay ‘‘ex7-8’’, r2 = 0.49 for

assay ‘‘ex13-13a’’, r2 = 0.42 for assay ‘‘ex12-13’’ and r2 = 0.31 for

‘‘ex3a-4’’ but in subcutaneous adipose tissue the correlation for the

same assays was not significant (r2,0.25). Using the joint

expression set (microarrays and TaqMan data), we identified sets

of transcripts that correlated with expression of these assays at a

cutoff of r2.+/20.25, corresponding to False Discovery Rate

(FDR) p,0.0015, and analyzed each set of transcripts for

enrichment of Gene Ontology categories (GO). In omental

adipose tissue TCF7L2 expression positively correlated with

activation of transcription through KRAB box Zn finger

transcription factors but negatively correlated with protein

biosynthesis, signal transduction, oxidative phosphorylation and

electron transport (Table 5). In subcutaneous adipose tissue the

strongest positive correlation was between expression of assay

‘‘ex13-13a’’ and the cadherin signaling pathway and cell adhesion,

Table 3. Effect of presence 0, 1 or 2 risk alleles of TCF7L2 SNPs on expression of TCF7L2 in paired omental and subcutaneous
adipose tissue samples, n = 134.

Expression assay
OA p-valueb

rs7903146
SA p-valueb

rs7903146
Ratioa p-valueb

rs7903146
OA p-valueb

rs12255372
SA p-valueb

rs12255372
Ratioa p-valueb

rs12255372

TSS1 0.368 0.168 0.341 0.288 0.306 0.186

TSS2 0.176 0.157 0.216 0.277 0.162 0.128

TSS3 0.166 0.170 0.185 0.143 0.533 0.358

Ex3a-4 0.075 0.081 0.079 0.072 0.114 0.064

Ex4-4a 0.203 0.069 0.204 0.064 0.064 0.109

Ex7-8 0.188 0.126 0.254 0.218 0.051 0.128

Ex11-13 0.269 0.070 0.285 0.221 0.068 0.147

Ex11-13a 0.122 0.331 0.485 0.217 0.274 0.583

Ex12-13 0.348 0.050 0.255 0.303 0.071 0.148

Ex13-13a 0.256 0.088 0.252 0.315 0.097 0.261

Ex12-14 0.137 0.055 0.111 0.174 0.133 0.056

Ex11-14 0.410 0.071 0.217 0.421 0.114 0.116

Ex13-14 0.187 0.085 0.135 0.178 0.102 0.066

SA-subcutaneous adipose, OA- omental adipose.
aratio subcutaneous:omental expression in paired samples.
bp-value for linear regression model with 0, 1 or 2 risk alleles of TCF7L2 SNPs adjusted for age, sex, BMI, T2D status and blood levels of glucose and HbA1c but not

adjusted for multiple tests.
doi:10.1371/journal.pone.0007231.t003

Table 4. Expression of TCF7L2 in omental and subcutaneous adipose tissue in controls (n = 143) and T2D (n = 16) groups.

Expression
assay

Controls, OA,
reference

Controls, SA, fold to
reference

controls
p-value*

T2D OA,
reference

T2D SA, fold to
reference

T2D
p-value*

TSS1 1.0 1.06 0.20 1.0 1.13 0.29

TSS2 1.0 1.04 0.539 1.0 1.23 0.283

TSS3 1.0 1.00 0.066 1.0 1.20 0.353

Ex3a-4 1.0 0.81 2.661024 1.0 0.91 0.516

Ex4-4a 1.0 1.07 0.231 1.0 1.21 0.185

Ex7-8 1.0 1.08 0.047 1.0 1.24 0.056

Ex11-13 1.0 1.09 0.053 1.0 1.16 0.213

Ex11-13a 1.0 1.09 0.068 1.0 1.13 0.0013

Ex12-13 1.0 1.46 6.45610215 1.0 1.86 1.761024

Ex13-13a 1.0 1.26 4.761026 1.0 1.58 6.161024

Ex12-14 1.0 1.41 1.461029 1.0 1.77 7.361024

Ex11-14 1.0 1.23 2.761024 1.0 1.49 0.0120

Ex13-14 1.0 1.13 0.0062 1.0 1.32 0.052

SA-subcutaneous adipose, OA- omental adipose.
*- Two-sided T-test, p-values are not adjusted for multiple tests; expression in omental adipose is taken as 1.0 for each assay.
doi:10.1371/journal.pone.0007231.t004
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Figure 2. Alternative splicing forms of TCF7L2 with increased expression in subcutaneous compared to omental adipose. A.
Constitutive exons 11 and 14 are marked as black rectangles, alternative exons 12, 13, 13a, 13b are marked as white rectangles, black triangles above
exons indicate location of alternative stop codons that define protein reading frames: short (S), medium (M) or long (L); B. Alternative splicing form
with exons 11-12-13-13a (GenBank FJ010174) has an alternative stop codon within exon 13a and encodes a protein with short reading frame; C.
Alternative splicing form with exons 11-12-14 (GenBank FJ010170) has an alternative stop codon in the beginning of exon 14 and encodes a protein
with medium reading frame. Positions of expression assays ‘‘ex12-13’’, ‘‘ex13-13a’’ and ‘‘12-14’’ used in this study are indicated above corresponding
exons. Assays ‘‘ex12-13’’, ‘‘ex13-13a’’ and ‘‘12-14’’ detect all splicing forms of TCF7L2 that include alternative exon 12.
doi:10.1371/journal.pone.0007231.g002

Table 5. Panther Classification System analysis of TCF7L2 expression in adipose tissue.

Gene Ontology category Tissue, correlationa TCF7L2 assay array, nb observed, nc expected, nd directione p-valuef

Ribosomal protein OA, N ex3a-4 473 31 5.15 + 3.23E-13

Protein biosynthesis OA, N ex3a-4 591 31 6.43 + 9.73E-11

Oxidative phosphorylation OA, N ex3a-4 85 13 .92 + 2.62E-09

Signal transduction OA, N ex3a-4 3412 10 37.12 2 6.33E-07

Electron transport OA, N ex3a-4 254 15 2.76 + 5.44E-06

Defense/immunity protein OA, N ex12-13 401 13 3.32 + 9.87E-04

Nucleic acid metabolism OA, P ex13-13a 3038 105 70.58 + 5.10E-04

Transcription factor OA, P ex13-13a 1796 71 41.73 + 2.41E-04

KRAB box transcription factor OA, P ex7-8 431 65 22.04 + 8.01E-12

Nucleic acid metabolism OA, P ex7-8 3038 233 155.37 + 3.51E-09

Zinc finger transcription factor OA, P ex7-8 727 80 37.18 + 4.92E-08

Cell surface receptor mediated signal transduction OA, P ex7-8 1596 36 81.62 2 5.52E-07

Receptor OA, P ex7-8 1476 33 75.49 2 3.51E-07

G-protein mediated signaling OA, P ex7-8 786 12 40.20 2 2.42E-05

Ribosomal protein SA, N ex3a-4 473 45 19.44 + 5.48E-05

Receptor SA, N ex12-13 444 42 18.20 + 2.81E-05

Cadherin SA, P ex13-13a 156 21 2.23 + 4.17E-12

Cadherin signaling pathway SA, P ex13-13a 214 21 3.05 + 1.57E-09

WNT signaling pathway SA, P ex13-13a 400 25 5.71 + 1.96E-07

Cell adhesion-mediated signaling SA, P ex13-13a 433 24 6.18 + 4.88E-06

OA – omental adipose; SA – subcutaneous adipose; P-positive correlation with TCF7L2, N-negative correlation with TCF7L2.
atranscripts with positive or negative correlation (r2.+/20.25, p,0.0015) with expression of TCF7L2 assays.
bnumber of transcripts in each GO category among 20,316 annotated transcripts on the array.
cnumber of transcripts with significant correlation with TCF7L2 expression in each GO category.
dexpected number of transcripts in each GO category based on the frequencies on the array.
edirection (enrichment or deficit) in each GO category.
fp-value for differences between observed and expected number of transcripts in each GO category Bonferroni-adjusted for number of GO categories.
doi:10.1371/journal.pone.0007231.t005
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while negative correlation was detected with protein biosynthesis

and receptor function (Table 5). Full list of transcripts with positive

and negative correlations with TCF7L2 assays ‘‘ex12-13’’ and

‘‘ex13-13a’’ are presented in Tables S2, S3, S4, S5.

Discussion

Our study provides a detailed analysis of expression of multiple

TCF7L2 splicing forms in paired biopsies of omental and

subcutaneous adipose tissue from a large set of obese individuals.

The first goal of this study was to evaluate the association between

the expression of TCF7L2 splicing forms and T2D-associated

SNPs rs7903146 and rs12255372, T2D status or blood levels of

glucose or HbA1c. Despite 80% of power to detect .1.2 fold

differences in expression between different groups, we did not

observe any significant association between these factors. Our

results are similar to a recently published data on 235 samples of

subcutaneous adipose tissue where expression of TCF7L2

(measured by one assay corresponding to our ‘‘ex7-8’’ assay) was

not affected by T2D status, sex, and genotypes of rs7903146 [24].

The second goal of this study was to compare the expression of

TCF7L2 splicing forms in two types of adipose tissue. We observed

that expression of assays ‘‘ex12-13’’, ‘‘ex12-14’’ and ‘‘ex13-13a’’

was higher in subcutaneous compared to omental tissue and this

difference could not be explained by genotypes of the T2D-

associated SNPs, sex, BMI and blood levels of glucose and HbA1c.

These findings were similar to the results of a study that did not

detect association between expression of assay ‘‘ex9-10’’ of

TCF7L2 and genotypes of rs7903146, rs12255372, age, sex and

BMI in paired biopsies of adipose tissue from 49 individuals [25].

However, the expression of this assay was 4.8-fold higher in

subcutaneous compared to omental tissue in controls and 6-fold

higher in the T2D group [25]. The effects observed in our study

were weaker, 1.46-fold in the control group and 1.86-fold in the

T2D group and the effect was not detectable for assay ‘‘ex7-8’’

that measures the same splicing forms as assay ‘‘ex9-10’’. This

could potentially be attributed to the difference in sample size (159

samples in our study and 49 samples in Kovacs et al.), use of

different custom-designed expression assays and reference genes

(one reference gene at Kovacs et al. and two reference genes in our

study). Additionally, individuals in our study were more obese

(BMI 54.6+/212.2) compared to less obese individuals in Kovacs

et al (BMI 29.7+/20.8 kg/m2) [25].

TCF7L2 is a ubiquitously expressed transcription factor that

mediates signals of the WNT pathway. The function of TCF7L2

and, particularly, in different types of adipose tissue is not clear. A

pathway enrichment analysis on transcripts significantly coex-

pressed with TCF7L2 showed that the main role of TCF7L2 in

omental adipose tissue is associated with activation of transcription

and inhibition of protein biosynthesis and signal transduction. In

contrast, in subcutaneous adipose tissue we did not observe any

evidence for correlation with activation of transcription, but with

increased cell adhesion through cadherin protein family (for assay

‘‘ex13-13a’’). Adipose consists of several types of cells such as

adipocytes, endothelial cells, macrophages that can differently

express TCF7L2. For example, assays ‘‘ex12-13’’ and ‘‘13-13a’’

specifically detect a unique splicing form that includes exons 12-

13-13a, expressed in multiple tissues and is the major TCF7L2

splicing form in peripheral blood monocytes ([21], GenBank

FJ010174, Figure 2). Adhesion of monocytes to endothelial lining

of capillaries, infiltration into adipose tissue and differentiation into

macrophages contributes to low-grade chronic inflammation in

adipose tissue and development of insulin resistance [20–22].

Therefore, increased expression of assays ‘‘ex12-13’’ and ‘‘ex13-

13a’’ in subcutaneous adipose tissue and co-expression with genes

involved in cell adhesion might indicate increased monocytes

influx into subcutaneous adipose tissue or other functional

differences between these two tissue types. All assays of TCF7L2

with significantly increased expression in subcutaneous compared

to omental adipose (‘‘ex12-13’’, ‘‘ex13-13a’’ and ‘‘ex12-14’’) detect

splicing forms that encode truncated TCF7L2 protein with short

or medium reading frames and include an alternative exon 12

(Figure 2). The truncated protein isoforms of TCF7L2 lack

binding sites for the CTBP protein are not post-translationally

regulated and may provide alternative regulation of the WNT

pathway [26].

In conclusion, we did not observe association between

expression of TCF7L2 splicing forms, T2D status and genotypes

of T2D-associated SNPs rs7903146 and rs12255372. Differential

expression of TCF7L2 splicing forms with alternative exon 12

encoding for truncated protein isoforms of TCF7L2 in omental

and subcutaneous adipose tissues deserves future studies.

Materials and Methods

Ethics Statement
The study on anonymized samples was approved by the

Internal Review Board (IRB) of Massachusetts General Hospital,

protocol #2001-P-001942/22 and exempted from IRB approval

at the NHGRI/NIH.

Tissue samples
Paired samples of omental and subcutaneous adipose tissue

were obtained from bariatric patients that underwent weight-

reduction surgery and signed informed consent forms [23].

Following traits were available for all or subsets of samples: age,

gender, BMI, white blood cells counts (WBC), fasting levels of

glucose, insulin, total cholesterol, HDL and LDL cholesterol,

triglycerides, homeostasis model of insulin resistance (Homa-IR)

and glycosylated hemoglobin (HbA1c). The T2D status was

assigned to individuals with fasting blood glucose higher than

140 mg/dl (7.8 mmol/L). Total RNA from flash-frozen adipose

samples was extracted using Trizol reagent (Invitrogen) and DNA

was isolated from liver samples of the same patients with DNeasy

kit (Qiagen).

Genotyping
Genotyping was performed with pre-developed TaqMan allelic

discrimination assays for rs7903146 and rs12255372 (Applied

Biosystems). The genotyping success was above 99% and only

samples genotyped for both markers were used.

Quantitative reverse-transcriptase PCR (qRT-PCR)
expression studies

cDNA was prepared from total RNA of selected samples of

omental and subcutaneous adipose tissue used for the microarray

expression studies [23]. For each sample, 100 ng of total RNA was

convereted to cDNA with SuperScript III reverse transcriptase

and random hexamers (Invitrogen). Expression assays for TCF7L2

were custom designed for each splicing form ([21] and Table S1).

Primers for SYBR Green assays were purchased from Integrated

DNA Technologies and TaqMan assays were manufactured on

demand by Applied Biosystems. qRT-PCR was performed in a

10 ul reaction volume in 384 well plates with Power SYBR Green

master mix (Applied Biosystems) or Expression Master Mix for

TaqMan assays (Applied Biosystems) on the Sequence Detection

System 7900 (Applied Biosystems). Each expression assay was run

in technical duplicates and the average values for each sample
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were normalized to a geometric mean of mRNA levels of reference

genes beta 2 microglobulin (B2M, assay Hs00187842_m1, Applied

Biosystems) and Glyceraldehyde 3-phosphate dehydrogenase

(GAPDH, assay 4333764F, Applied Biosystems) run in separate

reactions from the same cDNA preparations.

Statistical analyses
qRT-PCR expression was measured in Ct values (PCR cycle at

which expression was detected). For each sample and assay, the

average of technical replicates was first normalized to a geometric

mean values of reference genes, B2M and GAPDH according to

the formula: Ct(geometric) = (Ct(B2M)+Ct(GAPDH))/2. Relative

expression of each assay was calculated as: dCt = Ct(geome-

tric)2Ct(assay). For each assay, the dCt values were first tested for

normality of distribution. The association between expression of

TCF7L2 assays and the counts of risk alleles (0, 1, 2) of the T2D-

associated SNPs rs7903145 and rs12255372 was tested with

univariate linear regression model with adjustment for covariates

(age, sex, and log-transformed values of BMI and blood levels of

glucose and HbA1c). The analyses were performed with SPSS

16.0 (SPSS Inc.). Microarray expression was analyzed with R

statistical programming package. Power analysis was performed

with StatMate 2.0 (GraphPad) and was based on standard

deviations in expression of each of assays, number of samples

with 0 or 1 and 2 risk alleles at each SNP and 80% power to detect

the difference with 5% of type I error.

Joint analysis of the microarray and TaqMan data,
pathway enrichment analysis

The microarray data for 159 paired samples of omental and

subcutaneous adipose tissue was a part of a previously described

study [23]. The microarray data was available to all authors of the

article and is available upon request. Each of the RNA samples

was profiled with custom-designed microarrays that included

39,280 oligonucleotide probes representing 34,266 known and

predicted genes (Agilent Technologies, Palo Alto, CA). We used

assays ‘‘ex3a-4’’, ‘‘ex7-8’’, ex’’12-13’’ and ‘‘ex13-13a’’ of TCF7L2

for joint analysis of expression. Expression of B2M and GAPDH

was used as an endogenous control for TaqMan TCF7L2

expression. However, when we combined the TaqMan and

microarray data, we observed that the sets of transcripts that

correlated with TCF7L2 expression significantly overlapped with

the set of transcripts that correlated with GAPDH and B2M

expression. To remove this biologically relevant variation

component from the GAPDH and B2M expression, we identified

a set of transcripts that correlated with the geometric mean of B2M

and GAPDH expression at a 5% FDR (false-discovery rate). We

then performed Principal Component Analysis on this set of

transcripts to identify those factors (eigenvectors) that explained

greater than 90% of the variation in the GAPDH/B2M geometric

mean and adjusted the GAPDH/B2M expression by each of these

eigenvectors. The adjusted B2M/GAPDH expression was then

used to normalize TCF7L2 expression using standard linear

regression methods. For co-expression analysis, the normalized

expression values for all transcripts were adjusted for age and sex

and the residuals were computed using the rlm function from the

R statistical package (M-estimation with Tukey’s bisquare

weights). The Spearman correlation coefficients for expression of

TCF7L2 and all other transcripts were calculated. The FDR for

these correlations was calculated by performing 1000 permuta-

tions of sample IDs while preserving the correlation structure

among the gene expression values. The threshold for Spearman

coefficient was set up at r = +/20.25, corresponding to FDR,1%

(p-value,0.0005). The pathway enrichment analysis on sets of

transcripts with significant correlations was performed using the

Panther Classification System [27]. For each GO category, we

compared expected and observed frequencies between a set of

20,316 annotated transcripts presented on the array and the sets of

transcripts significantly correlated with TCF7L2 expression. The p-

value for significance of enrichment in each group was adjusted for

the number of GO categories using Bonferroni method imple-

mented in the Panther analysis [27].
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