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Abstract

Protein phosphatases-2A (PP-2A) is a major serine/threonine phosphatase and accounts for more than 50% serine/threonine
phosphatase activity in eukaryotes. The holoenzyme of PP-2A consists of the scaffold A subunit, the catalytic C subunit and
the regulatory B subunit. The scaffold subunits, PP2A-Aa/b, provide a platform for both C and B subunits to bind, thus
playing a crucial role in providing specific PP-2A activity. Mutation of the two genes encoding PP2A-Aa/b leads to
carcinogenesis and likely other human diseases. Regulation of these genes by various factors, both extracellular and
intracellular, remains largely unknown. In the present study, we have conducted functional dissection of the promoter of
the mouse PP2A-Aa gene. Our results demonstrate that the proximal promoter of the mouse PP2A-Aa gene contains
numerous cis-elements for the binding of CREB, ETS-1, AP-2a, SP-1 besides the putative TFIIB binding site (BRE) and the
downstream promoter element (DPE). Gel mobility shifting assays revealed that CREB, ETS-1, AP-2a, and SP-1 all bind to
PP2A-Aa gene promoter. In vitro mutagenesis and reporter gene activity assays reveal that while SP-1 displays negative
regulation, CREB, ETS-1 and AP-2Aa all positively regulate the promoter of the PP2A-Aa gene. ChIP assays further confirm
that all the above transcription factors participate the regulation of PP2A-Aa gene promoter. Together, our results reveal
that multiple transcription factors regulate the PP2A-Aa gene.
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Introduction

Protein phosphorylation and dephosphorylation are the most

important regulatory mechanisms modulating functions of more

than one third of the total cellular proteins [1]. Protein serine/

threonine phosphatase 2A (PP-2A) is a major eukaryotic phospha-

tase, regulating many different functions including metabolism,

DNA replication, transcription, RNA splicing, translation, cell cycle

progression, cell senescence and apoptosis, cell transformation,

morphogenesis, development, and neurotransmission [1–6].

PP-2A exists in both core enzyme and holoenzyme within cells

[6–7]. The core enzyme consists of a 65 kDa scaffolding protein

known as A subunit tethering a 36 kDa catalytic C subunit [7].

Both A and C subunits exist in a and b isoforms encoded by

different genes [6]. The full specific activity towards a certain

substrate of PP-2A core enzyme is achieved through binding of a

variable regulatory subunit to form the heterotrimeric holoenzyme

[6]. So far, at least 16 genes have been identified encoding 4

subfamilies of the regulatory subunits: B, B9, B0 and B90 [7–10].

The scaffold subunit of PP-2A bears unique structure features.

The 65 kDa protein (both a and b isoforms) contains 15 tandem

repeats with a conserved 39-residue sequence known as a

Huntington-elongation-A subunit-TOR (HEAT) motif [11–13],

which is organized into an extended, L-shaped molecule [14]. The

catalytic subunit recognizes one end of the elongated scaffolding

subunit by interacting with the conserved ridges of HEAT repeats

11–15, while the regulatory subunit contact the scaffold by

interacting with the conserved HEAT repeats 1 to 10 [7,15–16].

The functional importance of the PP-2A scaffold subunit is

derived from the two important observations. First, mutations in

both a and b isoforms of the scaffolding subunit result in

compromised binding to the regulatory or catalytic subunit of

PP-2A. As a result, the functional scaffold subunits are diminished

or substantially reduced and the specific PP-2A activity is

compromised [17]. A variety of primary human tumors including

lung and colon cancers are associated with the mutations of the

scaffold subunits [18–22]. Secondly, deregulation of the scaffold

subunit expression leads to distinct downregulation of PP-2A

activity, causing brain tumors [23]. A reduced expression of PP2A-

Aa was also observed in the breast cancer cells MCF-7 [24]. In

addition, changed expression of the scaffold subunits may

contribute to altered activity of PP-2A, which is implicated in

multiple ocular diseases including retina degeneration [25] and

cataract [26].
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At present, however, very little is known about the regulation of

expression of the PP-2A scaffold subunits. To get insight into the

regulation of PP2A-Aa/b expression, we have cloned the

promoter regions of the genes encoding the scaffold subunits for

mouse PP-2A. Here, we report the functional dissection of the

PP2A-Aa gene promoter through sequential deletion, in vitro

mutagenesis, gel mobility shifting, reporter gene activity and ChIP

assays. Our results demonstrate that numerous transcription

factors including ETS-1, CREB, AP-2a and SP-1 regulate the

PP2A-Aa gene promoter.

Material and Methods

Cell culture
Embryonic human lens epithelial cells (FHL124 line) and mouse

lens epithelial cells (aTN4-1) were kindly provided by Dr. John

Reddan (Oakland University) and Dr. Paul Russell (University of

California at Davis), respectively. Human retinal pigment

epithelial cells [27] were obtained from ATCC. All cells were

cultured in monolayers at 37uC and 5%CO2 in Eagle’s MEM

containing 10% FBS, 2 mM L-glutamine, and 1% penicillin and

streptomycin as previously described [27–29].

Molecular cloning of the PP2A-Aa promoter and creation
of A1 to A6 deletion mutants

The genomic DNAs used for cloning of the PP2A-Aa promoter

were extracted from the muscle tissue of the adult mice. Isolation

of the mouse muscle tissue was described before [30]. Seven

different primers (Table 1) were designed for PCR reactions using

mouse genomic DNA as template. The amplified mouse PP2A-Aa
promoter (A1) or the truncated promoter fragments (A2 to A6)

were separately inserted into pGL3-basic, a background luciferase

reporter gene vector at Xho I and Hind III restriction sites using

standard molecular cloning techniques as described before [31].

Western Blot Analysis
Western blot analysis was conducted as previously described

[32]. Total proteins were extracted from ARPE-19 and FHL124

cells. Fifty mg of total proteins were used for each lane of loaded

sample. The protein blots were blocked with 5% milk in TBS

buffer overnight at 4uC and then incubated for 1 h or overnight

with antibodies against, PP2A-Aa, CREB and AP-2a (Cell

Signaling Technology, MA), ETS-1 and SP-1 (Santa Cruz

Biotechnology Inc, CA), and b-actin antibody (Sigma, MO) at a

dilution of 1:200–3000. The secondary antibody was anti-mouse

IgG, anti-rabbit IgG or anti-goat IgG (Amersham Biosciences,

Piscataway, NJ and Santa Cruz Biotechnology Inc, CA) at a

dilution of 1:1000–3000. Immunoreactivity was detected as

described before [29,32].

Gel Mobility Shifting Assays
Gel mobility shifting assays were conducted as previously

described [33–34]. The following oligos were used: 59-GTC-

CTTCATTACGTCACGCATAG-39 for mouse PP2A-Aa pro-

moter CREB binding site, 59-GTCCTTCATTCATTCACGCA-

TAG -39 for mutated CREB binding site; 59-TAAGATACTT-

CACTTCCGGTTC-39 for mouse PP2A-Aa promoter ETS-1

binding site, 59-TAAGATACTTCACTCAAGGTTC-39 for mu-

tated ETS-1 binding site; 59- TCCGCCTCTCCCCAAGGGGC-

CATC-39 for mouse PP2A-Aa promoter AP-2a (1) binding site,

59-CTCCGCCTCTAAACAAGGGGCCATC-39 for mutated

AP-2a (1) binding site; 59-CCGGCACCGCCCCGCCCGATC-

39 for mouse PP2A-Aa promoter SP-1 & SP-3 binding site, 59-

CCGGCACCGAACCGCCCGATC-39 for mutated SP-1 & SP-3

binding site. Thirty mg of nuclear extracts prepared from ARPE,

FHL124 or aTN4-1 cells were incubated with 16105 cpm of 32P-

labeled double-stranded synthetic oligonucleotides for 30 minutes

at 37uC in a binding shifting buffer [34]. For competition

experiments, 50-fold of the non-labeled wild type or mutant

double-stranded synthetic oligonucleotides were pre-incubated

with the nuclear extracts for 10 minutes before the labeled probe

was added into the reaction. For the supershifting experiments,

30 mg of each nuclear extract was incubated with 16105 cpm of
32P-labeled double-stranded synthetic oligonucleotides of each

primer pair for 30 minutes at 37uC in a binding shifting buffer,

then 10 mg antibody against CREB, ETS-1, AP-2a, SP-1, or SP-3

or normal IgG (mock) was incubated with the corresponding

nuclear extract-primer complex for 45 minutes at room temper-

ature. After the binding reactions, the mixtures were loaded onto

5% native PAGE and detected by autoradiography.

Analysis of Transient Gene Expression
For reporter gene activity, 2 mg of A1 A2, A3, A4, A5 or A6

construct of the luciferase reporter gene and 20 ng internal control

plasmid PhRL-sv40 were introduced into mouse aTN4-1 cells,

human FHL124 cells, or human ARPE-19 cells in 12-well culture

plates using lipofectamine 2000. After 24 hours, the luciferase

activities from each testing construct (A1 A2, A3, A4, A5 or A6)

and also from the internal control plasmid were measured using

dual-luciferase reporter assay system from Promega Inc. The

relative luciferase activity was determined by dividing the

luciferase activity from the testing construct by that from the

control plasmid. For CREB, ETS-1, AP-2a, SP-1 and SP-3 dose-

dependent responses, 2 mg PP2A-Aa-luc construct plasmid (A5),

and 20 ng internal control plasmid plus 0 to 500 ng of pCMV-

CREB, pCMV-ETS-1, pCMV-AP-2a, pCMV-SP-1 or pCMV-

SP-3 plasmid were co-transfected into both ARPE-19 and

FHL124 cells, the transfected cells were harvested after 24 hours

and the harvested cell extracts were used for assay of luciferase

activity as described above.

Chromatin Immunoprecipitation (ChIP) Assays
ChIP assay was conducted as previously described [34]. Mouse

lens epithelial cells (aTN4-1) were grown to 95% confluence.

Approximately 2.06107 cells were incubated with 1% formalde-

hyde for 10 min at room temperature for cross-linking, which was

terminated by washing the cells with 4 ml of 1.25 M glycine

solution. The cells were further washed with cold PBS twice and

then scraped into 1 ml of ChIP sonication buffer (50 mM Tris-

Table 1. OLIGO PRIMERS USED FOR CLONING OF PP2A-Aa
PROMOTOR.

Primer name Oligo primer sequence

A1-F 59-CTCGAGCTCGAGCACTCGAGCCCTGTTGATGT –39

A2-F 59-CTCGAGCTCGAGAATGGTCCAAGAAGGCACTG –39

A3-F 59-CTCGAGCTCGAGATGGCTATGCCTTCTGTTCG –39

A4-F 59-CTCGAGCTCGAGCCCACCTTCTTCCCTTTCAT –39

A5-F 59-CTCGAGCTCGAGTATGAGGCAGAGGTCCATCC –39

A6-F 59-CTCGAGCTCGAGACATCTCATTCGTCCGGCCA –39

Primer-R 59-AAGCTTAAGCTTCTTGGCTCCCTGGCGTTTCTATC –39

Note: For the convenience, two restriction enzyme recognition sites: Xho I
(CTCGAGCTCGAG) and Hind III (-AAGCTTAAGCTT) sites were added to the
Primer-F and Primer-R, respectively.
doi:10.1371/journal.pone.0007019.t001
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HCl, pH 8.1, 1% Triton X-100, 0.1% sodium deoxycholate,

5 mM EDTA, and 150 mM NaCl) containing the protease

inhibitor cocktail. These lysates were sonicated 20–25 times for

10 s each time to generate DNA fragments that ranged in size

from 200 to 1000 bp. The sheared chromatin-lysed extracts were

incubated with 5 mg of anti-CREB, anti-ETS-1, anti-SP-1 or anti-

AP-2a antibody separately or 5 mg of normal IgG overnight at

4uC, and then incubated for an additional 1 h with 30 ml protein

A/G agarose beads. The immunoprecipitates were washed with

cold ChIP sonication buffer 3X and cold PBS 3X, then suspended

in the elution buffer (Tris-EDTA buffer, pH 8.0 and 1% SDS),

and incubated overnight at 65uC, and an additional 2 h at 55uC
with 100 mg of protease K to reverse proteins/DNA cross-links.

Finally, these samples were processed for DNA purification by

phenol-chloroform extraction and ethanol precipitation. PCRs

were performed in 25 ml with 1/500 of input DNA or 1/100 of the

immunoprecipitates with two pairs of primers: one for ETS-1 and

CREB binding sites, 59-GTCCTTCATTACGTCACGCATAG-

39 (forward), 59-GAACCGGAAGTGAAGTATC-TTA -39 (re-

verse); and the other for the AP-2a and SP-1 binding sites, 59-

TGGTTCAGACCAAACAGACG-39 (forward), 59-CTCCCTG-

GCGTTTCTATCAG-39 (reverse); which generates DNA frag-

ments of 189 bp and 168 bp, respectively. PCR was conducted

with following specifications: 94uC 5 min, (94uC 30 s, 52uC 30 s,

and 72uC 30 s)630, 72uC 5 min, and the PCR products were

separated on an 1.5% agarose gel and stained with ethidium

bromide.

Statistical Analysis
All of the data presented are derived from at least three

independent experiments. All the luciferase reporter gene activity

data were subjected to statistical analysis. The means, S.D. and P

values were calculated and included in the corresponding figures.

Results

Isolation of the functional proximal PP2A–Aa promoter
To dissect the proximal promoter for the PP2A-Aa gene, we

amplified six genomic fragments of different sizes (Fig. 1A). These

fragments were subsequently inserted into a basic luciferase

reporter gene construct, pGL3-basic (from Promega) at Xho I

(59) and Hind III (39) sites to make 6 luciferase reporter gene

constructs, designated as A1 to A6 (Fig. 1A). Because PP-2A plays

vital roles in the ocular tissues [30] and changed PP-2A activity is

implicated in multiple ocular diseases including retina degenera-

tion and lens cataract [25–26], we used retina and lens cell lines as

assay systems to characterize the PP2A-Aa promoter. When the 6

constructs were individually transfected into mouse lens epithelial

cells, aTN4-1 and human lens epithelial cells, FHL124, luciferase

reporter gene activity assays demonstrated that compared with the

longest construct A1, a sequential deletion from 59 end of about

400 (A2) to 800 bp (A3) leads to about 40 to 50% enhancement of

the luciferase activities, suggesting that a repressor element exists

within this region (Fig. 1B). A deletion of additional 323 bp (A4)

leads to further enhancement of the luciferase activity, indicating

existence of additional repressor element within this region

(Fig. 1B). Removal of 96 bp at 59 end from A4 fragment yields

construct A5 and causes a 20% decrease in luciferase activity,

suggesting the presence of a positive enhancer from –721 to –625

(Fig. 1B). A further deletion of 500 bp at 59 end from A5 fragment

yielded construct A6, and caused a 80% drop of the luciferase

activity (Fig. 1B). Since the luciferase activity driven by A5 is

similar to that driven by A2 and A3 but drops significantly when

driven by A6, we consider that the 677 bp PP2A-Aa promoter

(2625 to +52) acts as the proximal promoter and was further

examined in detail.

The proximal PP2A–Aa promoter contains multiple
putative cis-elements for CREB, ETS-1, AP-2a and SP-1

To characterize the PP2A-Aa gene promoter, we have analyzed

the proximal promoter sequence using web software TFSEARCH

(transcriptional factor search) and TESS (transcription element

search system), and found four cis-elements with the highest scores

for CREB, ETS-1, SP-1 and AP-2a in this region (Fig. 2A). The

CREB binding site is found from 2373 to 2362, an ETS-1

Figure 1. Identification of the proximal PP2A-Aa promoter. A.
Diagrams of 6 different constructs of the PP2A-Aa promoter linked to
the luciferase reporter gene. Genomic DNA was extracted from mouse
muscle and used for PCR amplification of the PP2A-Aa promoter
fragments (see methods for details). To identify the proximal promoter,
7 oligo primers (Table 1) were designed, synthesized and used for PCR.
The amplified 6 DNA fragments were digested and then inserted into
the basic luciferase reporter construct to generate A1 to A6 constructs.
B. Relative luciferase activities derived from 6 different PP2A-Aa gene
promoter constructs. Two mg of A1 A2, A3, A4, A5 or A6 construct of the
luciferase reporter gene and 20 ng internal control plasmid PhRL-sv40
were introduced into mouse lens epithelial aTN4-1 cells (Open bars)
and human lens epithelial FHL124 cells (solid bars) in 12-well culture
plates using lipofectamine 2000. After 24 hours, the luciferase activities
from each testing construct and also from the internal control plasmid
were measured using dual-luciferase reporter assay system from
Promega Inc. The relative luciferase activity was determined by dividing
the luciferase activity from the testing construct by that from the
control plasmid. The ratio of A1 activity is assumed as 100%, then the
activity of each of the five constructs were calculated using A1 as
reference. Note that the construct A5 displays similar luciferase activity
to A3 and A4, suggesting that this construct contains the proximal
promoter of the PP2A-Aa gene.
doi:10.1371/journal.pone.0007019.g001
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binding site from 2202 to 2192, and two AP-2a binding sites

from 2321 to 2312, and from 284 to 276, respectively (Fig. 2A).

In addition, a SP-1 binding site is identified in the core promoter

region from 217 to 26 of the PP2A-Aa gene. To explore if these

elements might be functional in the ocular tissues, we first

examined the association of the expressions of PP2A-Aa with that

of the four transcription factors, CREB, ETS-1, SP-1 and AP-2a
in the retinal pigmental epithelial cells (ARPE-19) and the

embryonic lens epithelial cells (FHL124 cells). As shown in

Fig. 2B, both cell lines contain relatively high levels of PP2A-Aa.

Associated with the high level of PP2A-Aa expression, high levels

of CREB and AP-2a expression are also detected in the two cell

lines. In addition, fair levels of ETS-1 and SP-1 expression were

also detected. Similar expression patterns of the above factors were

observed in the mouse lens epithelial cells, aTN4-1 (data not

shown). These results suggest that the four cis-elements, CREB,

ETS-1, SP-1 and AP-2a in PP2A-Aa gene promoter are likely

mediating transcription regulation by the cognate trans-factors in

these ocular cell lines.

ETS-1 interacts with the proximal promoter of PP2A-Aa
and plays a fundamental role in PP2A-Aa regulation

To demonstrate if ETS-1 regulates PP2A-Aa, we have

conducted gel mobility shifting assay with an oligo containing

the ETS-1 binding site (Fig. 3A), nuclear extracts from human

ARPE-19 cells or from human FHL124 cells showed a strong

binding to ETS-1 oligo (lane 1, 6 of Fig. 3B), this binding can be

competed off by the cold ETS-1 oligo (lane 2 and 7 of Fig. 3B) but

only slightly by the mutant oligo (lane 3 and 8 of Fig. 3B). The

DNA-ETS-1 complex can be recognized by anti-ETS-1 antibody

to form supershifting complex (lane 5 and 10 of Fig. 3B) but not by

normal IgG (lane 4 and 9 of Fig. 3B). These results suggest that

human ETS-1 could regulate mouse PP2A-Aa gene promoter in

both ARPE-19 cells and FHL124 cells, and that the PP2A-Aa
promoter may be functionally conserved between human and

mouse. Similar binding pattern was observed with ETS-1 oligo

and nuclear extract from mouse aTN4-1 cells (data not shown).

To further confirm the ETS-1 control on PP2A-Aa gene, we

mutated the ETS-1 binding site and examined the relative

luciferase activities from the two constructs with either wild type

or mutant ETS-1 binding sites in both ARPE-19 and FHL124

cells. As shown in Fig. 3C, mutation of the ETS-1 binding site led

to about 60% decrease in the PP2A-Aa promoter activity as

assayed in both types of cells. Next, we co-transfected the luciferase

reporter gene driven by the PP2A-Aa proximal promoter and the

exogenous ETS-1 expression vector. As shown in Fig. 3D,

expression of the exogenous ETS-1 (0 to 100 ng) induced a

dose-dependent increase in the luciferase activity in both ARPE-19

cells and FHL124 cells. Mutation of the ETS-1 binding site in the

PP2A-Aa promoter abolished this dose-dependent response (data

not shown). Further more, expression of the exogenous ETS-1 also

enhanced expression of the endogenous PP2A-Aa (Fig. 3E).

Together, these results demonstrate that ETS-1 can regulate

PP2A-Aa and this regulation is very important. In addition, the

PP2A-Aa promoter is functionally conserved between human and

mouse.

CREB binds to the proximal promoter of PP2A-Aa and
plays an important regulatory role in PP2A-Aa expression

To determine if the CREB element can regulate PP2A-Aa
promoter, we also conducted gel mobility shifting assay with an

oligo primer containing the CREB binding site derived from the

PP2A-Aa promoter (Fig. 4A). The nuclear extracts from either

ARPE-19 cells or from FHL124 cells showed a strong binding to

CREB site (lane 1, 6 of Fig. 4B), this binding can be competed off

by the cold CREB oligo (lane 2, 7 of Fig. 4B) but not by the

mutant oligo (lane 3, 8 of Fig. 4B). Addition of the anti-CREB

antibody into the binding reactions between labeled CREB oligo

and the nuclear extracts from both ARPE-19 and FHL124 cells

induced obvious supershifting complex (lane 4, 9 of Fig. 4B).

However, addition of normal IgG into the same reactions did not

produce the supershifting complex (lane 5, 10 of Fig. 4B). Similar

binding pattern was observed with CREB oligo and nuclear

extract from mouse aTN4-1 cells (data not shown). These results

suggest that CREB also regulates PP2A-Aa. To further confirm

that CREB controls the PP2A-Aa gene promoter, we mutated the

CREB binding site and compared the relative luciferase activity

between the two constructs with wild type or mutant CREB

Figure 2. Identification of the major cis-elements in the
proximal promoter of the PP2A-Aa gene. A. Identification of the
four putative cis-elements: ETS-1, CREB, AP-2a and SP-1 in the proximal
promoter of the PP2A-Aa gene. The 677 bp DNA sequence (from +52 to
2625) was analyzed with TFSEARCH and TESS two softwares. Four
conserved cis-elements (marked below the sequence) were discovered.
In the core promoter region of the PP2A-Aa gene, a putative TFIIB
recognition element (BRE) and a putative downstream promoter
element (DPE) are observed. However, the core promoter of the
PP2A-Aa gene lacks TATA-box. The transcription initiation site was
assigned according to the reported results. B. Western blot analysis of
PP2A-Aa and the four cognate transcriptional factors (ETS-1, CREB, AP-
2a and SP-1) in two ocular cell lines, retinal epithelial cells (ARPE-19) and
the embryonic lens epithelial cells (FHL124).
doi:10.1371/journal.pone.0007019.g002
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binding sites in both ARPE-19 and FHL124 cells. As shown in

Figure 3. Demonstration that ETS-1 regulates the PP2A-Aa
promoter. A. Wild type or mutant ETS-1 oligos used for gel mobility
shifting assays described in Fig. 3B. B. Gel mobility shifting demon-
strates that ETS-1 from both ARPE-19 (Lane 1 to 5) and FHL124 (Lane 6
to 10) binds to the oligo containing the wild type ETS-1 binding site.
Nuclear extracts prepared from both types of cells were incubated with
c-32P-ATP-labeled oligos containing wild-type ETS-1 binding site under
various conditions shown in the figure. The reaction mixtures were then
separated with 5% native PAGE. The gel was dried and exposed to X-ray
film for overnight. Lane 1, gel mobility shifting assays with labeled oligo
containing wild-type ETS-1 binding site and ARPE-19 nuclear extract.
Lane 2, the same assay as in lane 1 except that 50-fold of non-labeled
wild-type ETS-1 oligos was added into the reaction. Note that the ETS-1
complex was competed off. Lane 3, the same assay as in lane 1 except
that the non-labeled competing oligo contains a mutated ETS-1
binding site (Fig. 3A, bottom), which showed only slight competition
ability. Lane 4, the same assay as in lane 1 except that normal IgG was
used for mock supershifting assay. Lane 5, the same assay as in lane 1
except that anti-ETS-1 antibody was added for supershifting assay. Note
that addition of anti-ETS-1 antibody into the reaction led to formation
of the supershifting ETS-1 complex. Lane 6 to Lane 10, the same order
as in Lane 1 to Lane 5 except that the nuclear extracts were from the
FHL124 cells. C to E. Demonstration of the relative importance of the
ETS-1 binding site in regulating the PP2A-Aa promoter. C. Mutation of
the ETS-1 binding site in the PP2A-Aa promoter causes an approxi-
mately 60% loss of the luciferase reporter gene activity in both types of
ocular cells. The P value was calculated by comparing the activity
difference between the mutant promoter with the wild type promoter
in the same type of cell. D. Expression of the exogenous ETS-1 in both
types of ocular cells induces dose-dependent increase in the luciferase
reporter gene activity within 0 to 500 ng of the pCMV-ETS-1 plasmid.
The P value was calculated by comparing the luciferase difference
between the vector (pCI-Neo) co-expression and the co-expression of
each concentration of exogenous Ets-1 plasmid (50, 100 and 500 ng)
with the wild type promoter in the same type of cell. E. Expression of
the exogenous ETS-1 in both types of ocular cells enhanced expression
of the endogenous gene coding for PP2A-Aa. Transfection and
luciferase activity assays were conducted as previously described [29].
doi:10.1371/journal.pone.0007019.g003

Figure 4. Demonstration that CREB regulates the PP2A-Aa
promoter. A. Wild type or mutant CREB oligos used for gel mobility
shifting assays described in Fig. 4B. B. Gel mobility shifting demon-
strates that CREB from both ARPE-19 (Lane 1 to 5) and FHL124 (Lane 6
to 10) nuclear extracts binds to the oligo containing the wild type CREB
binding site. Nuclear extracts prepared from both types of cells were
incubated with c-32P-ATP-labeled oligos containing wild-type CREB
binding site under various conditions shown in the figure. Lane 1, gel
mobility shifting assay with labeled wild type CREB oligo and ARPE-19
nuclear extract. Lane 2, the same assay as in lane 1 except that 50-fold
of wild-type CREB non-labeled oligos was added into the reaction. Note
that the CREB complex was competed off. Lane 3, the same assay as in
lane 1 except that the non-labeled competing oligo contains a mutated
CREB binding site (Fig. 4A, bottom), which showed very little
competition ability. Lane 4, the same assay as in lane 1 except that
anti-CREB antibody was added into the reaction. Note that addition of
anti-CREB antibody into the reaction led to formation of the super-
shifting CREB complex. Lane 5, the same assay as described in lane 1
except that normal IgG was added into the reaction to conduct mock
supershifting assay. Lane 6 to Lane 10, the same order as in Lane 1 to
Lane 5 except that the nuclear extracts were from the FHL124 cells. C.
to E. Demonstration of the relative importance of the CREB binding site
in regulating the PP2A-Aa promoter. C. Mutation of the CREB binding
site in the PP2A-Aa promoter causes an approximately 40% loss of the
luciferase reporter gene activity in both types of ocular cells. The P
value was calculated by comparing the activity difference between the
mutant promoter with the wild type promoter in the same type of cell.
D. Expression of the exogenous CREB in both types of ocular cells
induces dose-dependent increase in the luciferase reporter gene
activity within 0 to 500 ng of the pCMV-CREB plasmid. The P value
was calculated by comparing the luciferase difference between the
vector (pCI-Neo) co-expression and the co-expression of each
concentration of exogenous CREB plasmid (50, 100 and 500 ng) with
the wild type promoter in the same type of cell. E. Expression of the
exogenous CREB in both types of ocular cells enhanced expression of
the endogenous gene coding for PP2A-Aa. Transfection and luciferase
activity assays were conducted as previously described [29].
doi:10.1371/journal.pone.0007019.g004
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Fig. 4C, mutation of the CREB binding site led to about 40%

decrease in the PP2A-Aa promoter activity as assayed in both

types of cells. Thus, reporter gene activity assays on wild type

PP2A-Aa promoter and differentially mutated PP2A-Aa promot-

ers reveal that ETS-1 and CREB display differential control over

PP2A-Aa promoter. Next, we also conducted co-transfection

analysis on the luciferase reporter gene activity driven by the A5

promoter with exogenous CREB expression construct. As shown

in Fig. 4D, expression of the exogenous CREB (0 to 500 ng)

induces a dose-dependent increase in the luciferase activity in both

ARPE-19 cells and FHL124 cells. Moreover, the magnitude of

induction is greater in FHL124 cells than in ARPE-19 cells.

Mutation of the CREB site in the PP2A-Aa promoter abolished

this dose-dependent response (data not shown). In addition,

expression of the exogenous CREB also enhanced expression of

the endogenous PP2A-Aa in both types of ocular cells (Fig. 4E).

Together, these results show that CREB also plays an important

role in regulating PP2A-Aa activity, and further demonstrate that

the PP2A-Aa promoter is functionally conserved in human and

mouse.

AP-2a interacts with the proximal promoter of PP2A-Aa
and exerts positive control

To test if AP-2a also regulates PP2A-Aa gene promoter, we

again conducted gel mobility shifting assay with an oligo

containing the AP-2a (1) binding site (Fig. 5A). The nuclear

extracts from either ARPE-19 cells or from FHL124 cells showed a

strong binding to AP-2a (1) site (lane 1, 6 of Fig. 5B), this binding

can be completely competed off by the cold AP-2a (1) oligo (lane 2,

7 of Fig. 5B) but only partially by the mutant oligo {lane 3, 8 of

Fig. 5B, A change of 3-nucleatide in the AP-2a (1) binding site

only partially abolished the binding activity}. Addition of the anti-

AP-2a antibody into the binding reactions between labeled AP-2a
oligo and the nuclear extracts from the two types of cells induced a

supershifting band (lane 5, 10 of Fig. 5B). This supershifting

complex did not appear when the normal IgG was used (lane 4, 9

of Fig. 5B). Similar binding pattern was observed with AP-2a oligo

and nuclear extract from mouse aTN4-1 cells (data not shown).

These results suggest that AP-2a also regulates PP2A-Aa To

further confirm the AP-2a control on PP2A-Aa gene promoter, we

again mutated the two AP-2a binding sites either individually or in

combination (the mutation of the two AP-2a sites are shown in

Fig. 5A) and assayed the relative luciferase activity from the two

constructs in both ARPE-19 and FHL124 cells. As shown in

Fig. 5C, mutation of each AP-2a binding site led to 10 to 15%

decrease in the PP2A-Aa promoter activity as assayed in both

types of cells. Mutation of both AP-2a sites at the same time

caused an approximately 20% decrease in the reporter gene

activity. Statistical analysis revealed that the P value is less than

0.05 when each mutant promoter was compared with the wild

type promoter. Thus, mutation of either AP-2a site causes

statistically significant change in the PP2A-Aa promoter activity

(Fig. 5C). Next, we examined the luciferase reporter gene activity

in the presence of the exogenous AP-2a expression. As shown in

Fig. 5D, expression of the exogenous AP-2a (0 to 500 ng) induced

a dose-dependent increase in the luciferase activity in both ARPE-

19 cells and FHL124 cells. Mutations of the two AP-2a binding

sites in the PP2A-Aa promoter abolished this dose-dependent

response (data not shown). In addition, expression of the

exogenous AP-2a also enhanced expression of the endogenous

PP2A-Aa in both types of ocular cells (Fig. 5E). Together, these

results show that AP-2a displays a positive regulation on the

PP2A-Aa promoter.

Figure 5. Demonstration that AP-2a regulates the PP2A-Aa
promoter. A. Wild type or mutant AP-2a (1) oligos used for gel mobility
shifting assays described in Fig. 5B. B. Gel mobility shifting demonstrates
that AP-2a from both ARPE-19 and FHL124 nuclear extracts binds to the
oligo containing the wild type AP-2a (1) binding site. Nuclear extracts
prepared from ARPE-19 cells (Lane 1 to 5) and FHL124 cells (Lane 6 to 10)
were incubated with c-32P-ATP-labeled oligo-nucleotide containing wild-
type AP-2a binding site under various conditions shown in the figure.
The reaction mixtures were then separated with 5% native PAGE. The gel
was dried and exposed to X-ray film for overnight. Lane 1, gel mobility
shifting assays with labeled oligo containing wild-type AP-2a binding site
and nuclear extract from ARPE-19 cells. Lane 2, the same assay as
described for lane 1 except that 50-fold of non-labeled oligo containing
the wild-type AP-2a binding site was added into the reaction. Note that
the AP-2a complex was competed off by the non-labeled oligo. Lane 3,
the same assay as described in lane 1 except that the non-labeled
competing oligo contains a mutated AP-2a binding site (Fig. 5A, bottom),
which showed much weaker competition ability. Lane 4, the same assay
as described in lane 1 except that normal IgG was added into the reaction
to conduct mock supershifting assay. Lane 5, the same assay as described
in lane 1 except that anti-AP-2a antibody was added into the reaction.
Note that addition of anti-AP-2a antibody into the reaction led to
formation of the supershifting AP-2a complex. Lane 6 to Lane 10, the
same order as in Lane 1 to Lane 5 except that the nuclear extracts were
from the FHL124 cells. C. to E. Demonstration of the relative importance
of the AP-2a binding site in the regulation of the PP2A-Aa promoter. C.
Mutations of the AP-2a (1), AP-2a (2) or both AP-2a sites in the PP2A-Aa
promoter cause approximately 10%, 15% and 18% reduction in the
luciferase reporter gene activity, respectively. The P value was calculated
by comparing the activity difference between each individual mutant
promoter with the wild type promoter, or between the mutant promoter
with both AP-2a sites mutated with the wild type promoter in the same
type of cell. D. Expression of the exogenous AP-2a in both types of ocular
cells induces dose-dependent increase in the luciferase reporter gene
activity within 0 to 500 ng of the pCMV-AP-2a plasmid. The P value was
calculated by comparing the luciferase difference between the vector
(pCI-Neo) co-expression and the co-expression of each concentration of
exogenous AP-2a plasmid (50, 100 and 500 ng) with the wild type
promoter in the same type of cell. E. Expression of the exogenous AP-2a
in both types of ocular cells only slightly enhanced expression of the
endogenous gene coding for PP2A-Aa. Transfection and luciferase
activity assays were conducted as previously described [29].
doi:10.1371/journal.pone.0007019.g005
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The interaction between SP-1/SP-3 and the proximal
promoter of PP2A-Aa leads to negative regulation

To elucidate if SP-1/SP-3 regulates PP2A-Aa promoter, we also

conducted gel mobility shifting assay with an oligo containing the

SP-1/SP-3 binding site from PP2A-Aa (Fig. 6A). The nuclear

extract from ARPE-19 cells displayed a relatively weak binding to

SP-1/SP-3 oligo (lane 2 of Fig. 6B) compared with the extract

from FHL124 cells (lane 7 of Fig. 6B). Nevertheless, this binding is

specific in both types of cells because it can be completely

competed off by the cold SP-1/SP-3 oligo (lane 1, 8 of Fig. 6B) but

much less competition (lane 9 of Fig. 6B) or very little competition

(lane 3 of Fig. 6B) was observed with the mutant oligo. Addition of

the anti-SP-1 antibody (lane 5 and 11 of Fig. 6B) or anti-SP-3

antibody (lane 6 and 12 of Fig. 6B) but not normal IgG (lane 4 and

10 of Fig. 6B) into the binding reactions between labeled SP-1/SP-

3 oligo and the nuclear extracts from the two types of cells induced

the supershifting band. Similar binding pattern was observed with

SP-1/SP-3 oligo and nuclear extract from mouse aTN4-1 cells

(data not shown). These results suggest that SP-1/SP-3 also

regulates PP2A-Aa gene. To determine the nature of the SP-1/SP-

3 regulation on PP2A-Aa gene, we mutated the SP-1/SP-3

binding site within the core promoter of PP2A-Aa, and compared

the relative luciferase activity between the two constructs with

either wild type or mutant SP-1/SP-3 binding sites in both ARPE-

19 and FHL124 cells. As shown in Fig. 6C, mutation of the SP-1/

SP-3 binding site led to 17 to 18% increase in the PP2A-Aa
promoter activity as assayed in both types of cells. The P value for

this difference is less than 0.015 when the mutant promoter was

compared with the wild type promoter in the same type of cell

assayed. Thus, mutation of SP-1/SP-3 site causes statistically

significant change (Fig. 6C). To confirm this negative regulation,

we also conducted co-transfection analysis of the luciferase

reporter gene activity in the presence of the exogenous SP-1

expression (Fig. 6D) or exogenous SP-3 expression (Fig. 6F). As

shown in Fig. 6D, expression of the exogenous SP-1 induces a

dose-dependent decrease in the luciferase activity in both ARPE-

19 cells and FHL124 cells, and this down-regulation is statistically

significant (P,0.001). Mutation of the SP-1 site in the PP2A-Aa
promoter abolished this dose-dependent response (data not

shown). On the other hand, expression of the exogenous SP-3

induced a slight decrease in the luciferase activity in both ARPE-

19 cells and FHL124 cells, which is not statistically significant since

Figure 6. Demonstration that SP-1 and SP-3 negatively
regulates the PP2A-Aa promoter. A. Wild type or mutant SP-1/
SP-3 oligos used for gel mobility shifting assays described in Fig. 6B. B.
Gel mobility shifting demonstrates that SP-1/SP-3 from both ARPE-19
and FHL124 nuclear extracts binds to the oligo containing the wild type
SP-1/SP-3 binding site. Nuclear extracts prepared from ARPE-19 cells
(Lane 1 to 6) and FHL124 cells (Lane 7 to 12) were incubated with c-32P-
ATP-labeled oligo-nucleotide containing wild-type SP-1/SP-3 binding
site under various conditions shown in the figure. The reaction mixtures
were then separated with 5% native PAGE. The gel was dried and
exposed to X-ray film for overnight. Lane 1, gel mobility shifting assays
with labeled oligo containing wild-type SP-1/SP-3 binding site and
nuclear extract from ARPE-19 cells and 50-fold of non-labeled oligo
containing the wild-type SP-1/SP-3 binding site. Note that the SP-1/SP-3
complex was competed off by the non-labeled oligo. Lane 2, gel
mobility shifting assays with labeled oligo containing wild-type SP-1/SP-
3 binding site and nuclear extract from ARPE-19 cells. Lane 3, the same
assay as described in lane 2 except that the non-labeled competing
oligo contains a mutated SP-1/SP-3 binding site (Fig. 6A, bottom),
which showed much weaker competition ability. Lane 4, the same assay
as described in lane 2 except that normal IgG was added into the
reaction to conduct mock supershifting assay. Note that addition of
normal IgG interferes with the formation of the SP-1/SP-3 complex but
did not change the mobility. Lane 5, the same assay as described in lane
2 except that anti-SP-1 antibody was added into the reaction. Note that
addition of anti-SP-1 antibody into the reaction led to formation of the
supershifting SP-1 complex. Lane 6, the same assay as described in lane
2 except that anti-SP-3 antibody was added into the reaction. Note that
addition of anti-SP-3 antibody into the reaction also led to formation of
the supershifting SP-3 complex. Lane 7, gel mobility shifting assays with
labeled oligo containing wild-type SP-1/SP-3 binding site and nuclear
extract from FHL124 cells; Lane 8, the same as lane 7 except that 50-fold
of non-labeled oligo containing the wild-type SP-1/SP-3 binding site
was added into the reaction. Note that the SP-1/SP-3 complex was
completely competed off by the non-labeled oligo. Lane 9 to Lane 12,
the same order as in Lane 3 to Lane 6 except that the nuclear extracts
were from the FHL124 cells. C to G. Demonstration of the relative
importance of the SP-1/SP-3 binding site in the regulation of the PP2A-
Aa promoter. C. Mutation of the SP-1/SP-3 binding site in the PP2A-Aa

promoter causes an approximately 17 to 18% enhancement of the
luciferase reporter gene activity in both types of ocular cells. The P value
was calculated by comparing the activity difference between the mutant
promoter with the wild type promoter in the same type of cell. D.
Expression of the exogenous SP-1 in both types of ocular cells induces
dose-dependent decrease in the luciferase reporter gene activity within 0
to 500 ng of the pCMV-SP-1 plasmid. The P value was calculated by
comparing the luciferase difference between the vector (pCI-Neo) co-
expression and the co-expression of each concentration of exogenous
SP-1 plasmid (50, 100 and 500 ng) with the wild type promoter in the
same type of cell. E. Expression of the exogenous pCMV-SP-1 in both
types of ocular cells attenuated expression of the endogenous gene
coding for PP2A-Aa. F. Expression of the exogenous SP-3 in both types of
ocular cells induced only slight decrease in the luciferase reporter gene
activity within 0 to 500 ng of the pCMV-SP-3 plasmid, which is not
statistically significant. The P value was calculated by comparing the
luciferase difference between the vector (pCI-Neo) co-expression and the
co-expression of each concentration of exogenous SP-3 plasmid (50, 100
and 500 ng) with the wild type promoter in the same type of cell. G.
Expression of the exogenous pCMV-SP-3 in both types of ocular cells
caused little change in the expression of the endogenous gene coding
for PP2A-Aa. Transfection and luciferase activity assays were conducted
as previously described [29].
doi:10.1371/journal.pone.0007019.g006
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the P value is larger than 0.05. In addition, expression of the

exogenous SP-1 led to some down-regulation in the expression of

the endogenous PP2A-Aa in both types of ocular cells (Fig. 6E).

But expression of the exogenous SP-3 caused very little change in

the expression of the endogenous PP2A-Aa in both types of ocular

cells (Fig. 6G). Thus, different from ETS-1 CREB and AP-2a, SP-

1 exerts negative control over PP2A-Aa promoter and SP-3

displays some negative effect which is not statistically significant.

ChIP assays reveal that ETS-1, CREB, AP-2a and SP-1 all
binds to PP2A-Aa promoter

To further confirm that the four cis-elements found in the

proximal promoter of PP2A-Aa were functional in vivo, we

conducted ChIP assays using mouse aTN4-1 cells [34]. In these

cells, a high level of PP2A-Aa expression was also detected (data

not shown). When the endogenous PP2A-Aa gene chromatin from

aTN4-1 cells were randomly fragmented through sonication,

antibody against ETS-1, CREB, SP-1 or AP-2alpha used for

immunoprecipitation was able to precipitate down the PP2A-Aa
proximal promoter sequences which can be amplified into 189 bp

(lane 2, 4 of Fig. 7A) or 168 bp (lane 2, 4 of Fig. 7B) fragment after

PCR reaction. As a comparison, the immunoprecipitated products

using normal IgG did not contain the PP2A-Aa promoter DNA

sequences (lane 3, 5 of Fig. 7A and 7B). As positive controls, the

isolated genomic DNA input was directly used for PCR analysis

and the corresponding 189 bp and 168 bp fragments were also

identified (lane 6 of Fig. 7A and 7B). These results suggest that the

four cis-elements identified in the PP2A-Aa promoter play

important roles in mediating transcriptional regulation by the

corresponding transcriptional factors.

Discussion

In the present study, we have conducted functional dissection of

the PP2A-Aa gene promoter and obtained the following results: 1)

Sequential deletion and luciferase reporter gene activity assays

revealed that the mouse proximal promoter of PP2A-Aa consists of

about 680 bp DNA fragment; 2) Four major cis-elements for ETS-1,

CREB, AP-2a and SP-1/SP-3 are present in the proximal

promoter; 3) DNA binding assays demonstrate that human ETS-

1, CREB, AP-2a, SP-1 and SP-3 bind to the corresponding four cis-

elements within the mouse proximal promoter of PP2A-Aa, and the

proximal promoter of PP2A-Aa is functionally conserved in human

and mouse; 4) In vitro mutagenesis and luciferase reporter gene

activity assays demonstrate that ETS-1, CREB, and AP-2a act as

enhancers and SP-1 and SP-3 as repressors on PP2A-Aa promoter

in both human retinal pigment epithelial cells and lens epithelial

cells; 5) Expression of exogenous ETS-1, CREB, AP-2a, or SP-1

induced dose-dependent responses of the luciferase reporter gene

activity and also similarly regulates the endogenous gene for PP2A-

Aa in human retinal pigmental epithelial cells and embryonic lens

epithelial cells. Mutation of the corresponding cis-element elimi-

nated the related dose-dependent response; 6). ChIP assays revealed

that ETS-1, CREB, AP-2a or SP-1 all bind to the proximal

promoter of PP2A-Aa. Together, our results have demonstrated

that the proximal promoter of PP2A-Aa is regulated by four major

cis-elements through interactions with their cognate transcriptional

factors besides the basic core promoter elements mediating

interactions with the general transcription factors (Fig. 8).

The proximal promoter of PP2A-Aa consists of BRE, DPE,
and multiple enhancer elements but lack TATA element

Previous studies of different eukaryotic gene promoters reveal

that a typical core promoter contains the TFIIB recognition

element {BRE element (GGGCGCC)} at 237 to 226, the TATA

box (TATAAA) at 231 to 226, the initiator (PyPyANT/ApyPy)

at 22 to +4, and the downstream promoter element {DPE

element (A/GGA/TC/TG/A/C)} at +28 to +32 [35]. Examina-

tion of the core promoter for PP2A-Aa reveals the presence of the

putative BRE element (GGGCGCC) at the 255 to 249, and the

putative DPE element (TGATA) at +28 to +32 (Fig. 2A). The

PP2A-Aa promoter, however, lacks the typical TATA box. The

presence of the putative DPE element allows the binding of the

general transcriptional factor, TFIID as found in most TATA-less

promoter [36–39]. Moreover, the putative BRE element allows

the binding of TFIIB [40–41]. In the core promoter, an additional

element, the SP-1/SP-3 binding site, was identified from 26 to

218. The binding of SP-1/SP-3 to this region of the promoter

likely interferes with the binding of the general transcription

factors. Indeed, in vitro mutagenesis and luciferase reporter gene

activity assays revealed that this SP-1 binding site exerts negative

control (Fig. 6C and 6D), which is different from its action in other

target genes [42]. Introduction of the exogenous SP-1 expression

vector into both retinal pigment epithelial cells and lens epithelial

cells induces dose-dependent decrease of the PP2A-Aa promoter

Figure 7. ChIP assays to demonstrate that ETS-1, CREB, AP-2a
and SP-1 bind to PP-2a promoter. ChIP assays were conducted as
we recently described [34]. The oligos used for ChIP assays were
described in Materials and Methods. A. ChIP assays to show that ETS-1
and CREB bind to PP-2Aa promoter. Lane 1, DNA marker; lane 2, PCR
product derived from 1/50 DNA template immunoprecipitated by anti-
CREB antibody; Lane 3, PCR product derived from DNA template
immunoprecipitated by normal IgG; lane 4, PCR product derived from
1/50 DNA template immunoprecipitated by anti-ETS-1 antibody; Lane 5,
PCR product derived from DNA template immunoprecipitated by
normal IgG; lane 6, PCR product derived from direct input DNA
template without immunoprecipitation. A band of 189 bp containing
both CREB and ETS-1 binding sites in the PP2A-Aa promoter gene was
amplified. ChIP assay confirms that CREB and ETS-1 bind to PP2A-Aa
gene. B. ChIP assays to show that AP-2a and SP-1 bind to PP-2Aa
promoter. Lane 1, DNA marker; lane 2, PCR product derived from 1/50
DNA template immunoprecipitated by anti-SP-1 antibody; Lane 3, PCR
product derived from DNA template immunoprecipitated by normal
IgG; lane 4, PCR product derived from 1/50 DNA template immuno-
precipitated by anti-AP-2a antibody; Lane 5, PCR product derived from
DNA template immunoprecipitated by normal IgG; lane 6, PCR product
derived from direct input DNA template without immunoprecipitation.
A band of 168 bp containing both AP-2a and SP-1 binding sites in the
PP2A-Aa promoter gene was amplified. ChIP assays confirm that AP-2a
and SP-1 bind to PP2A-Aa gene.
doi:10.1371/journal.pone.0007019.g007
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activity and also downregulates expression of the endogenous

PP2A-Aa gene in these cells, further confirming that the SP-1

binding site within the core promoter acts as a repressor (Fig. 6).

Introduction of the exogenous SP-3 expression vector into the two

types of cells also lead to negative control, which seems not

statistically significant.

Outside of the core promoter of the PP2A-Aa gene, three well-

conserved cis-elements are identified: one ETS-1 binding site

localized from 2202 to 2192, one CREB binding site found from

2373 to 2362, and two AP-2a binding sites localized from 2321

to 2312, and from 284 to 276 (Fig. 2A). Depending on the target

genes and interacting partners, CREB, ETS-1 and AP-2a may act

as either positive regulators or repressors [43–46]. In our study, gel

mobility shifting assays with nuclear extracts from ARPE-19 or

FHL124 cells reveal that both ETS-1 and CREB can strongly bind

to the cognate cis-elements, indicating that these cis-elements are

functional. In vitro mutagenesis and reporter gene assays demon-

strate that both ETS-1 and CREB binding sites in the proximal

promoter of the PP2A-Aa play very important role. Mutations of

the ETS-1 and CREB sites individually lead to a loss of 58% and

43% promoter activity, respectively (Fig. 3C and 4C). Mutation of

both sites at the same time causes additional lose of the proximal

PP2A-Aa promoter, suggesting that both ETS-1 and CREB have

some synergistic effects (Fig. 8A). Besides the ETS-1 and CREB

binding sites, there are two copies of AP-2a binding sites in the

proximal promoter. The AP-2a (2) site localized between 284 to

Figure 8. Summary of the PP2A-Aa promoter. A. Relative importance of various cis-elements in the PP2A-Aa promoter as demonstrated by the
differential reporter gene activities driven by wild type or various mutant PP2A-Aa promoter. 1: The wild type PP2A-Aa core promoter containing BRE,
DPE, AP-2a (2) and the SP-1 binding site (A6); 2: The wild type PP2A-Aa proximal promoter containing CREB, ETS-1, AP-2a(1), AP-2a (2), BRE, DPE and
SP-1 binding sites (A5); 3: The PP2A-Aa proximal promoter containing CREB, ETS-1, AP-2a(1), AP-2a (2), BRE, DPE and SP-1 binding sites with CREB
binding site mutated; 4: The PP2A-Aa proximal promoter containing CREB, ETS-1, AP-2a(1), AP-2a (2), BRE, DPE and SP-1 binding sites with AP-2a(1)
binding site mutated; 5: The PP2A-Aa proximal promoter containing CREB, ETS-1, AP-2a(1), AP-2a (2), BRE, DPE and SP-1 binding sites with ETS-1
binding site mutated; 6: The PP2A-Aa proximal promoter containing CREB, ETS-1, AP-2a(1), AP-2a (2), BRE, DPE and SP-1 binding sites with AP-2a(2)
binding site mutated; 7: The PP2A-Aa proximal promoter containing CREB, ETS-1, AP-2a(1), AP-2a (2), BRE, DPE and SP-1 binding sites with SP-1
binding site mutated; 8: The PP2A-Aa proximal promoter containing CREB, ETS-1, AP-2a(1), AP-2a (2), BRE, DPE and SP-1 binding sites with AP-2a(1)
and AP-2a(2) binding sites mutated; 9: The PP2A-Aa proximal promoter containing CREB, ETS-1, AP-2a(1), AP-2a (2), BRE, DPE and SP-1 binding sites
with CREB and ETS-1 binding sites mutated. B. Diagram to show the relative positions of the cis-elements for general transcriptional factors and also
the four major cis-elements for the cognate transcription factors in the PP2A-Aa proximal promoter.
doi:10.1371/journal.pone.0007019.g008
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276 is more conserved than the other AP-2a (1) site localized

within 2321 to 2312 (Fig. 2A). Consistent with this conservation

is the effect they displayed on the reporter gene activity. When

mutated, the promoter with the mutant AP-2a (2) loses about 15%

promoter activity. In contrast, mutation of the AP-2a (1) causes

about 10% lose in the promoter activity (Fig. 6B). Mutation of

both AP-2a sites leads to a total of 18% loss in the PP2A-Aa
promoter activity, also indicating the partial synergistic action

between the two AP-2a sites (Figs. 6C and 8A). In both retinal

epithelial cells and human lens epithelial cells, the enhancement of

transcription by ETS-1, CREB, and AP-2a was further confirmed

by the co-transfection study in which a dose-dependent response of

the reporter gene activity was observed for each factor (Fig. 3D,

4D and 5D). Moreover, expression of each exogenous transcrip-

tion factor also displays similar mode of action to the endogenous

PP2A-Aa gene (Fig. 3E, 4E, and 5E). Thus, in vitro mutagenesis

and co-transfection assays demonstrate that all three cis-elements

act as enhancers in the PP2A-Aa promoter. This conclusion is

further confirmed by ChIP assays (Fig. 7). Together, our results

demonstrate that the PP2A-Aa promoter, though lacking the

TATA box, contains the putative BRE and DPE elements

mediating the basic regulation by the general transcriptional

factors [35] and the enhancer elements (ETS, CREB and AP-2a)

mediating the advanced control by the cognate trans-factors.

PP2A-Aa/b Plays A Critical Role in the Assembly of the
Functional PP-2A

As a major eukaryotic phosphatase, the normal function of PP-2A

is essential in maintaining the organism homeostasis and preventing

various pathological conditions such as cancer [6,18–22]. PP-2A

exists as either a heterodimeric core enzyme including the scaffold A

subunit and catalytic C subunit, or a heterotrimeric holoenzyme

consisting of the core enzyme plus one of the regulatory B subunits,

thus providing temporal and spatial specificity of PP-2A activity

within tissue cells of different organisms.

Since both C and B subunits bind to the A subunit, the normal

function of the scaffold A subunit plays a critical role in the

assembly of either core enzyme or holoenzyme of PP-2A to govern

its specific activity. This conclusion is derived from numerous

studies. First, interruption of the function of the scaffold subunit by

the small t antigen inhibits PP2A activity. The virus-encoded small

t antigen (ST) of DNA tumor viruses SV40 and polyomavirus can

exclusively bind to PP2A-Aa/b [47–48] in the HEAT repeats 3 to

6 [49–50]. As a result of this binding, the phosphatase activity of

the PP-2A core enzyme, but not the holoenzyme, was inhibited by

the t antigen [51]. Reudiger et al. [52] have shown that varying

the ratio of PP-2A core enzyme to holoenzyme causes significant

biological consequence. Binding of the t antigen to PP2A-Aa/b
stimulates MAPK activation and induces cell proliferation [53]

and eventually cell transformation [54].

Second, mutations in the gene encoding PP2A-Aa leads to

abolished PP-2A activity. Calin et al. [19] described four cancer-

associated mutations in the PP2A-Aa gene: Glu64-Asp in lung

carcinoma, Glu64-Gly in breast carcinoma, Arg418-Trp in

melanoma, and a deletion mutant missing residue 171 to residue

589 in breast carcinoma. Reudiger et al. [22] have shown that

these mutations greatly interrupt the interactions of the scaffold

subunit with either B subunit alone (Glu64-Asp and Glu64-Gly),

or with both B and C subunits (Arg418–Trp, and the deletion

mutant), thus abolishing specific PP-2A activity and leading to

tumor formation.

In addition, the normal expression level of PP2A-Aa gene plays

an essential role in the assembly of functional PP-2A. It has been

shown that both A and C subunits are expressed in similar levels in

normal cells [22]. However, in about 43% brain tumor patients

(Gliomas), PP-2A activity was significantly lower than that found

in the normal brain tissue [23]. This decrease in PP-2A activity is

neither derived from changed expression of the catalytic subunit of

PP-2A nor from mutations of the PP2A-Aa/b subunits but a 10-

fold downregulation in the expression of PP2A-Aa [23]. What

accounts for the downregulation of PP2A-Aa in these brain

tumors remains to be further explored. Nevertheless, our

demonstrations that the proximal promoter of PP2A-Aa contains

multiple cis-elements including the binding sites for ETS-1, CREB,

AP-2a and SP-1, and that these cis-elements are all functional

provide some clues. The downregulated expression of the PP2A-

Aa gene found in the gliomas [23] may be derived from the

changed expression levels and functions of the related transcrip-

tion factors. In this regard, it is worth to mention that ETS-1 is

closely involved in gliomas development. ETS-1 protein is not only

differentially expressed in astrocytes and astrocytoma cells [55] but

also regulates various targets such as Egr-1, cathepsin B and the

urokinase-type plasminogen activator besides PP2A-Aa in gliomas

[56]. A reduced expression of PP2A-Aa has also been observed in

other cancer cells such as breast cancer MCF-7 cells [24] and

prostate cancer cells (Li et al. unpublished data). Our preliminary

studies suggest the reduced PP2A-Aa expression is derived from

changed expression levels of one or more transcription factors.

In summary, our characterization of the PP2A-Aa promoter

lays a foundation for the further exploration on why PP2A-Aa is

differentially expressed in the different types of cancers. Elucida-

tion of the regulatory mechanisms governing PP2A-Aa expression

will contribute fundamental knowledge to the understanding of the

PP-2A functions in carcinogenesis and also other human diseases.
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