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Abstract

Absence of leptin has been associated with reduced skeletal muscle mass in leptin-deficient ob/ob mice. The aim of our
study was to examine the effect of leptin on the catabolic and anabolic pathways regulating muscle mass. Gastrocnemius,
extensor digitorum longus and soleus muscle mass as well as fiber size were significantly lower in ob/ob mice compared to
wild type littermates, being significantly increased by leptin administration (P,0.001). This effect was associated with an
inactivation of the muscle atrophy-related transcription factor forkhead box class O3 (FoxO3a) (P,0.05), and with a decrease
in the protein expression levels of the E3 ubiquitin-ligases muscle atrophy F-box (MAFbx) (P,0.05) and muscle RING finger 1
(MuRF1) (P,0.05). Moreover, leptin increased (P,0.01) protein expression levels of peroxisome proliferator-activated
receptor c coactivator-1a (PGC-1a), a regulator of muscle fiber type, and decreased (P,0.05) myostatin protein, a negative
regulator of muscle growth. Leptin administration also activated (P,0.01) the regulators of cell cycle progression
proliferating cell nuclear antigen (PCNA) and cyclin D1, and increased (P,0.01) myofibrillar protein troponin T. The present
study provides evidence that leptin treatment may increase muscle mass of ob/ob mice by inhibiting myofibrillar protein
degradation as well as enhancing muscle cell proliferation.
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Introduction

Leptin, the product of the ob gene, is a hormone that acts as an

afferent signal in a negative-feedback loop regulating the size of

adipose tissue mass [1]. In addition to its function as a satiety

factor, leptin regulates several physiological processes, such as

glucose and lipid metabolism, immunity, reproduction and blood

pressure homeostasis [2,3]. Skeletal muscle also constitutes an

important target for leptin [3,4]. Several studies have reported that

leptin-deficient ob/ob mice display a reduced skeletal muscle mass

[5] compared with their lean littermates. However, the mecha-

nisms whereby leptin regulates muscle growth are poorly

understood.

Skeletal muscle mass and composition are critical for exercise,

energy expenditure and glucose metabolism. Although the

underlying mechanisms involved in the development of muscle

atrophy are poorly understood, an imbalance between protein

breakdown and synthesis, in favour of the former, plays an

important role in this process [6]. The ubiquitin-proteasome

system (UPS) is critical for the specific degradation of cellular

proteins, being the main proteolytic system for protein breakdown

in muscular atrophy. UPS induces the expression of the ubiquitin

ligases E3 muscle atrophy F-box (MAFbx, also known as atrogin-1)

and muscle RING finger-1 (MuRF1). These ubiquitin ligases

target proteins with a ubiquitin chain to be subsequently degraded

within the proteasome complex to peptides [7]. Both MAFbx and

MuRF1 have been shown to be up-regulated in different models of

atrophy, conferring them the status of muscle atrophy markers

[8,9]. Another key mediator in protein breakdown during atrophy

is the forkhead box class O (FoxO) family of transcription factors

[10]. In this sense, FoxO1 and FoxO3a, which are highly

expressed in skeletal muscle, induce muscle mass loss by increasing

the expression of MAFbx and MuRF1 [11–13], by inhibiting

muscle growth and differentiation [14] and by impairing the

progression of the cell cycle [15]. On the other hand, the

enhancement of overall protein breakdown is blocked by the Akt

signaling pathway. In its phosphorylated active form, Akt triggers

the phosphorylation/inactivation of FoxO transcription factors,

sequestering them to the cytosol, where they are unable to activate

transcription of MAFbx and MuRF1 [16]. Nonetheless, under

certain conditions, the regulation of Akt and FoxO seems to be

independent of each other [17,18]. Recently, it has been reported

that peroxisome proliferator-activated receptor coactivator 1a
(PGC-1a) also constitutes an important mediator of muscle mass

down-regulating the expression levels and activity of FoxO3a and,

hence, inhibiting muscle atrophy [19].

Obesity and insulin resistance exhibit a derangement in muscle

mass regulation [6]. In this context, leptin has been shown to
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revert the obese and diabetic phenotype of ob/ob mice [20]. Thus,

the aim of our study was to examine the catabolic and anabolic

pathways involved in the regulation of muscle mass of ob/ob mice,

and whether leptin administration normalizes the reduced skeletal

muscle mass of leptin-deficient animals through FoxO-dependent

mechanisms. Data of our study provide evidence that leptin

treatment may increase muscle mass of ob/ob mice by inhibiting

muscular atrophy markers as well as enhancing positive regulators

of muscle cell proliferation.

Results

Leptin Administration Increases Muscle Mass
As expected, undetectable serum leptin concentrations were

found in ob/ob mice. Leptin administration increased leptin levels

in wild type and ob/ob mice. Importantly, the determination of

leptin was performed 20 hours after the last exogenous adminis-

tration of the hormone and measured values were whitin the

nanomolar range observed under physiological circumstances. In

addition, ob/ob mice used in our study were obese, hyperinsulin-

emic, hyperglycemic and hyperlipidemic. Leptin treatment

corrected the obese phenotype and improved glucose and lipid

metabolism of ob/ob mice, independently of the inhibitory effect of

leptin on food intake, as compared to the pair-fed ob/ob group.

Moreover, leptin also decreased body weight and fat mass of wild

type mice independently of appetite reduction (Figure S1). The

biochemical characteristics of wild type and ob/ob mice are

reported in Table S1.

The weights of gastrocnemius (GAS) (P,0.0001), extensor

digitorum longus (EDL) (P,0.0001) and soleus (SOL) (P,0.001)

muscles were significantly lower in ob/ob mice as compared with

wild type, showing a strong effect of leptin deficiency on muscle

mass (Figure 1). In addition, pair-feeding decreased the weight of

GAS in wild type (P,0.05) and ob/ob (P,0.01) mice. Leptin

treatment significantly increased GAS and EDL mass compared to

control (P,0.05) and pair-fed (P,0.01) obese animals and

prevented the SOL mass loss induced by pair-feeding in ob/ob

mice (P,0.05). Leptin administration also increased the weight of

GAS muscle in wild type mice as compared to pair-fed animals

(P,0.01). Curiously, the hormone reduced the weight of EDL in

wild type mice (P,0.05). The cross-sectional area (CSA) of GAS,

EDL and SOL muscle fibers was also decreased in ob/ob compared

to wild type animals (P,0.0001), a condition that was completely

reverted by leptin treatment (P,0.0001). Surprisingly, pair-feeding

Figure 1. Leptin Increases Muscle Mass and Muscle Fiber Size of ob/ob Mice. (A) Gastrocnemius (GAS), extensor digitorum longus (EDL) and
soleus (SOL) muscle weights of PBS (open), pair-fed (gray) and leptin-treated (closed) wild type and ob/ob mice (n = 9–10 per group). *P,0.05,
**P,0.01 and ***P,0.001. (B) Cross-sectional area (CSA) of GAS, EDL and SOL muscle fibers of PBS (open), pair-fed (gray) and leptin-treated (closed)
wild type and ob/ob mice (approximately 100 fibers/muscle from 3 mice/group). **P,0.001 and ***P,0.0001. (C) Representative histological sections
of hematoxylin-eosin-stained GAS, EDL and SOL muscles of wild type and ob/ob mice. Scale bars = 200 mm. Results are presented as mean6SEM. G:
genotype, T: treatment.
doi:10.1371/journal.pone.0006808.g001
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increased CSA of EDL and SOL muscle fibers in wild type mice

(P,0.0001), which was not observed in leptin-treated wild type

mice. Therefore, our data show that leptin administration

increases muscle mass and muscle fiber size of ob/ob mice.

Gene Expression Profiles Reveal Significant Changes in
Skeletal Muscle after Leptin Treatment

To investigate the effect of leptin on the catabolic and anabolic

pathways involved in the regulation of the GAS muscle of wild

type and ob/ob mice, their differential gene expression profiles

were analyzed by microarray analysis. The hierarchical clustering

of the gene expression profile in GAS muscle of wild type, ob/ob

and leptin-treated ob/ob mice is shown in Figure S2. Microarray

data showed 1,127 genes with differential expression (1.5-fold

change) for leptin deficiency (wild type vs ob/ob; 51.5% up-

regulated and 48.5% down-regulated genes), 1,546 genes for leptin

administration (ob/ob vs leptin-treated ob/ob mice; 33.1% up-

regulated and 66.9% down-regulated genes), and 1,960 for

appetite inhibiting-independent effects of leptin (pair-fed ob/ob vs

leptin-treated ob/ob group; 50.2% up-regulated and 49.8 down-

regulated genes). The set of genes with altered expression levels

induced by leptin deficiency and administration represents a broad

spectrum of biological processes involved in muscle growth and

atrophy, such as cell cycle progression, ubiquitin-proteolysis and

apoptosis (Tables S2 and S3 in Supporting Information). Our

study shows an up-regulation of positive regulators of muscle

growth and cell cycle progression in GAS muscle of leptin-treated

ob/ob mice (Igf1, Igfbp5, Notch3, Ccnd1, Clk4, Cited4, Cdc14a), and

myoblast differentiation (Eya1, Mkl1, Srf), whereas negative

regulators of cell cycle progression, such as Cdkn1a/p21, Cdkn1b/

p27Kip1 or Rbl2, were down-regulated by leptin administration in

ob/ob mice. Moreover, leptin treatment down-regulated the

expression levels of positive regulators of ubiquitin proteolysis

(Fbxo32/MAFbx, Need4, Ube2h, Ub1x), apoptosis (Acin1, Amid, Dffa,

Bclaf1) and autophagy (Lysmd3, Becn1, Atg121) and up-regulated

inhibitory factors of apoptosis (Apip, Bcl2) (Tables 1 and S2). Leptin

administration also increased the gene expression levels of positive

regulators of protein synthesis (Eif4e, Eefe1) and decreased the

mRNA expression of inhibitors of protein synthesis (Gsk3b, Pten).

Increased gene expression levels codifying for the contractile and

sarcomeric proteins myosin (Myh1/Mhc2x, Myh2/Mhc2a, Myh7/

Mhc1, Myl3, Myl4), troponin (Tnni1, Tnnt1, Tnnc1), tropomyosin

(Tpm3), nebulin (Neb) and titin (Ttn) were normalized by leptin

treatment in ob/ob mice (Tables 1 and S2). Furthermore, leptin

prevented the up-regulation of positive regulators of ubiquitin

proteolysis (Trim63/MuRF1, Fbxo32/MAFbx, Foxo1) and autophagy

(Gabarap11) induced by pair-feeding in ob/ob mice (Table S3).

Microarray data evidenced that leptin is an important regulator of

the expression of genes involved in muscle growth and muscle

atrophy. To confirm the microarray data, the mRNA expression

of a number of representative transcripts involved in muscle

growth and atrophy was analyzed by Real-Time PCR (Figure S3).

Leptin Administration Protects from Muscular Atrophy
No differences in the transcript levels of Foxo1 and Foxo3a in

GAS muscle were detected between wild type and ob/ob mice, but

a tendency towards a down-regulation of both transcription factors

was found after leptin treatment (Figure S3).

Nonetheless, at the protein level, the active form of FoxO3a was

increased (P = 0.012) in ob/ob mice, with the phosphorylated-

FoxO3a (inactive form) being increased by leptin administration

(P = 0.023) in wild type and ob/ob mice (Figure 2A). Thus, since the

activity of FoxO3a is inhibited by phosphorylation, data show that

leptin reduces the functional form of this transcription factor in

GAS muscle of wild type and ob/ob mice. No effect of genotype

(P = 0.833) or leptin treatment (P = 0.279) was observed on the

activity of Akt in GAS muscle of experimental animals (Figure 2B).

On the contrary, the activity of the AMP-activated protein kinase

(AMPK) was increased by leptin treatment in ob/ob mice

(P = 0.033) (Figure 2C). Gene expression studies showed a

significant decrease (P,0.001) in Pgc-1a mRNA levels in GAS

muscle of ob/ob mice (Figure S3). The effect of leptin deficiency on

PGC-1a protein expression showed a similar pattern, being lower

in ob/ob mice compared to wild type mice (P = 0.010). However,

protein expression levels of PGC-1a were significantly increased

(P = 0.005) by leptin administration in skeletal muscle of wild type

and ob/ob mice (Figure 2D).

Leptin treatment decreased the mRNA expression levels of the

atrophy marker MAFbx (P = 0.006) and tended to decrease

MuRF1 in ob/ob mice, although no significant differences were

found for the global effect of treatment (Figure S3 and Table S3).

The protein content of MAFbx (P = 0.014) and MuRF1 (P = 0.021)

was also reduced by leptin treatment in GAS muscle of wild type

and ob/ob mice (Figure 3A). Since MAFbx and MuRF1 proteins

have been associated with myofibrillar protein degradation, their

tissue distribution was analyzed by immunohistochemical analysis.

Fiber sections of GAS muscle showed higher sarcolemmal,

cytosolic and nuclear immunoreactivity of MAFbx and MuRF1

in ob/ob mice as compared to wild type mice and, analogously to

what happened with the protein content, were reduced in the

leptin-treated ob/ob group (Figure 3B). Taken together, these

results suggest that leptin administration decreases protein

expression levels of the atrophy markers MAFbx and MuRFa in

GAS muscle of wild type and ob/ob mice.

Leptin Treatment Enhances Skeletal Muscle Growth
DNA microarray screening showed that leptin administration in

ob/ob mice up-regulates genes involved in muscle growth and cell

cycle in the GAS muscle (Table S2). We examined the effect of

leptin on the protein expression of myostatin, a member of the

transforming growth factor TGFb family, which acts as a negative

regulator of muscle growth [21]. The mature form of myostatin

(22 kDa) was almost undetectable in wild type mice. However,

data showed a high protein expression of myostatin in ob/ob mice,

which was reduced after leptin treatment as compared to the ob/ob

(P = 0.026) and pair-fed ob/ob mice (P = 0.015) (Figure 4A),

suggesting that leptin enhances muscle growth in ob/ob mice.

Myofibers are postmitotic muscle cells being unable to

proliferate. Therefore, postnatal muscle growth depends on

satellite cells, which are localized between the basal lamina and

the plasmatic membrane of muscle fibers. Satellite cells are usually

quiescent but are able to proliferate in response to mitogenic

factors [22,23]. The initiation of the cell cycle depends on the

activity of the complexes of cyclin and cyclin-dependent kinases

(CDK), while FoxO transcription factors inhibit the cell cycle

progression of skeletal muscle by inducing CDK inhibitors [15].

The ob/ob mice showed an increase in the proliferating cell nuclear

antigen (PCNA) (P = 0.010), a marker molecule for proliferating

satellite cells [24,25], and a decrease in cyclin D1 (P = 0.0001)

proteins (Figure 4B). Interestingly, leptin treatment further

increased PCNA as compared to the ob/ob (P = 0.021) and pair-

fed ob/ob (P = 0.003) groups and tended to increase cyclin D1

protein in ob/ob mice (P = 0.055). No significant differences were

found in the protein expression of the CDK inhibitor p27Kip1

(Figure 4B). Given that these regulators of the cell cycle are post-

transcriptionally regulated by phosphorylation, being active within

the nuclei [26–28], immunohistochemical analyses in sections of

GAS muscle were performed to discriminate nuclear and cytosolic

Leptin & Skeletal Muscle Mass
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Table 1. Selected Genes Regulated by Leptin in Gastrocnemius Muscle.

Gene Ontology Biological
Process GeneBank Number Gene Symbol Gene name Fold change

Up-regulated genes

GO: 0007049. Cell cycle

Positive regulators of cell cycle progression

NM_007631 Ccnd1 Cyclin D1 1.217

XM_149387 Cdc14a CDC14 cell division cycle 14 homolog A isoform 1 2.717

NM_019563 Cited4 Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-
terminal domain, 4

2.251

NM_007714 Clk4 CDC like kinase 4 1.503

NM_010512 Igf1 Insulin-like growth factor 1 isoform 1 1.394

NM_010518 Igfbp5 Insulin-like growth factor binding protein 5 1.820

GO: 0019538. Protein metabolic process

Positive regulators of Protein synthesis

NM_025380 Eef1e1 Eukaryotic translation elongation factor 1 e 1 1.359

NM_007917 Eif4e Eukaryotic translation initiation factor 4E 1.454

GO: 45445. Myoblast differentiation

Positive regulators of cell differentiation

BC060260 Eya1 Eyes absent 1 homolog 1.637

AK044188 Mkl1 Myocardin-like 1 1.802

NM_020493 Srf Serum response factor 1.311

GO: 6915. Apoptosis

Negative regulators of apoptosis

NM_019735 Apip APAF1 interacting protein 1.282

NM_009741 Bcl2 B-cell leukemia/lymphoma 2 isoform 1 1.475

Down-regulated genes

GO: 0007049. Cell cycle

Negative regulators of cell cycle

NM_007669 Cdkn1a Cyclin-dependent kinase inhibitor 1A (P21) 0.612

NM_009875 Cdkn1b Cyclin-dependent kinase inhibitor 1B (P27) 0.472

AK077477 Igfbp3 Insulin-like growth factor binding protein 3 0.542

NM_011250 Rbl2 Retinoblastoma-like 2 0.631

GO: 0006914. Autophagy

Positive regulators of autophagy

NM_026217 Atg12l Autophagy-related 12-like 0.814

NM_030257 Lysmd3 LysM, putative peptidoglycan-binding, domain containing 3 0.655

NM_019584 Becn1 Beclin 1 0.802

GO: 6915. Apoptosis

Positive regulators of apoptosis

NM_023190 Acin1 Apoptotic chromatin condensation inducer 1 isoform 2 0.502

NM_153779 Amid Apoptosis-inducing factor (AIF)-like mitchondrion-associated
inducer of death isoform 1

0.658

NM_007523 Bak1 BCL2-antagonist/killer 1 0.550

NM_153787 Bclaf1 BCL2-associated transcription factor 1 isoform 2 0.543

NM_001025296 Dffa DNA fragmentation factor, a subunit isoform a 0.484

GO: 6511. Ubiquitin-dependent protein catabolism

Positive regulators of ubiquitin-proteolysis

NM_026346 Fbxo32 F-box only protein 32 0.666

NM_010890 Nedd4 Neural precursor cell expressed, developmentally down-regulated
gene 4

0.507

NM_009457 Ube1x Ubiquitin-activating enzyme E1, Chr X 0.414

NM_009459 Ube2h Ubiquitin-conjugating enzyme E2H 0.403

Leptin & Skeletal Muscle Mass
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protein expression. In addition, we assessed immunostaining for

the dystrophin protein, a marker molecule for plasmatic

membrane (Figure 5A), to define positive PCNA nuclei and

discriminate satellite cells from other cell types. In this sense, only

nuclei between the basal lamina and the plasmatic membrane

were counted. Leptin administration increased the nuclear

immunostaining for PCNA (P = 0.002) (Figure 5B) and cyclin D1

(P = 0.005) (Figure 5C) in wild type and ob/ob mice. Moreover,

nuclei of ob/ob mice showed an increased immunostaining of

p27Kip1 (P = 0.002), which was reduced by leptin treatment as

compared to ob/ob (P = 0.004) and pair-fed ob/ob (P = 0.015) mice

(Figure 5D). These data provide evidence that leptin may enhance

cell cycle progression in the GAS muscle of ob/ob mice.

The growth of skeletal muscle requires an increase in the

number of myonuclei together with an increase in the synthesis of

myofibrillar proteins to maintain a constant ratio between number

of nuclei per fiber and fiber size [29,30]. Gene expression analyses

showed up-regulation of genes codifying for contractile and

sarcomeric proteins in the GAS muscle of ob/ob mice, which was

normalized by leptin administration (Figure S3 and Table S2).

Moreover, although a positive regulation of genes involved in the

synthesis of proteins was induced by leptin administration (Table

S2), no effect on the protein expression of both isoforms of MHC

was found (Figure 6A). However, the administration of the

hormone significantly increased the slow and fast isoforms of TnT

in the GAS muscle of wild type and ob/ob mice (Figure 6B). These

data were also confirmed by immunohistochemistry (Figure 6C).

Therefore, leptin increases the protein expression of slow and fast

isoforms of the contractile protein TnT.

Discussion

Muscle loss is the result of a reduced protein synthesis and

increased myofibrillar degradation in response to inactivity, food

deprivation or catabolic diseases [6,31]. Leptin-deficient ob/ob

mice display a reduced skeletal muscle mass [5,32,33] and an

increased muscle proteosome activity [34] compared to their lean

counterparts. Moreover, leptin administration has been shown to

inhibit protein breakdown in C2C12 myotubes [35]. However,

other authors failed to observe any direct effect of leptin on the

synthesis and degradation rates of proteins in skeletal muscle of

rats [36], suggesting that leptin effects on muscle mass may be

mediated by the release of a secondary growth factor. Our study

provides evidence for a myogenic effect of leptin on wild type and

ob/ob mice. The main findings reported herein are that: 1) leptin

induces changes in the expression of transcription factors involved

in muscle growth (reduced FoxO3a and increased PGC-1a); 2)

leptin down-regulates the atrophy markers, MAFbx and MuRF1,

as well as the negative regulator of muscle growth myostatin; and

3) leptin increases the positive cell cycle markers cyclin D1 and

PCNA.

Leptin Inhibits Muscular Atrophy
Animal and human studies have shown that caloric restriction

enhances catabolic pathways in skeletal muscle through the

activation of the energy sensor AMPK, which activates FoxO

transcription factors leading to the up-regulation of MAFbx and

MuRF1 [37–39]. Our results demonstrate that leptin increases the

activity of AMPK in GAS of ob/ob mice as well as decreases the

protein expression of FoxO3a and the mRNA and protein

expression of MAFbx and MuRF1 in wild type and ob/ob mice.

These data suggest that leptin treatment inhibits the catabolic

pathway of proteins mediated by the AMPK. Overexpression of

FoxO3a is sufficient to cause skeletal muscle atrophy by increasing

the UPS activity [11,14], but recent in vivo and in vitro studies have

shown that FoxO3a also activates the autophagic/lysosomal

pathway [12,40]. In this sense, microarray data evidenced that

ob/ob mice presented an upregulation of proteolytic (Need4, Ube2h),

apoptotic (Acin, Amid), and autophagic (Lysmd3, Becn1, Atg121)

genes, which were down-regulated by leptin treatment.

Gene Ontology Biological
Process GeneBank Number Gene Symbol Gene name Fold change

GO: 0019538. Protein metabolic process

Negative regulators of Protein synthesis

NM_010124 Eif4ebp2 Eukaryotic translation initiation factor 4E binding protein 2 0.871

NM_008960 Pten Phosphatase and tensin homolog 0.665

NM_019827 Gsk3b Glycogen synthase kinase 3b 0.464

GO: 45214. Sarcomere organization

Contractile and sarcomeric proteins

XM_354615 Myh1 Myosin, heavy polypeptide 1, skeletal muscle, adult 0.521

NM_144961 Myh2 Myosin, heavy polypeptide 2 0.521

XM_354614 Myh3 Myosin, heavy polypeptide 3, skeletal muscle, embryonic 0.214

NM_080728 Myh7 Myosin, heavy polypeptide 7, cardiac muscle b 0.665

NM_010859 Myl3 Myosin, light polypeptide 3 0.585

NM_010858 Myl4 Myosin, light polypeptide 4 0.688

XM_130232 Neb Nebulin 0.386

NM_021467 Tnni1 Troponin I, skeletal, slow 1 0.438

NM_011618 Tnnt1 Troponin T1, skeletal, slow 0.687

NM_022314 Tpm3 Tropomyosin 3c 0.648

Fold changes between ob/ob vs leptin-treated ob/ob mice of selected differentially expressed genes from Table S2.
doi:10.1371/journal.pone.0006808.t001

Table 1. Cont.
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Figure 2. Leptin Decreases FoxO3a Activity and Increases PGC-1a Protein in Gastrocnemius Muscle. (A) Representative Western blot
analyses of forkhead box class O (FoxO3a) and phospho-FoxO3a proteins of gastrocnemius muscle of PBS (open), pair-fed (gray) and leptin-treated
(closed) wild type and ob/ob mice are shown. b-actin was used as a loading control (n = 8 per group). (B) Representative Western blot analyses of Akt
activity evidenced by phosphorylated-Akt and Akt proteins ratio of gastrocnemius muscle of PBS (open), pair-fed (gray) and leptin-treated (closed)
wild type and ob/ob mice (n = 8 per group). (C) Representative Western blot analyses of AMP-activated protein kinase (AMPK) activity evidenced by
phosphorylated-AMPK and AMPK proteins ratio of gastrocnemius muscle of PBS (open), pair-fed (gray) and leptin-treated (closed) wild type and ob/
ob mice are shown (n = 5 per group). (D) Representative Western blot analyses of AMP- (PGC-1a) of gastrocnemius muscle of PBS (open), pair-fed
(gray) and leptin-treated (closed) wild type and ob/ob mice are shown. b-actin was used as a loading control (n = 8 per group). Data are expressed as
mean6SEM. G: genotype, T: treatment.
doi:10.1371/journal.pone.0006808.g002
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Figure 3. Leptin Decreases MAFbx and MuRF1 Protein Expression in Gastrocnemius Muscle of Wild Type and ob/ob Mice. (A)
Representative Western blot analyses of muscle atrophy F box (MAFbx) and muscle RING finger 1 (MuRF1) proteins of gastrocnemius muscle of PBS
(open), pair-fed (gray) and leptin-treated (closed) wild type and ob/ob mice are shown. b-actin was used as a loading control (n = 8 per group).
*P,0.05. (B) Immunostaining for MAFbx and MuRF1 proteins was assessed by optic microscopy. Representative images are shown for gastrocnemius
muscle. Scale bars = 50 mm. Data are presented as mean6SEM. G: genotype, T: treatment.
doi:10.1371/journal.pone.0006808.g003
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The activation of PI3K/Akt signaling by insulin and growth

factors regulates muscular mass by reducing FoxO3a activity and,

hence, by blocking the expression of MAFbx and MuRF1 [16].

Nonetheless, under certain conditions, regulation of Akt and FoxO

seems to be independent of each other [17,18]. Short-term leptin

treatment activates Akt in smooth [41] and skeletal [42] muscles of

rats, but long-term leptin treatment fails to activate this signaling

pathway in myotubes [43] and in rat GAS muscle [44]. Our results

showed that chronic leptin administration had no effect on Akt

activity, which is in accordance with previous studies [43,44].

PGC-1a protects skeletal muscle from atrophy by blocking

FoxO3a action and atrophy-specific gene transcription [19]. The

transcript levels of PGC-1a are dramatically decreased in models

of mice with muscle atrophy induced by denervation and diabetes

[45], while energy restriction enhances the expression of PGC-1a
in skeletal muscle of rodents and humans [46–48]. Leptin-deficient

ob/ob mice show a markedly reduced expression of Pgc-1a in

brown adipose tissue, which is reverted by leptin treatment [49].

In the present study, we found that leptin deficiency is also

associated with decreased PGC-1a expression in GAS muscle, and

that leptin treatment significantly increased the PGC-1a protein in

GAS muscle of wild type and ob/ob mice, which may be mediated

by AMPK. In fact, AMPK reportedly enhances Pgc-1a up-

regulation in muscle [50,51] and AICAR, an AMPK-activating

agent, leads to marked increases in PGC-1a protein content

[52,53]. Taken together, our findings suggest that leptin inhibits

the pathways leading to muscle atrophy by increasing PGC-1a,

which, in turn, decreases the expression of FoxO3a and its down-

stream effectors, MAFbx and MuRF1 in GAS muscle of wild type

and ob/ob mice.

Leptin Enhances Muscle Growth
Muscle growth is related to a muscle fiber size increase, which

involves a higher content of myofibrillar proteins as well as

number of myonuclei to maintain a constant ratio between

myonuclei per fiber and fiber size [30]. Mitogenic factors enhance

cell cycle progression by increasing the activity of cyclin/CDK

complexes, and inducing nuclear to cytoplasmic translocation of

these inhibitors of cell cycle progression [23]. Moreover, FoxO

proteins also regulate muscular mass by blocking the proliferation

of muscle precursor cells via inhibiting DNA replication and cell

cycle progression through the increase of the negative regulator of

the cell cycle p27Kip1 [15,54]. In this regard, our data show for the

first time that leptin enhances cell cycle progression in GAS muscle

by increasing the activity of the positive regulators of the cell cycle

cyclin D1 and PCNA, and by simultaneously decreasing p27Kip1.

Figure 4. Leptin Regulates Muscle Growth and Cell Cycle Factors. (A) Representative Western blot analyses of myostatin protein of
gastrocnemius muscle of PBS (open), pair-fed (gray) and leptin-treated (closed) wild type and ob/ob mice are shown. b-actin was used as a loading
control (n = 2–6 per group). The myostatin band was detected only in 2 samples of wild type groups.*P,0.05. (B) Representative Western blot
analyses of proliferating cell nuclear antigen (PCNA), cyclin D1 and cyclin-dependent kinase inhibitor 1B (Cdkn1b/p27Kip1) proteins of gastrocnemius
muscle of PBS (open), pair-fed (gray) and leptin-treated (closed) wild type and ob/ob mice are shown. b-actin was used as a loading control (n = 8 per
group). *P,0.05, **P,0.01 and ***P,0.001. Data are expressed as mean6SEM. G: genotype, T: treatment.
doi:10.1371/journal.pone.0006808.g004
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Figure 5. Leptin Enhances Muscle Cell Proliferation. (A) Immunohistochemical staining for dystrophin and PCNA of gastrocnemious muscle of
wild type and ob/ob mice (n = 3 per group). Scale bar = 50 mm. (B) Immunohistochemical staining and relative stained nuclei number for PCNA
evaluated among 500 cells in gastrocnemius muscle of PBS (open), pair-fed (gray) and leptin-treated (closed) wild type and ob/ob mice (n = 3 per
group). Scale bar = 50 mm. **P,0.01. (C) Immunohistochemical staining and relative stained nuclei number for cyclin D1 evaluated among 500 cells
in gastrocnemius muscle of PBS (open), pair-fed (gray) and leptin-treated (closed) wild type and ob/ob mice (n = 3 per group). Scale bar = 50 mm. (D)
Immunohistochemical staining and relative stained nuclei number for p27Kip1 evaluated among 500 cells in gastrocnemius muscle of PBS (open), pair-
fed (gray) and leptin-treated (closed) wild type and ob/ob mice (n = 3 per group). Scale bar = 50 mm. *P,0.05 and **P,0.01. Data are expressed as
mean6SEM. G: genotype, T: treatment.
doi:10.1371/journal.pone.0006808.g005

Leptin & Skeletal Muscle Mass

PLoS ONE | www.plosone.org 9 September 2009 | Volume 4 | Issue 9 | e6808



Figure 6. Leptin Increases the Expression of Contractile Proteins in Skeletal Muscle. (A) Representative Western blot analyses of myosin
heavy chain type I (MHC I), myosin heavy chain type II (MHC II), slow and fast troponin T (TnT) proteins of gastrocnemius muscle of PBS (open), pair-
fed (gray) and leptin-treated (closed) wild type and ob/ob mice are shown. b-actin was used as a loading control (n = 8 per group). (B)
Immunohistochemical staining for slow and fast troponin T (TnT) of gastrocnemius muscle of wild type and ob/ob mice. Scale bars = 100 mm. Data are
expressed as mean6SEM. G: genotype, T: treatment.
doi:10.1371/journal.pone.0006808.g006
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These findings are in accordance with the mitogenic effects

described for leptin in vascular endothelial cells [55], hepatocytes

[56] cardiomyocytes [57], vascular smooth muscle cells [58], and

myoblasts [59]. Until now, there is little information available on

the effect of leptin on muscle growth in vivo. The work published by

Ruth Harris [60,61] and by Abram M. Madiehe et al. [60,61]

points to an increased protein synthesis and muscle mass in some

strains of db/db mice suggesting that leptin is able to increase the

growth of db/db mice via a mechanism that is dependent on the

short isoform of the leptin receptor.

In order to explore other potential hormonal effects, circulating

concentrations of testosterone were assessed taking into account

that androgenic hormones affect muscle mass. However, no

significant differences were observed following leptin administra-

tion. These data seem to indicate that the leptin effects on muscle

mass observed in the present study are not related to the changes

in testosterone levels. Our findings do not rule out the possibility

that other hormones may be involved in the regulation of muscle

mass of ob/ob mice. It is possible that changes observed in the

leptin-treated mice are related to the overall hormonal changes

elicited by the administration of leptin rather than due to the direct

effects of leptin on muscle mass. In addition, physical activity is a

key regulator for muscle mass and leptin reportedly increases the

reduced spontaneous locomotor activity of ob/ob mice [62,63].

Therefore, the possibility that muscle mass in leptin-treated ob/ob

mice may be affected by physical activity can not be ruled out.

Unfortunately, physical activity was not assessed in the present

study.

It has been suggested that myostatin plays a direct role in the

deterioration of the skeletal muscle in states of obesity and insulin

resistance [64–66]. The biological action of myostatin is well

described in myostatin-deficient mice, which exhibit muscular

hyperplasia and hypertrophy [21,67]. On the contrary, transgenic

mice over-expressing myostatin exhibit a reduced muscular mass

and fiber size [68,69], which has lead to consider myostatin as a

negative regulator of skeletal muscle growth. Interestingly,

myostatin regulates muscle growth by inhibiting the proliferation

[70,71] and differentiation [72,73] of myoblasts. Myostatin

inhibits the progression from the G1 to the S phase in myoblasts

[74], blocks the expression of cyclin D1 and induces its

degradation by the UPS [75,76]. In this respect, a high protein

expression of myostatin was observed in GAS of ob/ob mice in the

present study. Importantly, our data show that leptin decreases the

high myostatin protein expression related to leptin deficiency in

ob/ob mice, suggesting that leptin enhances muscle growth. These

data are consistent with the inhibitory effect of leptin on the high

mRNA myostatin levels in adipose tissue and skeletal muscle of ob/

ob mice previously observed [65].

Fiber size augmentation requires an increase of the myofibrillar

protein content. FoxO1 down-regulates genes implicated in

muscle growth and differentiation [14], and myostatin expression

has been shown to be induced by FoxO1 in myotubes and mice

[77,78]. Moreover, both myostatin and FoxO have been shown to

inhibit protein synthesis by decreasing the activity of the

components of the Akt/mammalian target of rapamycin pathway

[70,79–81]. An unexpected finding of our study was the

discordance for mRNA and protein expression of myofibrillar

MHC and TnT isoforms, which has been suggested to be due to a

higher proteolytic rate or lower translational efficiency, rather than

changes in the transcription process [82–84]. The proteins which

are ubiquitinated by MAFbx, MuRF1 and Need4 remain largely

unknown, but some evidence indicates that MAFbx ubiquitinates

and degradates MyoD [85], Need4 targets Notch [86], and

MuRF1 ubiquitinates and degrades Troponin I [87] and MHC

[84], through a direct role of FoxO1 on the MuRF1 promoter

activity [13]. Our data show that leptin administration prevented

the increase of FoxO3a protein activity and MAFbx and MuRF1

gene and protein expression in wild type and ob/ob mice.

Therefore, the increase of the Mhc1 and Mhc2a and slow TnT

mRNA levels in ob/ob mice in the absence of an increase in their

protein levels may represent a compensatory adaptation to

increase levels of lost myofibrillar proteins in ob/ob mice.

The control of muscle mass is regulated by a dynamic balance

between the anabolic and catabolic processes. Data from our study

indicate, for the first time, that leptin treatment prevents muscular

atrophy by decreasing FoxO3a, MAFbx and MuRF1 protein

expression in relation to an increase in the PGC-1a protein in the

GAS muscle of wild type and ob/ob mice. The reduced skeletal

muscle mass associated to leptin deficiency was prevented by

leptin, on the one hand, reducing the negative regulator of muscle

growth, myostatin, at the same time as by enhancing muscle cell

proliferation through an increase in cyclin D1 and PCNA as well

as the myofibrillar protein content of TnT, while decreasing

p27Kip1.

Unfortunately, except in the rare cases of leptin deficiency, the

clinical application of leptin in humans has not proved to be

worthwhile in common obesity, since most obese patients exhibit

hyperleptinemia pointing to the existence of leptin resistance.

Therefore, no therapeutic benefit as regards improving body

composition in obese humans might be foreseen. Furthermore, the

sexual dimorphism relating to the fact that women have smaller

muscles in spite of increased circulating leptin concentrations and

higher leptin receptors expression should be also contemplated

[88]. Nonetheless, practical applications of leptin administration

may be envisaged in sports medicine and the area of disuse

atrophy, which is a common clinical phenomenon. Prolonged

immobilization due to fractures or neuromotor problems may

represent scenarios for the application of leptin with therapeutic

purposes targeting the restoration of muscle atrophy following

limb disuse. Furthermore, from a physiologic perspective

researchers involved in sports physiology might be also interested

to gain more insight into the regulatory pathways involved in

muscle mass accretion. Moreover, our study suggests that leptin

treatment may be an attractive therapeutic approach to prevent

muscular atrophy associated with catabolic diseases, which might

be particularly useful in cachectic patients, such as frequently

observed in oncological processes, HIV patients as well as other

lipodystrophies.

Materials and Methods

Animals and Treatments
Ten-week-old male wild type (C57BL/6J) (n = 30) and genet-

ically obese ob/ob mice (C57BL/6J) (n = 30) supplied by Harlan

(Barcelona, Spain) were housed in a room with controlled

temperature (2262uC), and a 12:12 light-dark cycle (lights on at

08:00 am). Wild type and ob/ob mice were divided in control,

leptin-treated (1 mg/kg/d) and pair-fed groups (n = 10 per group).

A pilot study with different leptin doses and routes of

administration was carried out in order to select the appropriate

dose to ensure that its concentration would fell within the

physiological range (nanomolar range) in both the wild type and

ob/ob groups. The control and pair-fed groups received vehicle

(PBS), while leptin-treated groups were intraperitoneally admin-

istered with leptin (Bachem, Bubendorf, Switzerland) twice a day

at 08:00 and 20:00 for 28 days. Control and leptin-treated groups

were provided with water and food ad libitum with a standard

rodent chow (2014S Teklad, Harlan, Barcelona, Spain), while the
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daily food intake of the pair-fed groups was matched to the amount

eaten by the leptin-treated groups the day before to discriminate the

inhibitory effect of leptin on appetite. All experimental procedures

conformed to the European Guidelines for the Care and Use of

Laboratory Animals (directive 86/609) and were approved by the

Ethical Committee for Animal Experimentation of the University of

Navarra (080/05). Animals were sacrificed on the 28th day of

treatment by CO2 inhalation 20 h after the last PBS or leptin

administration (in order to avoid picking up effects reflecting an

acute response) and after 8 h of fasting. Serum samples were

obtained and stored at 280uC. Representative muscles of each

muscle fiber type were excised: the SOL muscle is predominantly

composed by oxidative, red fibers; the EDL contains mainly

glycolytic, white fibers; while the GAS represents a mixed muscle

type composed by both red and white fibers. Muscles of one leg

were rapidly dissected out, weighed, frozen in liquid nitrogen, and

stored at 280uC until mRNA and protein extraction, while the

contralateral leg muscles were formalin-fixed for immunohisto-

chemical analyses. Epididymal, perirrenal and subcutaneous

adipose tissue depots were also excised.

Blood Analysis
Serum glucose concentrations were measured using a sensitive-

automatic glucose sensor (Ascensia Elite, Bayer, Barcelona, Spain).

Serum triglycerides were spectrophotometrically determined using

a commercial kit (Infinity, Thermo Electron, Melbourne,

Australia). Serum free fatty acid (FFA) concentrations were

measured by a colorimetric determination using the NEFA C kit

(WAKO Chemicals, Neuss, Germany). Serum glycerol concen-

trations were evaluated by enzymatic methods [89]. Insulin and

leptin were determined using mouse ELISA kits (Crystal Chem

Inc., Chicago, IL, USA). Adiponectin and testosterone concen-

trations were also assessed using ELISA kits (BioVendor

Laboratory Medicine, Inc., Modrice, Czech Republic and R&D

Systems Europe, Ltd., Abingdon, United Kingdom, respectively).

Intra- and inter-assay coefficients of variation for measurements of

insulin, leptin, adiponectin and testosterone were 2.6–4.2% for the

former, and 5.3–8.1%, for the latter.

Microarray Experiments and Analysis
Total RNA was extracted from 20–30 mg of GAS muscle

samples by homogenization with an ULTRA-TURRAXH T 25

basic (IKAH Werke GmbH, Staufen, Germany) using TRIzolTM

reagent (Invitrogen, Barcelona, Spain). Samples were purified

using the RNeasy Mini kit (Qiagen, Barcelona, Spain) and treated

with DNase I (RNase-free DNase Set, Qiagen) in order to remove

any trace of genomic DNA.

Gene expression analyses were conducted using the Agilent

Whole Mouse Genome array (G4121B, Agilent Technologies, Santa

Clara, CA), containing 41,000 mouse genes and transcripts. Briefly,

1 mg of total RNA from each sample was amino-allyl labeled and

amplified using the Amino Allyl MessageAmp II aRNA Amplifica-

tion Kit (Ambion, Austin, TX, USA). Aliquots (1.2 mg) of amplified

aRNA were fluorescently labeled using Cy3/Cy5 (Amersham,

Biosciences, Buckinghamshire, UK) and then appropriately com-

bined and hybridized to Agilent oligomicroarrays. Hybridizations

were performed following a reference design, where control samples

were pools of RNA from all individual samples. Two hybridizations

with fluor reversal (Dye swap) were performed for each sample and 5

animals were used per group. After washing, microarray slides were

scanned using a Gene Pix 4100A scanner (Axon Instruments, Union

City, CA, USA) and image quantization was performed using the

software GenePiX Pro 6.0. Gene expression data for all replicate

experiments were analyzed using the GeneSpring GX software v

7.3.1 (Agilent Technologies). Clustering was accomplished with

the Gene and Condition Tree algorithms. In addition, Gene

Ontology groupings (http://babelomics.bioinfo.cipf.es) and the

KEGG website (http://www.genome.ad.jp/kegg/pathway) were used

in conjunction with GeneSpring (http://www.agilent.com/chem/

genespring) to identify pathways and functional groups of genes. All

microarray data reported are described in accordance with MIAME

guidelines. More information regarding the microarray experiments

can be found at the EMBL-European Bioinformatics Institute

(http://www.ebi.ac.uk/aerep/login. ArrayExpress accession number:

E-MEXP-1831).

Real-Time PCR
To validate the microarray data, a number of representative

differentially expressed genes were selected to be individually

studied by Real-Time PCR (n = 5–10 per group). For first strand

cDNA synthesis, constant amounts of 1.5 mg of total RNA isolated

from GAS muscle were reverse transcribed using random

hexamers (Roche Molecular Biochemicals, Mannheim, Germany)

as primers and 300 units of M-MLV reverse transcriptase

(Invitrogen) as previously described [90]. The transcript levels

were quantified by Real-Time PCR (7300 Real Time PCR

System, Applied Biosystems, Foster City, CA, USA). Primers and

probes were designed using the software Primer Express 2.0

(Applied Biosystems) (Table S4). Probes were designed to

hybridize between exons to ensure the detection of the

corresponding transcript avoiding genomic DNA amplification.

The cDNA was amplified at the following conditions: 95uC for

10 min, followed by 45 cycles of 15 s at 95uC and 1 min at 59uC,

using the TaqManH Universal PCR Master Mix (Applied

Biosystems). The primer and probe concentrations for gene

amplification were 300 nmoL/L and 200 nmoL/L, respectively.

All results were normalized to the levels of 18S rRNA (Applied

Biosystems) and relative quantification was calculated using the

DDCt formula [90]. Relative mRNA expression was expressed as

fold expression over the calibrator sample (average of gene

expression corresponding to the wild type group). All samples were

run in triplicate and the average values were calculated.

Western Blot
Muscle samples (20 mg) were homogenized in RIPA buffer

(1 M Tris-HCl pH 7.4, 150 mM NaCl, 1% Triton X-100, 0.1%

SDS, EDTA 2H2O 5 mM, 1% deoxycolate) supplemented with

protease inhibitors (CompleteTM Mini-EDTA free, Roche).

Soluble proteins were recovered after centrifugation at 16,000 g

for 15 min at 4uC. Protein concentration was determined

according to the method of Bradford [91] using bovine serum

albumine (BSA) (Sigma, St. Louis, MO, USA) as standard. Equal

amounts of protein (30 mg) were boiled for 10 min and resolved on

10% SDS-PAGE at constant voltage (200 V for 1 h), except for

MHC proteins (100 V for 4 h). Then, proteins were transferred to

nitrocellulose membranes (BioRad, Hercules, CA, USA) and were

blocked with 5% non-fat dry milk in TBS-Tween 20 0.05% for 1 h

at room temperature (RT). Blots were then incubated with mouse

monoclonal anti-PCNA (Dako Cytomation, Glostrup, Denmark),

rabbit polyclonal anti-myostatin, anti-cyclin D1, and anti-p27Kip1

(Abcam, Cambridge, UK), mouse polyclonal anti-MHC I, anti-

MHC II, goat polyclonal anti-PGC-1a, anti-slow TnT, anti-fast

TnT, anti-MAFbx, and rabbit polyclonal anti-MuRF1 (Santa

Cruz Biotechnology, Santa Cruz, CA, USA), rabbit polyclonal

anti-Akt1/PKB (phospho Thr 308) and anti-Akt1/PKB (Upstate,

Cambridge, UK) antibodies in blocking buffer overnight at 4uC.

After washing with TBS-Tween 0.5% (565 min), membranes

were incubated with horseradish peroxidase-conjugated anti-goat
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IgG (Zymed, San Francisco, CA, USA), anti-rabbit IgG, or anti-

mouse IgG (Amersham Biosciences) for 1 h at RT. Mouse

monoclonal anti-b-actin (Sigma) was used for normalization of

density values. The chemiluminescence ECL reactive (Enhanced

Chemiluminescent System, Amersham Biosciences) was used to

develop the bands, which were analyzed by densitometric analysis

using the Gel Doc-Quantity One 4.5.0. software (Bio-Rad).

Histological Analyses
Sections (5 mm) of formalin-fixed paraffin-embedded muscles were

dewaxed with xylene and hydrated in decreasing concentrations of

ethanol. Endogen peroxidase activity was quenched using 3% H2O2

(Sigma) in absolute methanol for 20 min at RT, and washed 3 times

with ethanol. Sections were immersed in 10 mM citrate buffer

(pH 6.0) and heated using a microwave oven at 800 W for 10 min to

enhance antigen retrieval. After cooling, sections were blocked for

30 min at RT in a humidified chamber with 5% murine or goat

serum (Sigma) in TBS. Polyclonal antibodies against MAFbx,

MuRF1, PCNA, cyclin D1, p27Kip1, fast TnT and slow TnT, used

for immunohistochemistry were the same than those used for

western blot studies. In addition, the dystrophin protein was also

immunolocalized with a monoclonal antibody (Abcam). Sections

were subsequently incubated with the appropriate dilutions of

primary antibodies in TBS with 5% mouse or goat serum (Sigma)

(1:50–100) in a humidified chamber overnight at 4uC. After washing

with TBS (365 min), sections were incubated with horseradish

peroxidase-conjugated secondary antibodies diluted in TBS with 5%

BSA (1:100) for 1 h at RT. After washing with TBS (365 min),

localization of the antigen-antibody binding antibodies was

performed by adding diaminobenzidine (DAB) (Sigma) or DAB

with glucose oxidase (Sigma) as developing system [92]. Negative

control slides with omission of the primary antibodies were included

in the immunostaining procedure. The reaction was stopped and

contrasted with Harris hematoxylin solution (Sigma). Sections were

dehydrated with increasing concentrations of ethanol and xylol,

mounted in DePeX (Panreac, Barcelona, Spain), and observed with

an optic microscope (Axiovert 40 CFL, Zeiss, Göttingen, Germany).

Fiber size was determined by measuring the cross-sectional area of

GAS, SOL and EDL muscle fibers with the Axiovision 4.6 program

(Zeiss). Positive myonuclei for PCNA, cyclin D1 and p27kip1 in cross-

sections of GAS muscles were quantified from 4 microscope fields

(400X) randomly selected. Mean value was expressed as positive

myonuclei number per 100 cells.

Statistical Analysis
Data are expressed as mean6standard error of the mean

(SEM). Global effects of genotype and treatment were determined

using a two-way analysis of the variance (ANOVA). When

interaction between both factors was detected, comparisons

between groups were subsequently analyzed by Kruskal-Wallis

followed by U-Mann Whitney tests. As previously outlined, Gene

Ontology groupings were used to identify pathways significantly

affected by leptin deficiency and administration. Furthermore,

statistical comparisons for microarray data to identify differentially

expressed genes across different groups were performed using one-

way ANOVA and Student’s t-tests as appropriate. All statistical

analyses were performed by using the SPSS statistical program

version 15.0 for Windows (SPSS, Chicago, IL, USA) and statistical

significance was defined as P,0.05.

Supporting Information

Table S1 Biochemical Characteristics of Wild Type and ob/ob

Mice

Found at: doi:10.1371/journal.pone.0006808.s001 (0.03 MB

XLS)

Table S2 Genes Differentially Regulated by Leptin Treatment

in ob/ob Mice

Found at: doi:10.1371/journal.pone.0006808.s002 (0.10 MB

XLS)

Table S3 Genes Differentially Regulated by Leptin Treatment

as Compared to Pair-Feeding in ob/ob Mice

Found at: doi:10.1371/journal.pone.0006808.s003 (0.04 MB

XLS)

Table S4 Sequences of the Primers and Taqman Probes Used in

the Real-Time PCR

Found at: doi:10.1371/journal.pone.0006808.s004 (0.03 MB

XLS)

Figure S1 Leptin Treatment Decreases Body Weight and Body

Fat in Wild Type and ob/ob Mice. (A) Body weight curves of PBS

(open), pair-fed (gray) and leptin-treated (closed) wild type and ob/

ob mice (n = 9–10 animals per group). **P,0.01 and ***P,0.001

for PBS ob/ob vs PBS wild type and leptin-treated ob/ob mice.

+P,0.05, ++P,0.01 and +++P,0.001 for pair-fed ob/ob vs leptin-

treated ob/ob. #P,0.05 and ##P,0.001 for PBS wild type vs

leptin-treated wild type. (B) Daily food intake curves of PBS (open),

pair-fed (gray) and leptin-treated (closed) wild type and ob/ob mice

(n = 9–10 animals per group). ***P,0.001 for PBS ob/ob vs PBS

wild type and leptin-treated ob/ob. #P,0.05 and # #P,0.001 for

PBS wild type vs leptin-treated wild type. (C) Epididymal (EWAT),

perirrenal (PWAT) and subcutaneous (SWAT) depots relative to

body weight of PBS (open), pair-fed (gray) and leptin-treated

(closed) wild type and ob/ob mice (9–10 animals per group).

*P,0.05, **P,0.01 and ***P,0.001. Data are presented as

mean6SEM. G: genotype, T: treatment. The striped line indicates

the beginning of the pair-feeding treatment.

Found at: doi:10.1371/journal.pone.0006808.s005 (9.73 MB TIF)

Figure S2 Hierarchical Clustering of the Gene Expression

Profile of the Gastrocnemius Muscle of Wild Type, ob/ob and

Leptin-Treated ob/ob Mice. Red represents up-regulated expres-

sion, green shows down-regulation, and yellow indicates a similar

gene expression pattern as compared to reference. White boxes

highlight that leptin treatment was able to reduce the mRNA

expression of 732 up-regulated genes in ob/ob mice and to increase

the expression of 846 down-regulated genes.

Found at: doi:10.1371/journal.pone.0006808.s006 (10.13 MB

TIF)

Figure S3 Analyses by Real-Time PCR of Key Genes Involved

in Muscular Atrophy and Muscle Growth. (A) Real-Time PCR

analysis of forkhead box class O3a (Foxo3a) and Foxo1, and

peroxisome proliferator-activated receptor coactivator 1a (Pgc-

1a) in gastrocnemius muscle of PBS (open), pair-fed (gray) and

leptin-treated (closed) wild type and ob/ob mice (n = 5 per group).

(B) Real-Time PCR analysis of muscle atrophy F box (MAFbx)

and muscle RING finger 1 (MuRF1) in gastrocnemius muscle of

PBS (open), pair-fed (gray) and leptin-treated (closed) wild type

and ob/ob mice (n = 5 per group). (C) Real-Time PCR analysis of

myosin heavy chain type I (Mhc1), myosin heavy chain type IIa

(Mhc2a), myosin heavy chain type IIb (Mhc2b) and slow

troponin T (slow TnT), in gastrocnemius muscle of PBS (open),

pair-fed (gray) and leptin-treated (closed) wild type and ob/ob

mice (n = 5 per group). Data are presented as mean6SEM of the

ratio between gene expression and 18S rRNA. G: genotype, T:

treatment.

Found at: doi:10.1371/journal.pone.0006808.s007 (0.39 MB TIF)
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