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Abstract

Identifying the molecular basis of phenotypes that have evolved independently can provide insight into the ways genetic
and developmental constraints influence the maintenance of phenotypic diversity. Melanic (darkly pigmented) phenotypes
in mammals provide a potent system in which to study the genetic basis of naturally occurring mutant phenotypes because
melanism occurs in many mammals, and the mammalian pigmentation pathway is well understood. Spontaneous alleles of
a few key pigmentation loci are known to cause melanism in domestic or laboratory populations of mammals, but in natural
populations, mutations at one gene, the melanocortin-1 receptor (Mc1r), have been implicated in the vast majority of cases,
possibly due to its minimal pleiotropic effects. To investigate whether mutations in this or other genes cause melanism in
the wild, we investigated the genetic basis of melanism in the rodent genus Peromyscus, in which melanic mice have been
reported in several populations. We focused on two genes known to cause melanism in other taxa, Mc1r and its antagonist,
the agouti signaling protein (Agouti). While variation in the Mc1r coding region does not correlate with melanism in any
population, in a New Hampshire population, we find that a 125-kb deletion, which includes the upstream regulatory region
and exons 1 and 2 of Agouti, results in a loss of Agouti expression and is perfectly associated with melanic color. In a second
population from Alaska, we find that a premature stop codon in exon 3 of Agouti is associated with a similar melanic
phenotype. These results show that melanism has evolved independently in these populations through mutations in the
same gene, and suggest that melanism produced by mutations in genes other than Mc1r may be more common than
previously thought.
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Introduction

From complex patterns, like the stripes of a tiger, to the simple

changes in the presence/absence of pigment, as in arctic hares, the

diversity in mammalian pigmentation is vast [1]. But in addition to

diversity among species, there is often appreciable variation in

pigmentation within species. Because members of the same species

that differ in their pigmentation phenotype can be crossed, this

within-species variation is amenable to traditional genetic analyses.

In addition, the molecular genetic factors that regulate mamma-

lian pigmentation are relatively well known [reviewed in 2–4], thus

enabling the genetic bases of these phenotypes to be explored.

Furthermore, a nontrivial advantage to studying pigmentation

traits is that variation is often easily detectable by eye. Mutant

phenotypes that affect the coloration of the entire body are

especially conspicuous and are easily recognized by both captive

breeders and field biologists. One such phenotype is dark

pigmentation or melanism. It is clear that melanism has evolved

many times in wide variety of animal taxa [5].

The genes that can cause darkening of coat color have been

studied most thoroughly in the laboratory mouse. Although

experimentally induced mutations in over 25 genes can produce

dark fur in lab mice [6], spontaneous coat-darkening mutations

have been reported in only four genes: the Agouti signaling protein

(Agouti), attractin (Atrn), melanocortin-1 receptor (Mc1r), and

mahogunin (Mgrn) [7–10]. The protein products of three of these

genes, Mc1r, Agouti, and Atrn, interact at the surface of pigment-

producing cells (melanocytes) and constitute the machinery

responsible for ‘‘pigment type switching,’’ the ability of melano-

cytes to switch between the production of dark brown/black

(eumelanin) and light yellow/red pigment (pheomelanin). Mc1r is a

membrane-bound receptor that, when active, signals the melano-

cyte to produce eumelanin, whereas Agouti is a paracrine signaling

protein that antagonizes Mc1r, causing the melanocyte to produce

pheomelanin. Thus, mutations that cause either constitutive- or

hyper-activation of Mc1r or loss-of-function of Agouti will result in a

melanic phenotype. The functions of Atrn and Mgrn are not as well

understood, although Atrn is thought to stabilize interactions

between Mc1r and Agouti [11]. Here, we focus on Mc1r and Agouti

because their interaction has been well characterized in the lab

mouse and thus can be extended to the study of melanism in other

taxa.

Melanic phenotypes have evolved both in nature and in

captivity in a wide diversity of animals and in some cases their
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genetic basis has been identified. In captive vertebrates, sponta-

neous mutants of Agouti, Mc1r, Mgrn, and Atrn have all been found

to cause melanism [e.g., 12,13,10,8]. In natural populations,

however, mutations in Mc1r are most commonly associated with

melanism [e.g. 12,14–16], although both Agouti and Atrn are larger

mutational targets. In addition, mutations in Agouti or Atrn that

reduce protein expression or activity lead to melanism; these

knock-out mutations are certainly more likely to occur than the

gain-of-function Mc1r mutations that cause melanism because

there are more ways to ‘‘break’’ a gene than to ‘‘improve’’ a gene’s

activity. Thus, it is unclear why Mc1r has repeatedly been shown to

be associated with melanism in nature and a key question is: are

melanism-inducing mutations in Agouti not found because they

occur less often, or are they simply more difficult to detect?

To address this question, we studied melanism in the deer

mouse, Peromyscus maniculatus (Figure 1). Melanism has been

reported in several populations of Peromyscus; melanic individuals

have been captured in a number of locations in North America,

including New Hampshire [17], California [18], Michigan [P.

Myers, pers. comm.], and Alaska [C. Conroy, pers. comm.].

Although it is unclear if these melanic phenotypes affect fitness,

their repeated occurrence provides us with multiple comparisons

of the same phenotype in the same genetic system (i.e. species).

Horner et al. [17] showed that, in mice from New Hampshire,

melanism is caused by a recessive allele at a single locus. The

authors suggested the locus might be Agouti, based on its similarity

to the nonagouti phenotype in Mus. Here we uncover the

molecular variation that causes melanism in P. maniculatus from

New Hampshire and show that the Agouti gene is responsible. We

also investigate the molecular basis of melanic phenotypes from

geographically distant populations of P. maniculatus and find that

melanism has independently arisen at least three times and by

different mutations in the same gene, Agouti, in two of those cases.

Results

Melanism caused by a single, recessive locus
The inheritance of the melanic phenotype in the New

Hampshire strain of P. maniculatus was previously investigated by

Horner et al. [17]. We confirmed their results with two crosses that

clearly demonstrate that a single autosomal recessive allele is

responsible for the melanic phenotype (Table S1).

Agouti is a candidate gene for Peromyscus melanism
The phenotypic similarity between melanic Peromyscus and

mouse (Mus) Agouti mutants and the recessive nature of the melanic

allele in P. maniculatus suggested that Agouti is a strong candidate

gene. We sequenced a 180 kb BAC clone containing Agouti from P.

maniculatus rufinus and compared it to the corresponding sequence

from the Mus genome. In Mus, the Agouti gene consists of four non-

coding exons (1A, 1A9, 1B, and 1C) and three protein-coding

exons (2, 3, and 4); this arrangement appears to be conserved in

other mammals, including rat (Rattus). Sequences orthologous to

the exons in Mus and Rattus are conserved in the P. maniculatus

sequence (Figure 2). However, when compared to the published

genome sequences of Mus and Rattus, an inversion of the region

containing exons 1A and 1A’ is present in P. maniculatus. Inversions

in this region are sometimes associated with differences in ventral

pigmentation in different strains of Mus [19].

To determine whether a mutation(s) in the Agouti locus is

associated with melanism, we genotyped the 49 offspring of an A+/

a26A+/a2 cross. We found a perfect association between successful

amplification of exon 2 and phenotype: we always produced an

exon 2 product of the expected size in wild type individuals (A+/2,

N = 34) but never in melanic (a2/a2, N = 15) individuals. In

addition, while we amplified all the Agouti exons (untranslated 1A,

1A’, 1B, 1C and translated 2–4) in all wild type offspring, we were

able to amplify only exons 3 and 4 from melanic mice. By contrast,

we did not find any amino acid differences between wild type and

melanic individuals in the entire Mc1r coding region. These results

strongly suggest, first, that melanism is caused by variation at the

Agouti locus and second, that a large deletion in Agouti may be

responsible for the melanic phenotype.

Large deletion in Agouti associated with melanism
To determine if there was a deletion in the a2 allele and if so, its

size, we used genome-walking PCR to sequence upstream (59) of

exon 3. We found that sequence identity between the wild type

BAC sequence and the melanic Agouti allele extends about 1.3 kb

59 of exon 3. Thereafter, the melanic Agouti allele sequence is

identical to the sequence 125 kb upstream in the wild type BAC

(Figure 2). Thus, melanic P. maniculatus are homozygous for an

allele with a large 125 kb deletion (aD125kb), which eliminates the

main regulatory region, the noncoding exons 1A, 1A’, 1B, 1C, and

coding exon 2.

Figure 1. Pigmentation phenotypes of P. maniculatus. (A) Typical wild type individual, dorsal hairs are banded (containing both pheomelanin
and eumelanin) and ventral hairs are white with a light grey base. This phenotype is dominant to the melanic phenotype. (B) Melanic individual with
completely eumelanic hairs. These mice were captured in Hubbard Brook Experimental Forest, NH.
doi:10.1371/journal.pone.0006435.g001

Melanism in Peromyscus
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To test whether this 125 kb deletion affects the abundance of

Agouti transcript, we measured Agouti mRNA in the skin of P4 pups.

In animals heterozygous for the wild type and the aD125kb alleles,

levels of Agouti expression were significantly higher than those of

animals homozygous for aD125kb (Figure 3A). These data show that

the aD125kb allele produces significantly less Agouti mRNA transcript

and is thus likely the cause of melanism. Mc1r transcript levels, on

the other hand, were not significantly different between melanic

and wild type individuals (Figure 3B). In addition, we performed in

situ hybridizations on 12.5 day-old embryos to determine whether

Agouti is expressed in melanic embryos. At this stage, wild type

embryos express Agouti in the whisker plate and in parts of the

limbs (Figure 3C), an expression pattern similar to that seen in Mus

[20]. We did not detect any Agouti expression in melanic embryos

(Figure 3D).

Molecular basis of melanism in Alaskan mice
To determine if the same gene and same mutation was

responsible for melanism in other populations of P. maniculatus,

we sequenced both Mc1r and Agouti in melanic and wild type mice

from an additional population. First, we sequenced Mc1r in

melanic (N = 2) and non-melanic (N = 4) P. maniculatus from Alaska

and found four amino acid polymorphisms segregating in the

sample (Figure 4). None of these polymorphisms likely cause the

melanic phenotype for several reasons: (1) none of these mutations

overlaps with any previously described darkening mutations, (2) all

four amino acids appear in other, non-melanic individuals from

other populations of P. maniculatus (Figure 4), and (3) none of the

polymorphisms correlate with the melanic phenotype in this

population.

In the same sample, we also sequenced the coding exons of

Agouti and found one segregating amino acid polymorphism, a

mutation at nucleotide position 193 (in exon 3) that results in a

change from glutamine to a stop codon at amino acid position 65

(aQ65term). This premature stop codon eliminates exon 4, which

contains a cysteine-rich region that is integral to the function of the

Agouti protein (Figure 4; [21,22]). Thus, this mutation very likely

results in a non-functional protein. Individuals both homozygous

and heterozygous for the aQ65term allele had the wild type

phenotype, consistent with the aQ65term allele being recessive and

its being a null allele. Though the small number of animals

sampled does not allow us to rule out the involvement of other loci,

these data strongly suggest that the aQ65term allele is the cause of the

melanic phenotype in the Alaskan population.

Melanism also has been reported in a third population, P. m.

gracilis from the upper peninsula of Michigan [P. Myers, pers.

comm.]. We sequenced the complete coding regions of Agouti in a

single melanic individual. The Agouti sequence possesses neither

the aQ65term nor the aD125kb mutation, nor does it contain any

obvious melanism-causing mutations in Mc1r, demonstrating a

third independent origin of melanism in P. maniculatus.

Discussion

The results of our laboratory crosses confirmed that melanism

in New Hampshire P. maniculatus is caused by a single, recessive

allele. In laboratory mice, dominant melanism is usually caused by

alleles of Mc1r, while recessive melanism is usually caused by alleles

of Agouti. Consistent with this dominance hierarchy, we found that

melanism in P. maniculatus is perfectly correlated with the presence

of an allele (aD125kb) with a large deletion at the Agouti locus. When

mice are homozygous for this allele, the abundance of Agouti

transcript in the skin is significantly lower than that in individuals

with a single copy of the wild type Agouti allele. This accords with

the observation that the deleted region contains the 59 untrans-

lated regions that are important for temporal and spatial

regulation of Agouti and probably any associated cis-regulatory

information. The deletion also encompasses exon 2, which

contains the start of the Agouti protein (amino acids 1–54).

Together, this evidence strongly suggests that the aD125kb allele

causes melanism in P. maniculatus from New Hampshire.

Sequencing of Agouti and Mc1r coding regions in melanic

individuals from other geographic locations shows that melanism

arose independently at least three times in P. maniculatus. Melanic

individuals from Shrubby Island, AK are homozygous for an allele

(aQ65term) of Agouti that contains a premature stop codon in exon 3.

This mutation is predicted to result in a non-functional protein.

Although we cannot rule out contributions of linked variation to

the melanic phenotypes possessed by mice from New Hampshire

and Alaska, given the likely effects of the D125kb and Q65term

Figure 2. Schematic and VISTA alignment of the Mc1r and Agouti loci in Mus, Rattus, and Peromyscus. Dark blocks represent coding
sequences; light blocks represent untranslated exons. Mc1r consists of a single exon that spans approximately 1.5 kb similar to its Mus ortholog. The
Agouti locus spans over 100 kb. Grey arrows indicate a duplication present in all three taxa; brackets indicate the inversion of the duplicated region in
Peromyscus. Asterisks mark the location of a conserved region that is necessary for Agouti expression (Y. Chen and G. S. Barsh, pers. comm.). The red
line and red arrowhead mark the locations of the aD125kb deletion and the aQ65term premature stop codon, respectively. The conservation plot was
generated by aligning Peromyscus BAC sequence and sequence from the Rattus genome using LAGAN [75] and plotting conservation with mVISTA
[76].
doi:10.1371/journal.pone.0006435.g002
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Figure 3. Agouti and Mc1r expression in wild type and melanic mice. (A, B) Relative expression of Agouti and Mc1r transcripts in dorsal skin of
P4 P. maniculatus was measured by quantitative RT-PCR. Expression level of the target gene is standardized with that of b-actin. We compared
relative expression levels of each gene with Student’s t-test (two-tailed, unequal variance). For each phenotype class, N = 5. (A) Agouti expression is
significantly higher in the dorsal skin of wild type mice than in melanic mice; expression level in melanic mice is not significantly different from zero.
(B) Mc1r expression in wild type and melanic mice does not significantly differ. Bars indicate standard error. (C,D) Lateral views of whole-mount in situ
hybridizations for Agouti in E12.5 embryos. (C) Wild type embryos express Agouti in the whisker plate and the limbs (arrows). (D) Agouti expression is
not detected in aD125kb homozygote embryos.
doi:10.1371/journal.pone.0006435.g003
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mutations and the known effects of null Agouti alleles in other taxa,

it is very likely that these mutations represent the causative

variation underlying these melanic phenotypes. The melanic

individual from Michigan possesses neither the aD125kb allele nor

the aQ65term allele; melanism in this population must be caused

either by variation at another locus or possibly by unexamined

variation at the Agouti or Mc1r loci.

This study presents two cases in which a specific molecular variant

at the Agouti locus appears to cause melanism in a natural population.

Mc1r mutants represent the vast majority of cases of melanism in

natural populations of mammals, despite many occurrences of

melanic Agouti mutants in captive and domestic stocks (Table 1).

There are a number of possible explanations for this discrepancy.

One possible explanation involves dominance. Haldane [23]

suggested that, when natural selection acts on new (i.e., rare)

beneficial mutations, adaptation will be biased toward fixing

dominant alleles, which are immediately visible to selection (but

see [24]). Thus, we expect that when melanism is adaptive, we

may see a prevalence of melanic Mc1r mutants. On the other

hand, if melanism is deleterious and is being held at mutation-

Figure 4. Melanism evolved multiple times independently in P. maniculatus, twice by mutations in the Agouti gene. (A) Wild type and
melanic museum skins from Shrubby Island, AK (C. Conroy, pers. comm.) and Hubbard Brook Experimental Forest, NH [17]. Illustrations of the dorsal
hair pattern are shown above each specimen. Black stars represent locales included in this study; white star denotes another location where melanic
Peromyscus were reported [18]. (B) Table of polymorphism for Mc1r and Agouti coding sequences. Arrows indicate two sites harboring mutations that
are perfectly correlated with melanism.
doi:10.1371/journal.pone.0006435.g004
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selection equilibrium, we might expect melanism caused by

mutations in Agouti if they are recessive. Thus, depending on

environmental conditions, expectations regarding the fixation

probabilities of Mc1r versus Agouti alleles are different. In

Peromyscus, the melanic alleles in both populations described in

this study were found at low frequencies – 3–7% assuming Hardy-

Weinberg equilibrium ([17]; data not shown) – and there is no

obvious association between melanism and environmental condi-

tions as observed in other species (e.g., pocket mice; [25]),

suggesting these alleles may not be adaptive. Thus, if melanic

phenotypes are often fixed from new dominant mutations rather

than standing genetic variation, this may explain the prevalence of

melanism caused by Mc1r.

Second, if mutations in Agouti have greater negative pleiotropic

effects than mutations in Mc1r, then we would expect to see more

evolution in the latter. Having fewer negative pleiotropic

consequences of mutations at a locus translates to less evolutionary

constraint (or higher net selection coefficients). While deleterious

effects may be tolerated when organisms are raised in captivity,

they could have important fitness consequences in nature.

Whether differing amounts of pleiotropy of mutations at these

loci affects the evolution of melanism is difficult to say, because

mutations in both Agouti and Mc1r may affect traits other than

pigmentation. Mutations in Mc1r, for example, have recently been

discovered to have effects in the nervous system [26]. Pleiotropy is

especially well documented in Agouti: ectopic expression of Agouti in

Mus can result in obesity and lethality [27,28] and null mutants in

Rattus and Peromyscus exhibit behavioral differences [29,30]. But

pleiotropic consequences may be mitigated by the precise type and

location of mutations. It has been predicted that for any given

Table 1. Spontaneous alleles causing melanic phenotypes in mammals and birds.

gene
wild/
domestic taxon allele name

homozygous
phenotype mutation reference

Agouti d Canis familiaris a black coat R96C [55]

d Coturnix japonica Y*RB black coat 8 bp deletion (frameshift) [56]

w/d Equus caballus Aa black coat 11 bp deletion in exon 2 (frameshift) [57,58]

d Felis catus ASIP-D2 black coat 2 bp deletion in exon 2 (frameshift) [12]

d Mus a22R black coat F118S [59]

d Mus a black coat 11 kb insertion in intron 1 [7]

d Ovis aries Aa black coat unknown non-coding mutation [60]

d Rattus a black coat 19 bp deletion in exon 2 (frameshift) [61]

d Vulpes vulpes a dark ‘‘silver’’ coat 166 bp deletion of entire exon 2 [62]

Mahogunin d Mus Mgrn1md dark brown coat 5 kb insertion in intron 11 [10]

d Mus Mgrn1md-2J dark brown coat 5 kb insertion in exon 12 [10]

d Mus Mgrn1md-5J dark brown coat 8 kb insertion in intron 2 [10]

Attractin d Mus Atrnmg dark brown coat 5 kb insertion in intron 26 [63]

d Mus Atrnmg-L dark brown coat 5 kb insertion in intron 27 [63]

d Mus Atrnmg-3J dark brown coat 5 bp deletion in exon 16 (frameshift) [8]

d Mus Atrnmg-6J dark brown coat large deletion of N-terminal exons [64]

b-defensin 103 w/d Canis familiaris Canis lupus KB black coat 1 bp deletion (frameshift) [65,66]

Mc1r d Bos taurus ED black coat L99P [67]

d Coturnix japonica E dark brown plumage E92K [13]

d Gallus gallus E black plumage E92K [68,69]

d Mus Eso dark brown coat L96P [9]

d Mus Eso-3J dark brown coat E92K [9]

d Ovis aries ED black coat M73K, D119N* [70,71]

d Sus scrofa ED1 black coat L99P and D121N [72]

d Vulpes vulpes EA dark ‘‘silver’’ coat C125R [62]

w Alopex lagopus blue dark grey/blue coat G5C, F280C [73]

w Anser c. caerulescens blue dark plumage V85M [14]

w Chaetodipus intermedius dark dark brown coat R18C, R109W, R160W, Q233H* [15]

w Coereba flaveola GSV black coat E92K [16]

w Herpailuris yaguarondi MC1R-D24 dark brown coat 24bp deletion [12]

w Mus Etob black coat until 8 weeks S69L [9]

w Panthera onca MC1R-D15 black coat 15 bp deletion [12]

w Stercorarius parasiticus dark dark plumage R230H [14]

w Sula sula dark dark plumage V85M and H207R [74]

*indicates mutations in complete linkage disequilibrium.
doi:10.1371/journal.pone.0006435.t001
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gene, mutations in the cis-regulatory elements may minimize

antagonist pleiotropic effects relative to those in coding regions

because such mutations can alter the time or place of gene

expression in some tissues while preserving gene function in others

[31–33]. Our data provide examples of mutations that are

associated with morphological diversity: in one case, a premature

stop codon, and in a second, a large deletion of both regulatory

and exonic DNA. Thus, our data show, despite potential

pleiotropic effects, both cis-regulatory and coding mutations in a

highly pleiotropic gene, Agouti, cause a visible melanic phenotype

that segregates in natural populations. Alternatively, it is possible

that the melanic alleles in this study do generate negative

pleiotropic effects that prevent them from increasing in frequency.

The third possibility is that a bias exists toward detecting

mutations in the small Mc1r locus versus the larger, more complex

Agouti locus. In fact, one would expect that there are more possible

mutations that can cause a null Agouti allele than a constitutively

active Mc1r allele. Many cases of melanism that have not yet been

assigned a precise mutational cause (e.g., some populations of

pocket mice [34]; pocket gophers [35]; leaf warblers [36]) may be

caused by variation at Agouti, or indeed other loci.

Understanding the genetic basis of phenotypes that have arisen

independently underpins studies of convergence by natural

selection. While the fitness consequences of the melanic pheno-

types in this study are unknown, studies of pigmentation may be

uniquely positioned to identify convergence and to uncover its

molecular basis because pigmentation traits are easily recognizable

and many of the genes involved in producing pigments are well

characterized. As the number of cases of convergence on a

particular phenotype increases, so does our understanding of the

constraints limiting the ways that phenotypes can evolve. In some

cases, like stomach lysozyme [37,38], pelvic reduction in

sticklebacks [39,40], or cyclodiene resistance in a number of

insect taxa (reviewed in [41]), evolution appears to be tightly

constrained, and the same gene is the repeated target of natural

selection. In other cases, such as pigmentation, many different

genetic mechansims can produce the same phenotype (beach mice

[42,43]; pocket mice [34]; Drosophila [44]; cavefish [45,46];

Heliconius [47]). However, in these cases and others, it seems that

a handful of proteins at key regulatory points in the pigmentation

pathway are major targets of evolution change (e.g., Mc1r/Agouti in

vertebrates; ebony/yellow in Drosophila; DFR in flowering plants

[48]) Thus, natural selection may repeatedly target either the same

key points in a genetic pathway or even the same genes to produce

the most beneficial phenotype while minimizing deleterious

pleiotropy. Future work on additional phenotypes in additional

taxa will shed light on the myriad ways that evolution can generate

morphological diversity.

Materials and Methods

Ethics statement
Experiments were approved by the Harvard University

Institutional Animal Care and Use Committee and were

conducted in accordance with National Institutes of Health

regulations governing the humane treatment of vertebrate

animals.

Animal samples
For this study, we first focused on mice from a wild-derived

captive strain of melanic Peromyscus maintained at the Peromyscus

Genetic Stock Center (Columbia, South Carolina). These melanic

animals (P. maniculatus gracilis) are derived from mice captured in

1977 at the Hubbard Brook Experimental Forest in New

Hampshire [17]. Second, to study the genetic basis of other

melanic phenotypes, we obtained tissue samples of melanic mice

from natural history collections originally captured in two

additional populations in Alaska (P. m. keeni) and Michigan (P. m.

gracilis).

Genetic Crosses
To determine the genetic basis of melanism in P. maniculatus

from New Hampshire, we conducted two types of genetic crosses.

First, to confirm dominance, we set up four mating pairs of wild

type P. maniculatus bairdii and melanic P. m. gracilis [17]. Second, for

the single-locus test, we established three mating pairs and

backcrossed mice that were heterozygous for the melanic allele

to the wild type. We then scored the phenotypes of the resulting

offspring by eye.

Tissue Samples
We acquired tissue samples from two additional populations of

P. maniculatus that harbor melanic individuals. First, we received

tissue samples from mice (P. m. keeni) inhabiting Shrubby Island in

southeastern Alaska (University of Alaska Museum of the North,

accession numbers UAM20875, 20876, 20878, 20880, 20882),

although the status of P. m. keeni as a subspecies of P. maniculatus

[49] or its sister species, P. keeni, [50] is unresolved. We also

acquired a tissue sample of a single melanic individual of P. m.

gracilis from Macinac County, Michigan (University of Michigan

Museum of Zoology). Tissue samples from another melanic

population (P. m. gambeli) in California [18] were not available.

PCR amplification and sequencing
We extracted genomic DNA from liver using the DNeasy kit

(Qiagen, Valencia, CA). Primers and PCR conditions used to

amplify the complete Agouti coding exons are shown in Table S2;

these amplification primers were also used in the sequencing

reactions. Primers to amplify the Mc1r coding region were used as

previously described [51]. We used ABI3730xl and 3130xl

sequencers (Applied Biosystems, Foster City, CA) and aligned all

sequences in SEQUENCHER (Gene Codes, Ann Arbor, MI). When a

deletion was identified, we used genome-walking to identify the

breakpoint (GenomeWalker Universal kit; Clontech, Mountain

View, CA); primers are shown in Table S3. Once we identified the

precise deletion breakpoint, we designed primers across the

deletion to genotype individuals; these primers are listed in Table

S2.

BAC sequencing
To examine the Mc1r and Agouti loci in Peromyscus, we screened

an available BAC library for P. m. rufinus. For the Agouti locus, we

captured the entire described regulatory region [52] by using two

probes representing untranslated exon 1A/1A’ and the last coding

region, exon 4, which span approximately 100 kb in Mus. A

160 kb BAC containing Mc1r and a 180 kb BAC containing Agouti

were then shotgun sequenced by Agencourt (Beverly, MA) until

sequences from each BAC could be assembled into a single contig

for each locus and all gaps were filled.

Real time quantitative PCR
To quantify Mc1r and Agouti transcript levels in wild type and

melanic mice from New Hampshire, we used quantitative real-

time PCR to detect Mc1r and Agouti mRNA in the skin of 4-day-

old (P4) pups, a time when Agouti expression is high [52]. First, we

extracted total RNA from dorsal skin that had been frozen in

liquid nitrogen with an RNeasy kit (Qiagen). Next, we generated
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cDNA pools by reverse transcribing from ,1ug total RNA with

Superscript II reverse transcriptase and poly-dT(20) primer.

Finally, we measured transcript abundances with TaqMan custom

probe based on exon-4 sequence (Applied Biosystems, Foster City,

CA) as previously described [53] on a Mastercycler Realplex2

(Eppendorf North America, New York, NY). We compared

expression of the target transcript to that of b-actin by calculating

2DCT in which DCT is the difference between the target and

b-actin CTs for a given sample. We assayed expression level for

each individual in duplicate.

In situ hybridization
We generated a cDNA pool from Peromyscus embryonic skin at

E13, and amplified the entire coding region of Agouti (exons 2 to 4).

An Agouti anti-sense riboprobe was obtained by RNA synthesis

reaction and used to perform in situ hybridization on wild type and

melanic embryos at E12.5 as previously described [54].

Supporting Information

Table S1 Melanism is caused by a single autosomal recessive

allele in P. maniculatus. We found complete recessivity of the

melanic phenotype in the New Hampshire strain of P. maniculatus

consistent with previous observations [17]. Offspring resulting

from crosses between homozygous wild type mice (A+/A+) and

homozygous melanic mice (a2/a2) were all phenotypically

indistinguishable from wild type (N = 64), confirming that the

allele(s) causing the melanic phenotype is recessive to the wild type

allele. In a second experiment, offspring that were heterozygous

for the melanic allele (A+/a2; although phenotypically wild type) –

were intercrossed, resulting in 49 offspring, of which 34 (69%)

were the wild type phenotype, 15 (31%) were melanic, and none

had an intermediate phenotype. The ratio of phenotypes is not

significantly different from 3:1 (x2 = 0.82, 1 d.f., p.0.35),

confirming that a recessive allele at a single locus is responsible

for the melanic phenotype in this strain of P. maniculatus.

Subsequent genotyping of these offspring revealed a ratio of

homozygous wild type:heterozygote:homozygote melanic ratio not

significantly different from 1:2:1 (x2 = 0.88, 2 d.f., p.0.6).

Found at: doi:10.1371/journal.pone.0006435.s001 (0.04 MB

DOC)

Table S2 Standard PCR primer sequences and conditions.

Found at: doi:10.1371/journal.pone.0006435.s002 (0.03 MB

DOC)

Table S3 Genome walking PCR primer sequences.

Found at: doi:10.1371/journal.pone.0006435.s003 (0.03 MB

DOC)
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