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Abstract

Background: Glucagon like peptide-1 (GLP-1) and its analogue exendin-4 (Ex-4) enhance glucose stimulated insulin
secretion (GSIS) and activate various signaling pathways in pancreatic b-cells, in particular cAMP, Ca2+ and protein kinase-B
(PKB/Akt). In many cells these signals activate intermediary metabolism. However, it is not clear whether the acute
amplification of GSIS by GLP-1 involves in part metabolic alterations and the production of metabolic coupling factors.

Methodology/Prinicipal Findings: GLP-1 or Ex-4 at high glucose caused release (,20%) of the total rat islet insulin content
over 1 h. While both GLP-1 and Ex-4 markedly potentiated GSIS in isolated rat and mouse islets, neither had an effect on b-
cell fuel and energy metabolism over a 5 min to 3 h time period. GLP-1 activated PKB without changing glucose usage and
oxidation, fatty acid oxidation, lipolysis or esterification into various lipids in rat islets. Ex-4 caused a rise in [Ca2+]i and cAMP
but did not enhance energy utilization, as neither oxygen consumption nor mitochondrial ATP levels were altered.

Conclusions/Significance: The results indicate that GLP-1 barely affects b-cell intermediary metabolism and that metabolic
signaling does not significantly contribute to GLP-1 potentiation of GSIS. The data also indicate that insulin secretion is a
minor energy consuming process in the b-cell, and that the b-cell is different from most cell types in that its metabolic
activation appears to be primarily governed by a ‘‘push’’ (fuel substrate driven) process, rather than a ‘‘pull’’ mechanism
secondary to enhanced insulin release as well as to Ca2+, cAMP and PKB signaling.
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Introduction

The mechanisms of glucose-stimulated insulin secretion (GSIS)

in the b-cell remain to be defined. In addition to the triggering

pathway involving a rise in ATP production, KATP channel

closure and a Ca2+ rise [1,2,3], fuel signaling is thought to involve

additional pathways, in particular anaplerosis/cataplerosis, pyru-

vate cycling processes, endogenous lipolysis and enhanced

glycerolipid/fatty acid (GL/FFA) cycling [4,5,6,7,8,9]. Besides

the signals induced by calorigenic nutrients and their associated

production of metabolic coupling factors [4], b-cell function is

modulated by a variety of neurohormonal agents and glucoincre-

tins [10], including glucagon like peptide-1 (GLP-1), an incretin

hormone secreted by the L-cells of the distal intestine [10,11].

GLP-1 levels in the plasma increase rapidly following a meal [12],

and this hormone has a profound glucose-lowering effect through

both central and peripheral actions [13], the latter effect being

particularly at the level of the b-cell [10]. GLP-1 stimulates insulin

gene expression [14], proinsulin biosynthesis [10], and it also

potentiates GSIS [10,14]. GLP-1 also has proliferative [15] and

antiapoptotic actions on the b-cell [10]. The biologically active

form of GLP-1 is derived from proglucagon via the action of

prohormone convertase enzymes [10,11], and circulating GLP-1 is

rapidly removed from the circulation following its degradation by

dipeptidyl peptidase-4 (DPP-4) [16].

GLP-1 exerts its cellular action by binding to its receptor, a G-

protein coupled receptor (GLP-1R), expressed in b-cells, nervous

system, heart and kidney [10,11]. The activation of the GLP-1R

leads to the induction of many signal transduction systems,

including cAMP, Ca2+, PI3-Kinase and EGF receptor signaling

[10,11,17,18]. These multiple actions of GLP-1 are also observed

upon exposure of b cells to Exendin-4 (Ex-4), a peptide that is an
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incretin mimetic and which lowers levels of blood glucose as a

consequence of its ability to activate the GLP-1R [10]. GLP-1

induces insulin secretion during short-term exposure to the

hormone, or after chronic exposure to the hormone [10,19].

Even though the precise mechanisms of GLP-1 action are not fully

understood, it is established that the stimulation of GSIS by GLP-1

involves activation of membrane-bound adenylyl cyclase and

cAMP production, leading to protein kinase-A (PKA) and Epac

[20] activation, and an increase in intracellular Ca2+ [10,11,21]. A

rise in cytoplasmic and mitochondrial Ca2+ has been linked to the

activation of mitochondrial dehydrogenases, in particular pyruvate

dehydrogenase [22], a-ketoglutarate dehydrogenase and isocitrate

dehydrogenase [3,22,23]. Additionally, islet tissue and the b-cell

contain some glycogen [24,25] that might be mobilized following a

rise in cellular Ca2+ or cAMP [26], thus releasing glucose-1P that

may enter the glycolytic pathway following its conversion to

glucose-6-P. It is therefore attractive to hypothesize that GLP-1

may indirectly activate b-cell energy metabolism, thereby raising

levels of cellular ATP, and possibly influencing other metabolic

coupling factors, via its effect on cellular levels of Ca2+ and cAMP.

Thus, it is generally believed that the cAMP and Ca2+ pathways

cannot fully account for the complete magnitude of GLP-1

mediated GSIS enhancement [10,11,19].

Besides Ca2+ signaling, the binding of GLP-1 to its receptor also

results in the activation of protein kinase-B (PKB/Akt) [27,28,29]

and PKB activation in other cell types has been linked to various

metabolic effects, including glucose transport in muscle [30]

glycogen synthesis [31] and lipolysis [32]. It can also be

hypothesized that an increase in cellular ATP content might

inactivate AMP-activated protein kinase (AMPK) [33], as elevated

glucose does [34], which may lead to reduced phosphorylation of

hormone sensitive lipase and adipose triglyceride lipase [35], with

subsequent enhanced lipolysis [36] and activation of the lipid

amplification arm of glucose signaling for insulin secretion [36].

Thus, our previous work has established a role for lipolysis in GSIS

[37,38]. In addition, it was previously shown that orlistat, a pan-

inhibitor of lipases, suppresses the incretin action of GLP-1 [39],

and that GLP-1 enhances lipolysis in HIT (b) cells [40].

In the present study we examined whether the acute stimulation

of GSIS by GLP-1 or Ex-4 involves the modulation of glucose,

fatty acid and energy metabolism in the b-cells, as studied using

isolated islets of both rats and mice. The study was designed to

respond to four questions of general interest for b-cell neuropep-

tide and fuel signaling. 1) Does GLP-1 amplify GSIS in part by

metabolic signaling? 2) Does the activation of major cellular

signaling processes (Ca2+, cAMP, PKB etc) in response to a

physiological peptide agonist changes b-cell metabolism? 3) Does

enhanced insulin secretion contribute significantly to total energy

consuming processes in the b-cell? 4) Is the b-cell similar or

different from most tissues in term of metabolic activation,

specifically whether it is primarily governed by a ‘‘push’’ (fuel

substrate driven) process, rather than a ‘‘pull’’ mechanism

secondary to enhanced activation of its major cellular function.

Materials and Methods

Animals and diets
Ethics Statement. All procedures were performed in

accordance with the Institutional Committee for the Protection

of Animals at the Centre Hospitalier de l’Université de Montréal

or Institutional Guidelines for Animal Care (IACUC) at the

Marine Biological Laboratory, in compliance with United States

Public Health Service regulations.

Wistar rats (200–250 g; Charles River) and male Swiss-Webster

mice or male CD-1 rats were housed under controlled temper-

ature (21uC) and light conditions (12-h light/dark cycle) with free

access to water and standard chow diet.

Isolation and culture of islets and islet cells
Pancreatic islets were isolated by collagenase digestion of the

pancreas according to Gotoh et al [41]. After digestion and

washing and separation by histopaque gradient centrifugation,

islets were hand-picked and cultured overnight in a humidified

incubator with 5% CO2. For measurements of insulin secretion,

the cell culture medium was RPMI-1640 containing 11 mM

glucose and supplemented with 10% foetal calf serum, 10 mM

HEPES (pH 7.4), 1 mM sodium pyruvate, 100 U/ml penicillin

and 100 mg/ml streptomycin (RPMI complete medium). For

measurements of oxygen consumption, isolated rat or mouse islets

were cultured overnight in RPMI-1640 complete medium

containing 5 mM glucose. For single cell studies of mitochondrial

ATP levels, the islets were dispersed by incubation in Ca2+/Mg2+

free phosphate buffered saline, 3 mM EGTA and 0.002% trypsin

as previously described [42]. Islet cells obtained by dispersion of

islets were plated on poly-D-lysine coated coverslips (MatTek,

Ashland, MA) in 35 mm Petri dishes. After 24 h, single islet cells

were transduced with Ad-MitoLuc-RFP at 50 MOI (multiplicity of

infection) for 12 h, after which viral media were replaced with

appropriate growth media. Transduction efficiency in single islet

cells, determined from RFP fluorescence, reached more then 90%

under these conditions.

Measurement of insulin secretion and insulin content
After overnight culture, rat islets were distributed in 12-well

plates (10 islets/well) and incubated for 2 h in 1 ml RPMI

complete medium containing 2.8 mM glucose. The islets were

then washed and pre-incubated for 45 min at 37uC in KRBH/

0.07% defatted BSA and 2.8 mM glucose, followed by incubation

for 1 h in 1 ml KRBH/0.5% defatted BSA and 2.8, 8.3 or

16.7 mM glucose plus or minus 20 nM GLP-1-(7–36)-amide

(Bachem Americas, Torrance, CA, USA) or 20 nM Ex-4 (Bachem

Americas, Torrance, CA, USA), in the presence or absence of

0.3 mM palmitate. For whole mouse islets, or populations of single

mouse islet cells (plated on the wells of 48-well plates), insulin

secretion was measured at 4, 7.5 and 16.7 mM glucose in the

presence or absence of 10 nM Ex-4. At the end of a 30 min static

incubation, media were kept for insulin measurement by

radioimmunoassay (Linco research, St. Charles, MO, USA). Islet

total insulin content was measured following acid-ethanol (0.2 mM

HCl in 75% ethanol) extraction.

Islet fatty acid oxidation and esterification
Fatty acid (FA) oxidation and esterification were determined in

batches of 50 islets cultured as described above. After 2 h

incubation in 2.8 mM glucose-RPMI complete medium, islets

were washed in KRBH/0.25% BSA and pre-incubated for 45 min

at 37uC in KRBH/0.25% defatted BSA and 2.8 mM glucose after

which they were incubated for 2 h (FA oxidation) or 4 h (FA

esterification) in 1 ml KRBH/0.25% defatted BSA containing 2.8,

8.3 or 16.7 mM glucose in the presence or absence of 20 nM

GLP-1, 0.1 mM (oxidation) or 0.2 mM (esterification) palmitate,

1 mCi/ml [9,10(n)-3H] palmitate (51 Ci/mmol, GE Healthcare,

Baie d’Urfé, QC, Canada), and 1 mM carnitine. At the end of the

incubation, the media were collected for the determination of islet

FA oxidation and total lipids were extracted from islets for the

measurement of islet FA esterification [38].

GLP-1 & b-Cell Fuel Metabolism
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Glucose oxidation and utilization
Groups of 20 islets cultured and pre-incubated as described

above for the insulin secretion assay, were incubated in a 0.6 ml

Eppendorf tube without capping, in a final volume of 70 ml

KRBH/0.25% defatted BSA containing 2.8 to 16.7 mM glucose

with D-[U-14C]-glucose for oxidation measurements (250 mCi/

mmol, PerkinElmer, Canada) and D-[5-3H]-glucose for utilization

measurements (16 Ci/mmol, GE Healthcare, Canada) with or

without 20 nM GLP-1 [43]. For oxidation incubations, this

incubation tube was placed upright in an airtight-sealed 20 ml

scintillation vial, which also contained an empty 1.5 ml Eppendorf

tube without capping. The reaction was stopped after 90 min

incubation at 37uC with constant agitation by the addition of 50 ml

of a mix consisting of metabolic poisons (400 mM citric acid,

10 mM rotenone, 10 mM antimycin and 3.5 mg KCN, pH 4.9).

To the empty 1.5 ml tube in the scintillation vial, 250 ml of 5% (w/

v) KOH was added to trap released 14CO2. Incubations were

continued for 60 min at room temperature and glucose oxidation

was determined by measuring the KOH-trapped 14CO2. For

utilization measurements, the scintillation vial also contained

500 ml of 1 mM HCl at the bottom. After stopping the incubations

as above, the tightly sealed vials were left at room temperature for

40 h and glucose utilization was determined by measuring the

amount of 3H2O equilibrated into the 0.5 ml HCl in the vial.

Lipolysis
Batches of 60 islets, cultured as described above, were washed in

KRBH/0.07% BSA and 2.8 mM glucose and were transferred

into 0.2 mL of KRBH/0.07% BSA medium in a 48 well plate

with 2.8, 8.3 or 16.7 mM glucose and 20 nM GLP-1 or 20 nM

Ex-4. The plate was incubated for 3 h at 37uC in a humidified

atmosphere containing 5% CO2, after which the media were

collected for glycerol determination by an enzymatic assay [37].

Islet protein content was measured, as previously described [37].

Measurement of [Ca2+]i and cAMP content
Mouse islets were dispersed by mild digestion with trypsin-

EDTA and the single islet cells were plated on glass cover-slips for

[Ca2+]i measurement, or in 96-well cell culture plates for cAMP

determination. After overnight culture, the islet cells were infected

with Ad-MtLuc-RFP (m.o.i. equal to 50). Measurements of [Ca2+]i

were performed after 48 h, using fura-2 loaded b-cells, imaged at

100X magnification using a dual excitation light source and a

ratiometric imaging system (IonOptix Corp.) equipped with filter

sets that minimize crossover between fura-2 and RFP [44]. The

cAMP content was determined by immunoassay using a Direct

Biotrak EIA kit (Amersham) as described earlier [45].

Oxygen Consumption
Oxygen consumption in single rat or mouse islets was measured

at 37uC in the presence or absence of 10 nM Ex-4 or 10 mM

forskolin by the self-referencing method based on an electrochem-

ical oxygen sensor (BioCurrents Center, MBL, Woods Hole, MA)

moving between a ‘‘near’’ and ‘‘far’’ position at the islet. The

magnitude of the amperometric current used for the reduction of

oxygen is proportional to the oxygen concentration at that

particular point [46]. When islet respires, oxygen concentration

is lower at near position. Thus, the current used for reduction of

oxygen on the sensor will be greater at the far position, and the

measured difference in the electric current between far and near

position (Difference Current, DC) is greater than zero. When an

islet further increases oxygen consumption (in response to a rise in

glucose concentration), oxygen concentration at near position

decreases even more and causes further increase in the DC.

Oxygen consumption was measured in islets incubated in KRBH

containing 4, 7.5, and 16.6 mM glucose.

Mitochondrial ATP
Changes of mitochondrial ATP levels (ATPm) were measured in

a population of approximately 250,000 single rat or mouse islet cells

infected with Ad-MitoLuc-RFP. This virus was generated using the

mt-Luc coding sequence in plasmid VR102. mt-Luc is a fusion

protein in which the 26 amino acid N-terminal signal peptide of

cytochrome C oxidase subunit VIII (COX8) is fused to codon-

optimized firefly luciferase [47]. Ad-MitoLuc-RFP infected islet cells

were incubated with KRBH buffer (for 72 h) containing, either 4,

7.5 or 16.6 mM glucose without or with 10 nM Ex-4. Single islet

cells, grown and infected on the PDL-coated glass coverslips inside a

35 mm dish (MatTek, Ashland, MA) were placed directly onto the

surface of the photocathode optical window of a Hamamatsu R464

photomultiplier tube housed in a 37uC heated box. Luciferin was

then added to the KRBH at a final concentration of 100 mM in

order to allow the measurement of photoemissions resulting from

luciferase-catalyzed oxidation of luciferin [48].

PKB/Akt phosphorylation
A group of 200 islets cultured and pre-incubated as described

for insulin secretion experiments, was incubated for 30 min in

1 ml KRBH/0.5% defatted BSA containing 2.8 or 8.3 mM

glucose in the presence or absence of 20 nM GLP-1. After 30 min,

islets were lysed in 0.1 ml of 50 mM HEPES (pH 7.5), 2 mM

sodium orthovanadate, 4 mM EDTA, 100 mM sodium fluoride,

10 mM sodium pyrophosphate, 1 mM PMSF, 1% (v/v) NP40 and

protease inhibitors. Total cellular proteins were obtained after

sonicating the islets for 10 s and centrifugation at 15,0006g at 4uC
for 12 min. The supernatant was collected and the protein content

assayed (Pierce). Proteins were resolved by 10% sodium dodecyl

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and elec-

trotransferred to nitrocellulose membranes (BioRad, Hercules,

CA, USA). After overnight blocking with 5% non-fat milk, the

membranes were probed with antibodies for pSer473-PKB and

total PKB (Cell Signaling Technology, MA, USA) and the proteins

were visualized by enhanced chemiluminescence (Pierce).

Statistical analysis
Data are expressed as means6SE. Significance was calculated

for multiple comparisons by using one-way analysis of variance

(ANOVA) with Bonferroni post-hoc testing. A P-value of,0.05

was considered significant.

Results

Glucose stimulated insulin secretion from isolated rat islets in a

dose-dependent manner, and this effect was enhanced by 0.3 mM

palmitate at an intermediate concentration (8.3 mM) of glucose

(Fig. 1A). Both GLP-1 and Ex-4 markedly potentiated GSIS at 8.3

and 16.7 mM glucose, and palmitate did not further elevate

insulin secretion. At 16.7 mM glucose, GLP-1 and Ex-4 stimulated

insulin secretion 3–4 fold more than glucose alone. In the presence

of GLP-1 or Ex-4 the amount of insulin released during the

45 min time period corresponded to approximately 20% of the

total islet content of insulin. In mouse islets, Ex-4 enhanced GSIS

at 7.5 and 16.7 mM glucose, but not at 4 mM glucose (Fig. 1B).

Overall, Fig. 1 shows that the islets that were used in the current

study were highly responsive to glucose, GLP-1 and Ex-4 and

therefore suitable to be used to respond to the addressed questions.

Inasmuch as both GLP-1 and Ex-4 are agonists of GLP-1 receptor

GLP-1 & b-Cell Fuel Metabolism
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on the b-cells, with near equal potency, most studies to date have

not found any significant differences between these two agonists in

in vitro experiments. In the present study, although most

experiments were performed with both GLP-1 and Ex-4, because

of the similar nature of the data, only either of these is illustrated.

PKB has multiple metabolic effects in various cell types [49] and

GLP-1 acutely activates PKB in INS cells [27] and human islets

[29]. So far it has not been shown that GLP-1 activates PKB in

normal rodent b-cells. We examined the effect of GLP-1 (20 nM)

on PKB phosphorylation in rat islets after a 30 min exposure to

the hormone, and observed that GLP-1 significantly increased Ser-

473 phosphorylation of PKB in normal islet cells (Fig. 2).

It was therefore of interest to determine whether changes in islet

intermediate metabolism might be explained by influences of

GLP-1 on PKB phosphorylation/activation [50,51], in addition to

its previously demonstrated stimulatory effects on islet cAMP and

Ca2+ signaling shown in many studies employing both normal

(human, rat, mouse) and tumoral b-cell (for reviews see

[3,10,19,20,21]). Tsuboi and co-workers [52] reported that

GLP-1 receptor activation increased [Ca2+]i, which caused an

elevation of mitochondrial ATP in MIN6 insulin-secreting cells. In

order to ascertain that Ex-4 increases [Ca2+]i and cAMP in normal

mouse b-cells under our experimental conditions where mito-

chondrial ATP and O2 consumption were measured, single cell

measurements of [Ca2+]i were performed using b-cells loaded with

fura-2, infected with Ad-MtLuc-RFP, and equilibrated in KRB

containing 5.6 mM glucose. Under these conditions, Ex-4 (10 nM)

stimulated an increase of [Ca2+]i in these cells (Fig. 3A).

Importantly, MtLuc expression had no effect on the percentage

of cells exhibiting a .100 nM increase of [Ca2+]i (Fig. 3B). Thus,

viral infection did not disrupt the stimulatory action of Ex-4 on

intracellular Ca2+ signaling. Since Ex-4 is known to stimulate

insulin secretion in a glucose-dependent manner, we examined

whether glucose concentration influences Ex-4 stimulated intra-

cellular Ca2+ signaling. This was in fact the case since the action of

Ex-4 to increase [Ca2+]i was more prominent under conditions in

which mouse b-cells were equilibrated in KRB containing 7.5 mM

glucose as compared to 5.6 mM glucose (Fig. 3B).

Since it is known that the increase of [Ca2+]i in response to Ex-4

is secondary to b-cell cAMP production [44], it was of interest to

Figure 1. Acute effects of GLP-1 and Ex-4 on GSIS in rat (A) and mouse (B) islets. Pancreatic islets were isolated and cultured overnight
prior to use as described in Methods. Islets were incubated for 1 h (A) or 30 min (B) as described in Methods for examining insulin secretion at
indicated concentrations of glucose and GLP-1 (20 nM) or Ex-4 (20 nM) in A, or 10 nM Ex-4 in B, in the absence or presence of 0.3 mM palmitate.
Insulin released into the media and the total islet insulin content were measured. Results shown are mean6SE from 3 independent experiments with
quadruplicates (n = 12). For A, *p,0.05, **p,0.01, ***p,0.001 when compared with corresponding 2.8 mM glucose group. #p,0.05, ##p,0.01,
###p,0.001 when compared with corresponding groups without GLP-1 or Ex-4 treatment. For B, {p,0.01 when compared to corresponding
minus Ex-4 group. Insulin secretion in mouse islets at basal glucose levels (4 mM) was 1.5660.3 ng insulin/10 islets/30 min.
doi:10.1371/journal.pone.0006221.g001
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determine if viral infection altered the ability of Ex-4 to increase

levels of cAMP in primary mouse islet cells. We found that Ex-4

stimulated cAMP production in a dose-dependent manner, in islet

cells infected with Ad-MtLuc-RFP (Fig. 3C), without any

significant difference from cells not infected with Ad-MtLuc-RFP

(Fig. 3C). Thus, viral infection as described here for Ad-MtLuc-

RFP, did not disrupt intracellular Ca2+ signaling and cAMP

production in mouse b-cells.

We have previously shown [53,54] that GSIS in rat islets and

INS cells is accompanied by reduced b-oxidation and increased

partitioning of fatty acids into glycerolipids, an event that is

thought to be coupled to b-cell activation of insulin release [5].

Therefore, we examined whether the acute stimulatory effect of

GLP-1 on GSIS in islets might result from altered lipid

metabolism. There was no significant effect of GLP-1 on palmitate

oxidation or its incorporation into different classes of glycerolipids

or cholesterol esters or phospholipids (Fig. 4) at the various tested

glucose concentrations.

We next assessed whether the acute stimulatory effect of GLP-1

on GSIS is associated with changes in islet glucose metabolism.

However, rat islet glucose utilization (Fig. 5A) or oxidation (Fig. 5B)

was not significantly affected by GLP-1 at all tested glucose

concentrations, except for a small increase in utilization at

16.7 mM glucose (Fig. 5A).

Enhanced lipolysis and GL/FFA cycling are thought to play a

role in the amplification (KATP-independent) arm of fuel induced

insulin secretion [5,35], and previous work in the HIT cell line

showed that GLP-1 enhances glycerol release in this tumoral (b)

cell [40]. However, GLP-1 did not enhance lipolysis in rat islets at

low, intermediate and high glucose (Fig. 5C).

We also examined the effect of Ex-4 and GLP-1 on oxygen

consumption at different glucose concentrations in rat and mouse

islets since this parameter reflects overall fuel utilization and

metabolic activation of a given tissue. Even though oxygen

consumption increased with glucose concentration, there was no

significant change with Ex-4 (Fig. 6A & B) or with GLP-1 (data not

shown), in accordance with the results from glucose oxidation

experiments. Also, the adenylate cyclase activator forskolin

(10 mM) did not affect oxygen consumption in mouse islets (data

not shown).

Enhanced mitochondrial metabolism and ATP production

plays a central role in b-cell fuel signalling [55] and GLP-1 was

shown to enhance mitochondrial ATP production in the tumoral

b-cell line MIN6 [52]. We further measured mitochondrial ATP

levels in isolated rat and mouse islet cells engineered to express

mitochondrial-targeted luciferase, after incubation for 5 to 30 min,

with different glucose concentrations and Ex-4. Glucose caused a

marked and dose dependent increase in mitochondrial ATP,

within 5 min of incubation, in both rat and mouse islets cells, but

Ex-4 did not significantly change mitochondrial ATP at all tested

glucose concentrations (Fig. 7A & B). Identical results were

obtained using 20 nM GLP-1 (data not shown). We verified that

the mitochondrial-luciferase-engineered islet cells respond nor-

mally to the respiratory substrates and inhibitors, by examining the

effect of methylsuccinate (10 mM), a membrane permeable form

of succinate and FCCP (10 mM), an uncoupler of oxidative

phosphorylation. As expected, during a 15 min incubation,

methylsuccinate enhanced ATP production above the basal

(4 mM glucose) level, whereas, FCCP reduced ATP levels (data

not shown).

Discussion

Fuel stimulated insulin secretion in the b-cells involves the

production of metabolic coupling factors and an elevation in

intracellular Ca2+ [1]. GLP-1 and Ex-4 enhance GSIS in the b-cells,

cause a rise in cytosolic Ca2+, elevate cAMP and activate the PKA

and PKB signaling pathways [3,10,19,20,21]. Because activation of

Ca2+, cAMP and PKB signaling is known to modulate intermediary

and energy metabolism in several cell types, we hypothesized that

GLP-1 signaling to stimulate insulin secretion is in part linked to

changes in b-cell metabolism and the production of metabolic

coupling factors. The data in fact show that GLP-1 or Ex-4 barely

affect b-cell metabolism at large, and therefore that GLP-1 induced

insulin secretion may not involve metabolic signaling related to

glucose, lipid and energy metabolism.

We [1,5] and others [56] provided evidence that enhanced

lipolysis in b-cells plays a role in GSIS. However, lipolysis does not

appear to be involved in the acute amplification of GSIS by GLP-1

in normal islet tissue. Thus, in accordance with a previous study

using isolated mouse islets [57], we observed that GLP-1 or Ex-4

do not affect rat islet lipolysis. Furthermore, islets from hormone

sensitive lipase-KO mice exhibited GLP-1 stimulation of GSIS

similar to that of control mouse islets [37]. The previously reported

increase in lipolysis by acute treatment with GLP-1 in HIT (b) cells

[40] is probably due to the inherent differences in established

tumoral cell lines from normal islet b-cells.

Lipid amplification pathways of GSIS in the b-cell involve

reduced fatty acid b-oxidation and concomitant increased

esterification of fatty acids into glycerolipids [53,54]. We have

suggested that enhanced GL/FFA cycling is instrumental in the

amplification of GSIS via the generation of lipid signalling

Figure 2. PKB phosphorylation in response to GLP-1 in rat
islets. Islets were incubated for 30 min at 2.8 or 8.3 mM glucose in the
presence or absence of 20 nM GLP-1. Activation of PKB by GLP-1 was
assessed with antibodies specific for Ser473phospho-PKB and PKB,
respectively. (A) Representative immunoblot of phospho- and total PKB
in rat islets. (B) Quantitative measurement of PKB phosphorylation after
30 min treatment with GLP-1. Results are means6SE of 4 separate
experiments. #p,0.05, when compared to the corresponding ‘minus
GLP-1’ group.
doi:10.1371/journal.pone.0006221.g002
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molecules that act as metabolic coupling factors for insulin

secretion [5,35]. However, no effect of GLP-1 was noticed on

either palmitate b-oxidation or its incorporation into glycerolipids,

cholesterol esters or phospholipids. Thus, GLP-1 mediated

enhancement of GSIS does not appear to be dependent on either

lipolysis or alteration in GL/FFA cycling.

GLP-1 activates PKB in INS (b)-cells [27,28], human [29] and

rat islets (present study). PKB activation can lead to various

metabolic effects in different cell types, including glucose transport

[30] and glycogen synthesis [31] in muscle, and lipolysis in

adipocytes [32]. In addition PKB activation inhibits AMPK [33],

and activation of AMPK by AICAR or expression of a

constitutively active AMPK mutant in b-cells curtail GSIS

[34,58]. However, despite GLP-1 activation of islet PKB, none

of the studied parameters of b-cell metabolism were changed,

suggesting that b-cell PKB activation is not linked to acute changes

in b-cell metabolism.

Measurements of mitochondrial ATP, which rapidly increase

within 5 min and respiration as oxygen consumption in rat and

mouse islets revealed no change with Ex-4, in accordance with

glucose oxidation measurements showing no effect of GLP-1. This

indicates that GLP-1 does not amplify GSIS via changes in b-cell

energy metabolism. Earlier work on the acute actions of GLP-1 on

b-cell energy metabolism using the tumoral b-cell line MIN-6

documented that high concentrations (100 nM) of GLP-1 rapidly

increased levels of ATP in both the cytosol and the mitochondrial

matrix [52]. In contrast, we now report that activation of the GLP-

1 receptor by 10 nM Ex-4 failed to alter levels of ATP in the

mitochondrial matrix of both rat and mouse islet cells over a

period of 5–30 min at different glucose concentrations. Even

though in the present study and in [52], early changes in the

mitochondrial ATP were measured (within few minutes of

incubations), the different results obtained in [52] could be

attributable to the use of excessively high GLP-1 concentration

and also the tumoral cell line, MIN6. It is also possible that the

tumoral b-cells appear to differ from normal b-cells as far as GLP-

1 action on b-cell metabolism is concerned, both in terms of

lipolysis and energy metabolism. It is possible that the interaction

of the endoplasmic reticulum with the mitochondria, as described

by Tsuboi and co-workers [52], occurs in MIN6 cells but not in

normal rodent b2cells. Thus, Ca2+ released from the endoplasmic

reticulum might not be a strong stimulus for mitochondrial ATP

production in authentic b-cells.

Collectively the present results indicate that alterations of

glucose, lipid and energy metabolism as well as ATP production

are not involved in the mechanisms whereby GLP-1 augments

GSIS. Perhaps of greater importance is the established ability of

GLP-1 to stimulate cAMP production and to activate both PKA

and Epac [19,20]. These two cAMP-binding proteins regulate b-

cell functions that are also under the control of glucose

metabolism. Such functions include KATP channel activity,

cytosolic Ca2+ handling, and insulin granule exocytosis. The

present results also show that the higher glucose concentration-

dependency of Ex-4 to stimulate insulin secretion is reflected in a

similar high glucose concentration dependence for Ex-4-mediated

[Ca2+]i increase in mouse b-cells. Ex-4-stimulated cAMP produc-

Figure 3. Exendin-4 increases [Ca2+]i and cAMP content in mouse b-cells. A, A single fura-2 loaded and Ad-MtLuc-RFP-infected mouse b-cell
was imaged to determine the [Ca2+]I, at 5.6 mM glucose in KRBH. After establishment of a stable baseline [Ca2+]i, 10 nM Ex-4 was applied for 25 sec
(indicated by horizontal bars). Note that a repeatable increase of [Ca2+]i was measured. B, Population study conducted at the single cell level in which
the action of Ex-4 to increase [Ca2+]i was evaluated in b-cells not infected (open bars) or infected with Ad-MtLuc-RFP (filled bars). For these
experiments, the KRB contained 5.6 or 7.5 mM glucose, as indicated. A response to Ex-4 was defined as a .100 nM increase of [Ca2+]i occurring in a
single b-cell. C, Ex-4 caused a dose-dependent increase in cAMP content in mouse islet cells in KRB containing 7.5 mM glucose without or with Ad-
MtLuc-RFP infection.
doi:10.1371/journal.pone.0006221.g003
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tion, which precedes [Ca2+]i increase in islet cells [21], is not

influenced by Ad-MtLuc-RFP viral infection indicating that the

viral infection did not adversely affect the results of this study.

Thus, the insulin secretagogue action of GLP-1 likely arises as a

consequence of its ability to facilitate the action of glucose-derived

metabolic coupling factors, rather than by directly stimulating

metabolic signaling per se.

Another aspect of the present study is that it provides new

information about b-cell activation of energy metabolism of this

fuel sensing cells with respect to other tissues. In many cell types

like muscle tissue, the activation of their primary biological

function and energy demanding process drives mitochondrial

metabolism via changes in redox, phosphorylation potential or

Ca2+. In the present study, it came as a surprise that in spite of a

very significant enhancement in GSIS by GLP-1 and Ex-4 at high

glucose in both rat and mouse islets, amounting to approximately

20% of the total insulin content in 1 h (in the case of rat islets), no

concomitant rise in fuel utilization, O2 consumption or ATP

production was noticed. These results indicate that the energy

consuming processes activated by GLP-1 and likely other

glucoincretins, such as ion ATP-ases, the release of insulin from

the ready-releasable pool of secretory granules, the ATP-

dependent [59] refilling of this pool and recycling of excess

plasma membrane via endocytosis following exocytosis, consume

very little energy relatively to overall cell metabolism.

Recent studies in fact revealed that much of the energy needed

for the secretory granule membrane fusion comes from the

conformational changes of the proteins involved in this process.

Thus, the energy needed for the fusion of membranes overcoming

the repulsive forces, arises from the formation and folding of v-

and t-SNARES [60]. In vitro experiments using artificial lipid

bilayers demonstrated that the formation of a single SNARE

complex (the v- and t-SNARE complex) provides sufficient energy

for the fusion of the outer leaflets of the bilayers [61]. Release and

re-cycling of v- and t-SNARES in high-energy form is accom-

plished by the involvement of the SNAP and NSF ATPase, with

the hydrolysis of ATP, which is the only step where metabolic

energy is invested [60]. Other proteins including Munc18–1 are

Figure 4. Palmitate b-oxidation and esterification into different lipids in rat islets in the absence or presence of GLP-1. Islets were
processed as described for insulin secretion (see [Fig. 1]) and after the pre-incubation step they were incubated for 2 h (FA oxidation) or 4 h (FA
esterification) in 1 ml KRBH/0.25% defatted BSA containing medium with 1 mM carnitine and 1 mCi/ml [9,10(n)-3H] palmitate (51 Ci/mmol), at 2.8, 8.3
or 16.7 mM glucose in the presence or absence of 20 nM GLP-1. Cold palmitate (pal) was present at 0.1 mM for oxidation and 0.2 mM for
esterification experiments. A, Palmitate oxidation; B—H, palmitate incorporation into diacylglycerol, DAG (B), triacylglycerol, TG (C), monoacylglycerol,
MAG (D), non-esterified fatty acids, NEFA (E), cholesterol esters, CE (F), phospholipids, PL (G) and total glycerolipids, GL (H). Means6SE of 6–8 separate
incubations in 3 independent experiments.
doi:10.1371/journal.pone.0006221.g004
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also known to provide additional conformational energy to

facilitate the fusion of SNARE complexes [60]. Thus, it is likely

that the acute augmentation of GSIS at high glucose by GLP-1 is

not dependent on elevated substrate oxidation and ATP

production but may utilize the Ca2+-mediated and SNAREpin/

Munc protein conformational energy dependent fusion of the

docked secretory granules with plasma membrane to release their

insulin content. Therefore, it seems that the insulin secretion

process per se does not consume much of the b-cell metabolic

energy even upon marked insulin release.

Finally, the data indicate that the b-cell is different than most

cell types in terms of energy metabolism where activation of Ca2+,

cAMP, PKB etc signaling promoted by a stimulus drives

simultaneously a biological process (for example contraction),

and cellular metabolism/ATP production to support it. Thus, b-

cell metabolic activation appears to be primarily driven by

substrate (fuel) availability, a ‘‘push’’ process [1,62] rather than a

‘‘pull’’ mechanism secondary to enhanced insulin release.

However the data do not discount the possibility that a marked

rise in Ca2+ influx promoted by a potent secretagogue like glucose

drives mitochondrial metabolism [63]. The present study also

emphasizes the major differences that exist between normal and

tumoral b-cell in term of metabolic activation.
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Figure 5. Glucose metabolism and lipolysis in rat islets in the
absence or presence of GLP-1. Islets were processed as described
for insulin secretion (see [Fig. 1]) and after the pre-incubation step they
were incubated in 70 ml KRBH/0.25% defatted BSA medium containing
2.8, 8.3 or 16.7 mM glucose plus or minus 20 nM GLP-1 in presence of
D-[U-14C]-glucose (for oxidation) (A) and D-[5-3H]-glucose (for utiliza-
tion) (B). Incubations were stopped after 90 min as described in
Methods. Glucose oxidation was measured as 14CO2 released, and
glucose utilization was determined by measuring the amount of
released 3H2O. Results are means6SE of 15 determinations in 3 separate
experiments. *p,0.05, **p,0.01, ***p,0.001 when compared to the
corresponding 2.8 mM glucose group; #p,0.05 when compared to the
corresponding ‘minus GLP-1’ group. For lipolysis determinations (C)
overnight-cultured rat islets were washed in KRBH/0.07% BSA medium
with 2.8 mM glucose and were transferred into 0.2 mL KRBH/0.07% BSA
medium with 2.8, 8.3 or 16.7 mM glucose with or without 20 nM GLP-1.
After incubation for 3 h at 37uC, glycerol released into the media and
the islet protein content were determined. Means6SE from 4
independent experiments with pentaplicates.
doi:10.1371/journal.pone.0006221.g005

Figure 6. Oxygen consumption of rodent islets in the absence
or presence of Ex-4. Single rat (A) and mouse (B) islets were adhered
on glass coverslips inside a 35 mm dish using CellTak adhesive. After
30 min equilibration at 4 mM glucose, oxygen consumption was
measured in response to 4, 7.5 and 16.6 mM glucose with and without
10 nM Ex-4 (10 nM). Data are means6SE of 3 experiments.
doi:10.1371/journal.pone.0006221.g006
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