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Abstract

Epstein-Barr virus (EBV) persists as a life-long latent infection within memory B cells, but how EBV may circumvent the innate
immune response within this virus reservoir is unclear. Recent studies suggest that the latency-associated non-coding RNAs
of EBV may actually induce type I (antiviral) interferon production, raising the question of how EBV counters the negative
consequences this is likely to have on viral persistence. We addressed this by examining the type I interferon response in
Burkitt lymphoma (BL) cell lines, the only in vitro model of the restricted program of EBV latency-gene expression in
persistently infected B cells in vivo. Importantly, we observed no effect of EBV on interferon alpha-induced signaling or
evidence of type I interferon production, suggesting that EBV in this latent state is silent to the cell’s innate antiviral
surveillance. We did uncover, however, a defect in the negative feedback control of interferon signaling in a subpopulation
of BL lines as was revealed by prolonged interferon-stimulated gene transcription consistent with sustained tyrosine
phosphorylation on STAT1 and STAT2. This was due to inadequate induction of expression of the ubiquitin-specific protease
UBP43, which removes the ubiquitin-like ISG15 polypeptide conjugated to proteins (ISGylation) in response to type I
interferons. Results here are consistent with previous findings in genetically engineered Ubp432/2 murine cells that UBP43
down-regulates interferon signaling, independent of its ISG15 isopeptidase activity, by precluding the protein kinase JAK1
from the interferon receptor. This natural deficiency in UBP43 expression may therefore provide a useful model to further
probe the biological roles of UBP43 and ISGylation.
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Introduction

Burkitt lymphoma (BL) is a B-cell tumor that arises as a

consequence of chromosomal translocations that juxtapose the c-

MYC proto-oncogene to Ig-gene enhancers, resulting in constitu-

tive over-expression of c-MYC [1]. The endemic form of BL,

furthermore, is highly associated (.90%) with latent infection by

Epstein-Barr virus (EBV), though the precise contribution(s) of

EBV to lymphomagenesis in this context is unclear. Cell lines

derived from EBV-positive BL tumors, unlike EBV-immortalized

B lymphoblastoid cell lines (LCLs), are not dependent on EBV for

continued cell growth and proliferation, and maintain a restricted

program of viral latent-infection gene expression known as

Latency I, in which the only known viral protein expressed is

the genome-maintenance protein, EBNA-1. In addition, the EBV

small non-coding RNAs EBER-1 and EBER-2 are expressed, as

are a family of alternatively spliced and potentially non-coding

transcripts (BARTs) that are the precursors for a subgroup of the

EBV miRNAs [2–4]. By contrast, LCLs (and some BL cell lines)

support expression of the full complement of EBV latency-

associated genes, i.e., the Latency III or Growth program.

Whereas Latency III represents viral gene expression that

ensues for a limited time following infection of naı̈ve B cells in vivo,

virus-driven establishment of latent infection within memory B

cells (the long-term reservoir of EBV) is believed to result in the

complete cessation of EBV protein expression, i.e., the Latency

program (reviewed in [5]). However, upon periodic replication of

latently infected memory cells (presumably to promote self

renewal), reactivation of EBNA-1 expression occurs to prevent

loss of the episomal EBV genome during cell division [6]. BL cell

lines that maintain the Latency I program, therefore, offer an in

vitro model of EBV latency that is representative of persistent EBV

infection in its normal B cell host.

Herein, we employed this model of restricted EBV latency to

address whether the virus may likely interfere with the type I

interferon (IFN) response in normal B cells persistently infected

with EBV. This work was initially prompted by a report that

EBER expression in BL cells confers resistance to IFN-a-induced
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apoptosis [7], but that in our hands this was not mediated through

inhibition of the dsRNA-activated protein kinase (PKR) [8], as had

been previously concluded [7]. More recently, work from others

suggests that the EBER RNAs themselves induce the expression of

type I IFNs through direct activation of RIG-I [9]. We reasoned,

therefore, that as a consequence of IFN induction by the EBERs,

EBV may have evolved a mechanism to counter antiviral

responses and other influences of IFN on cellular processes

counterproductive to long-term EBV persistence.

During Latency III, the LMP-1 protein of EBV inhibits the

activation (Tyr phosphorylation) of the JAK kinase Tyk2 during

IFN-a signaling [10]. We hypothesized, therefore, that a

comparable inhibition of IFN-induced signaling may exist during

Latency I (LMP-1 negative) to counter type I IFN production.

However, contrary to our hypothesis, we report here that IFN-a-

induced signaling, as measured by activating phosphorylation of

STAT1 and STAT2 and the induction of IFN-stimulated gene

(ISG) expression, is not affected by EBV in BL cells that maintain

Latency I. We also did not observe evidence of IFN-a/b
production by EBV-infected B cells. Instead, we uncovered an

EBV-independent and previously unknown defect in the negative

feedback regulation of IFN-a signaling. This was evidenced by

sustained Tyr phosphorylation of STAT1 and STAT2 and DNA-

binding by ISGF3 (the STAT1- and STAT2-containing complex

responsible for induction of ISG transcription), resulting in

prolonged ISG expression following IFN treatment. Further, we

demonstrate that the basis for this is an inability to adequately

express the ubiquitin-specific protease UBP43 (itself encoded by an

ISG) that deconjugates the ISG15 protein moiety from ISGylated

proteins [11,12], and which has previously been shown to inhibit

type I IFN signaling by blocking STAT phosphorylation and

consequently ISG induction through its direct displacement of the

kinase JAK1 from the IFN-a/b receptor [12,13]. Thus, our data

supports UBP43 as a primary negative regulator of IFN-a
signaling. Finally, the naturally arising dysregulation of UBP43

expression described here, which to our knowledge has not been

previously observed, occurs within a subset of BL cell lines derived

from independent tumors, suggesting that it is not a random or

isolated defect, but presumably one that confers an advantage to

some BLs.

Results

Dysregulation of ISG Expression in BL
To investigate the potential impact of the restricted program of

EBV latency-gene expression on the type I IFN response, we first

examined whether EBV, and in particular the EBER RNAs,

influences IFN-a induction of cellular gene expression. The cell

model we chose was a pair of EBV-positive and -negative cell lines

derived from Akata BL cells that, for reasons that are unclear, can

spontaneously lose the episomal EBV genome [14]. Loss of the

EBV genome from these cells, which maintain a Latency I

program, results in decreased tumorigenic potential and reduced

resistance to apoptosis in response to IFN-a, both properties of

EBV-positive Akata cells that are largely dependent on the EBERs

[7,8,15–18]. Following addition of IFN-a (100 U/ml) to Akata-cell

cultures, cell samples were removed at 3 to 72 h for extraction of

total RNA, which was then analyzed by northern blot hybridiza-

tion for the expression of ISG15, ISG56 and ISG12. These ISGs

were chosen based on an earlier microarray analysis that revealed

constitutive (i.e., IFN-independent) expression of their mRNAs to

be down-regulated in EBV-positive Akata cells relative to their

EBV-negative counterparts (I.K.R. and J.T.S., unpublished

observation). As shown in Fig. 1A (left panel), in the EBV-

negative cells, IFN-a-induced ISG expression was not only

substantially higher, it was also sustained for an additional 24–

48 h, suggesting that EBV infection may suppress IFN-a signaling.

To address this possibility, we repeated the analysis with the same

EBV-negative cells (A.2) engineered to stably express the EBERs

at physiologic levels, along with the EBV genome-maintenance

protein, EBNA-1 [17]. However, as shown in Fig. 1A (right panel),

the presence of these EBV gene products did not affect the

intensity or duration of ISG expression in an otherwise EBV-

negative background, suggesting that the different responses of

these BL lines to IFN-a are not attributable to EBV (see also

below). A quantification of ISG15 expression in these cells is

presented in Fig. 1B.

To further assess a potential influence of EBV, we measured the

response to IFN-a by three additional EBV-positive BL cell lines

that maintain a Latency I program (KemI, SavI and MutuI), as

well as one line (OkuI) that maintains a similar pattern of EBV

latency-gene expression (Wp-restricted latency), but which also

expresses the three EBNA-3 proteins (3A, 3B and 3C) [19]. As

revealed by the analysis of ISG15 mRNA expression (Fig. 2), KemI

and OkuI cells were equivalent to EBV-positive Akata cells (as in

Fig. 1), whereas SavI cells exhibited sustained expression of ISG15

comparable to that observed for EBV-negative Akata cells; MutuI

cells appeared to support an intermediate response to IFN-a. The

data presented in Figs. 1 and 2, therefore, argue against an

influence of EBV on the type I IFN induction of gene expression

during the Latency I program of EBV infection, though we cannot

rule-out the possibility that differences observed here were in fact

due to the expression of a viral gene(s) that is not uniformly

expressed in BL cells that otherwise maintain a Latency I program

(i.e., other than EBNA-1, EBERs, BARTs and a subpopulation of

the EBV miRNAs).

Aberrant ISG Expression is Transcriptional
We next considered the mechanistic basis for the observed

differences in ISG expression. A comparative array analysis of

IFN-a-induced gene expression in EBV-negative and -positive

Akata cells had indicated that the majority of ISGs behaved like

those analyzed in Fig. 1 (data not shown), suggesting that the

differences we observed were due primarily to a common

alteration in IFN-a-induced transcription. In support of this, we

observed effects of IFN-a on ISG15 promoter-driven reporter

expression that paralleled the effects of IFN-a on endogenous ISG

mRNA expression in EBV-negative and -positive Akata cells, i.e.,

induction of reporter expression was greater and sustained longer

in the EBV-negative cells (Fig. 3A). Further, analysis by EMSA of

the binding of ISGF3 (a complex of STAT1, STAT2 and IRF9) to

a DNA probe containing the ISRE of the ISG15 promoter

indicated that IFN-a-induced binding to the probe was equivalent

within extracts of EBV-negative (A.2) and EBV-positive (A.15)

Akata cells for at least 4 h following addition of IFN-a. However,

in contrast to EBV-negative cells in which binding was sustained

for 24 h post-induction, ISGF3 binding was slightly reduced at 8 h

and barely detectable at 24 h within extracts of EBV-positive cells

(Fig. 3B). Collectively, these data indicated that differences in ISG

expression in these BL cells are not due to a defect in the induction

of gene expression by IFN-a, but rather an inability to sustain

generation of ISGF3 (as in A.15 cells) or a block in the turnover of

this transcriptionally active protein complex (as possible in A.2

cells). Given that the latter is considered part of the normal

negative feedback restriction of the inductive phase of the type I

IFN response (reviewed in [20]), we favored the conclusion that

sustained expression of ISG transcription in a subset of BL lines,

i.e., beyond several hours post induction, is an aberrant response.

Dysregulation of UBP43 in BL

PLoS ONE | www.plosone.org 2 June 2009 | Volume 4 | Issue 6 | e6023



STAT Phosphorylation is Prolonged in Cells that Sustain
ISG Expression

Having determined that aberrant ISG expression is most likely

due to sustained transcriptional activation by ISGF3, we next

assessed the status of the components of this complex - STAT1,

STAT2 and IRF9 - within IFN-a-treated cells that exhibited either

normal or abnormal ISG expression. Consistent with the data

presented in Figs. 1 and 3, within A.2 Akata cells (prolonged ISG

expression) we observed sustained tyrosine phosphorylation of

STAT1 (Tyr701) and STAT2 (Tyr689) throughout the 48-h time

course of the experiment (Fig. 4). By contrast, within A.15 cells

tyrosine phosphorylation of both proteins was dramatically

reduced after 4 h, as expected. Phosphorylation of Ser727 on

STAT1, which is not essential for STAT1 transcriptional activity

[21], did not differ notably between A.2 and A.15 cells (Fig. 4).

Expression of IRF9, the DNA-binding component of ISGF3 that

does not require phosphorylation for activity, was equivalent in

both cell lines prior to addition of IFN-a. Encoded by an ISG itself

[22], IRF9 levels were lower in A.15 cells at later times post IFN-a
treatment, as expected (Fig. 4). Thus, tyrosine phosphorylation or

its absence on STATs 1 and 2 within A.2 and A.15 Akata cells at

later times post IFN-a treatment was in good agreement with the

detection or lack of ISGF3 binding to a classic ISRE in extracts of

these cells, respectively (Fig. 3B), suggesting that sustained

phosphorylation is the basis for prolonged ISG expression in A.2

cells.

To determine if this abnormal regulation of STAT phosphor-

ylation is common to other BL cells that exhibited sustained ISG

expression, we extended analysis of IFN-a-induced STAT1

Tyr701 phosphorylation to MutuI and SavI, which exhibited

intermediate and sustained ISG responses, respectively, relative to

A.2 Akata cells. We also assessed two additional and indepen-

dently derived pair of subclonal EBV-negative (Ak2 and 2A82)

and EBV-positive (Ak+ and 2A8+) Akata cell lines. As shown in

Figs. 5 and S1, phosphorylation of STAT1 in MutuI and SavI BL

cells was indeed sustained for at least 24 h, consistent with the

Figure 1. Differential induction of ISG mRNA in IFN-a-treated EBV-negative and EBV-positive Akata BL cell lines. A) Northern blot
analysis of ISG15, ISG56 and ISG12 in EBV-negative (A.2) and EBV-positive (A.15) BL cells (left panel), and EBV-negative A.2 vector-control and EBER-
expressing BL cells (right panel) following treatment with IFN-a (100 units/ml) for up to 72 h. Each lane contained 10 mg total cellular RNA. Analysis of
the expression level of each RNA was determined by sequential probing of a single blot for each cell line. EBER expression was analyzed to confirm
EBV status in A.15 cells and to determine EBER expression levels in EBV2/EBER+ cells. Levels of 28S rRNA were analyzed to ensure equivalent RNA
loading and integrity. B) Quantification by phosphorimage analysis of ISG15 mRNA levels from (A). Results are representative of two independent
experiments.
doi:10.1371/journal.pone.0006023.g001

Dysregulation of UBP43 in BL
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prolonged ISG expression observed previously in these cells (see

Fig. 2). Interestingly, unlike A.2 cells, Ak2 and 2A82 EBV-

negative Akata cells (and their EBV-positive counterparts) did not

exhibit prolonged STAT1 phosphorylation, providing further

evidence that the type I IFN response is not targeted by EBV

during the Latency I program. Further, KemI cells, which

exhibited a normal course of ISG15 expression (Fig. 2), also

exhibited normal kinetics of STAT1 phosphorylation, as expected

(Fig. S1).

Sustained STAT1 Phosphorylation is Due to Inadequate
UBP43 Expression

Physiologic down-regulation of IFN-induced gene expression

can occur through several mechanisms. Among these, two that we

Figure 2. Differential IFN-a induction of ISG15 mRNA expression among non-Akata EBV-positive BL cell lines. ISG15 mRNA levels were
analyzed from total RNA extracted from KemI, SavI, OkuI and MutuI BL cells that had been treated or not with IFN-a for 3–72 h. Data shown is
representative of at least two independent experiments for each cell line.
doi:10.1371/journal.pone.0006023.g002

Figure 3. Elevated ISG15 promoter and ISGF3 DNA-binding activities correspond to sustained ISG expression. A) A.2 and A.15 Akata BL
cells were transfected in triplicate with 10 mg of an ISG15 promoter-hGH reporter plasmid; after 14 h, IFN-a (100 units/ml) was added to half of the
transfected cells and expression of hGH was determined in duplicate by radioimmunoassay at 4, 8, 24 and 48 h post-IFN-a addition. Results shown
are representative of three independent experiments. B) EMSAs were performed with increasing amounts of protein (4, 8 or 16 mg) extracted from
EBV-negative A.2 and EBV-positive A.15 Akata BL cells that had been treated with IFN-a for 0, 4, 8 or 24 h; the 32P-labeled double-stranded
oligodeoxynucleotide probe contained the interferon-stimulated response element (ISRE) from the ISG15 promoter.
doi:10.1371/journal.pone.0006023.g003

Dysregulation of UBP43 in BL
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Figure 4. Tyrosine phosphorylation of STAT1 and STAT2 is prolonged in IFN-a-stimulated A.2 cells. A) Phosphorylation of STAT1
(pTyr701 and pSer727) and STAT2 (pTyr689) in response to IFN-a (100 U/ml) was monitored in EBV-negative A.2 and EBV-positive A.15 Akata BL cells by
immunoblotting with phospho-specific antibodies. Blots were subsequently stripped and reprobed to detect total STAT1 and STAT2, as well as IRF9
and b-actin (loading control). B) Quantification of the ratio of phosphorylated STAT to total STAT (phospho:total) at 4 and 24 hours post-IFN addition
on blots from (A).
doi:10.1371/journal.pone.0006023.g004

Figure 5. Duration of tyrosine phosphorylation of STAT1 correlates with sustained ISG15 expression following IFN treatment. SavI
and MutuI cells were treated with IFN-a for up to 24 h. Tyrosine phosphorylation of STAT1 was monitored by immunoblotting, as in Fig. 4, and then
stripped and probed for total STAT1. A separate matched set of EBV-positive (Ak+) and EBV-negative (Ak2) Akata BL cells was also evaluated for
STAT1 tyrosine phosphorylation and total STAT1 levels. Note: the Ak2/Ak+ blot was probed with a different lot of anti-phosho STAT1 antibody than
used above or in Figs. 4 and 7. This antibody detected a nonspecific band (designated NS) with very similar mobility to pTyr701 STAT1. This band is
unlikely to be a degradation product of STAT1 as we did not see this band using earlier lots of the antibody (see Fig. S1). The blots for b-actin served
as protein loading controls.
doi:10.1371/journal.pone.0006023.g005
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are aware of have a direct negative influence on the phosphor-

ylation of STAT proteins by type I IFNs, as observed here. The

first is the well established abrogation of STAT1 phosphorylation

by suppressor of cytokine signaling 1 (SOCS1), itself an ISG

protein [23]. We initially asked, therefore, whether a deficiency in

SOCS1 expression might be responsible for sustained phosphor-

ylation of STAT proteins in cells that support prolonged ISG

expression. However, we observed no difference in constitutive

SOCS1 expression, and IFN-a-induced expression of SOCS1 was

actually slightly lower in A.15 relative to A.2 cells (data not shown),

arguing against involvement of SOCS1 (assuming SOCS1 is

biochemically active in A.2 and similar BL cell lines).

The second mechanism is the recently described inhibition of

STAT1 phosphorylation by UBP43 (the product of ISG43)

through its inhibition of JAK1 interaction with the IFNAR2

subunit of the type I IFN receptor [13]. Serendipitously, ISG43

was one of the ISGs we initially selected to monitor in our

assessment of IFN-a-induced transcription. Interestingly, unlike

the results shown in Fig. 1 for ISG15, ISG56 and ISG12, we

observed little or no IFN-a induction of the ISG43 mRNA by

northern blotting in A.2 Akata cells (which exhibited high and

prolonged ISG expression), whereas induction of ISG43 expression

was easily detectable in A.15 cells (data not shown). Thus, lack of

an ISG43-encoded function might be responsible for the inability

to efficiently terminate IFN-a-induced transcription in a subset of

BL cells. To address the potential role of UBP43, we first assessed

induction of its mRNA by IFN-a in our full panel of BL cell lines.

As shown in Fig. 6, the induction of UBP43 mRNA expression was

very low in all cell lines analyzed that exhibit prolonged ISG

expression (A.2, SavI and MutuI), while notably higher in the lines

that support normal kinetics of ISG expression. The latter group

also included an additional EBV-negative Akata line (2A8) and its

EBV-reinfected counterpart (2A8.1), providing further evidence

that differences in IFN-a-induced gene expression (including

UBP43) are EBV-independent.

Having demonstrated a direct correlation between the level of

UBP43 mRNA induction and extent of ISG expression, we next

tested whether exogenous expression of UBP43 could suppress

IFN-a-induced phosphorylation of STAT1 in BL cells (A.2) in

which phosphorylation is otherwise sustained. To do this, we

stably expressed FLAG-tagged UBP43 in A.2 Akata cells, and

compared IFN-a-induced phosphorylation of STAT1 on Tyr701

in these cells to a vector-only control line. As shown in Fig. 7,

UBP43 expression caused a dramatic reduction in the amount of

phosphorylated relative to total STAT1, consistent with the

previous reports of UBP43-mediated inhibition of STAT1

phosphorylation and sustained STAT1 phosphorylation in

Ubp432/2 cells [12,24]. We conclude, therefore, that the inability

Figure 6. Reduction of UBP43 mRNA corresponds to sustained ISG expression in BL cells. Total RNA was isolated from the indicated cell
lines pre- and post-IFN-a treatment for 24 h and subjected to RT-PCR with UBP43- and ribosomal protein gene S14-specific primers. Amplified UBP43
and S14 (control for RNA integrity and amplification efficiency) cDNAs were detected by Southern blotting and ethidium bromide staining,
respectively. Equivalent results were obtained in multiple independent experiments.
doi:10.1371/journal.pone.0006023.g006
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to efficiently terminate IFN-a-induced signaling in a subset of BLs

is due to insufficient expression of UBP43.

Discussion

Here we report that a subpopulation of B-cell lines derived from

BL tumors exhibit abnormally long IFN-a induction of gene

expression that is independent of EBV infection. Although we

cannot formally rule out the possibility that the observed

differences in ISG induction among EBV-positive BL cells might

be attributable to expression of viral genes not uniformly expressed

in all EBV-positive BL cells, our finding that some EBV-negative

BL cells also exhibit these differences in ISG induction supports

the idea that this is indeed a virus-independent effect. This atypical

response to IFN-a induction is associated with prolonged tyrosine

phosphorylation on STAT1 and STAT2 and, consistent with the

presence of these activated STAT proteins, extended DNA-

binding activity of the ISGF3 complex, as well as higher and

sustained expression of an ISRE-driven reporter gene. An

exception to the generally sustained ISG expression in these BL

cells was ISG43, which was minimally induced in all lines

supporting prolonged ISG expression. This, and reports that the

ubiquitin-specific protease UBP43 (alternatively USP18) encoded

by ISG43 can block type I IFN-induced phosphorylation of

Tyr701 on STAT1 and that ISG expression is prolonged in

ubp432/2 murine embryonic fibroblast cells [12], led us to

examine whether inadequate induction of UBP43 expression is

the basis for our observations. Indeed, stable expression of UBP43

in our variant BL cells substantially reduced IFN-a activation of

STAT1. Thus, we conclude that a defect in the IFN-inducible

expression of UBP43 results in a significant delay of the negative

feedback control of type I IFN signaling in these tumor cells,

irrespective of their EBV status.

UBP43 removes the ubiquitin-like protein encoded by ISG15

that is conjugated to proteins in a process known as ISGylation

[11,25]. The biological importance of IFN-induced ISGylation is

not fully understood, as it is not required for type I IFN signal

transduction, ISG expression, or IFN-mediated antiviral functions

[13,26–28]. The isopeptidase activity of UBP43 responsible for

deconjugation of ISG15ylated proteins, however, is not required

for the inhibition of STAT1 phosphorylation, which appears to be

mediated instead through direct inhibition by UBP43 of the

interaction of JAK1 with the type I IFN receptor [13]. The defect

in the UBP43-mediated negative feedback control of IFN signaling

that we have uncovered is in the IFN-a-induced expression of

UBP43, either in the transcriptional activation of the UBP43 gene

by IFN-a, or in a co- or post-transcriptional event that results in a

specific reduction in UBP43 mRNA production. On the surface, a

defect in IFN-induced transcription would appear less likely given

that ISG43 is an immediate-early ISG [29,30] and that there is not

an apparent defect in classic ISGF3 activation of ISG transcription

(e.g., as that of ISG15). However, we cannot rule out loss of

contribution by an additional factor(s) needed for appropriate

IFN-induced transcription of ISG43, but which is not required for

the expression of the ISG family in general. Currently, however,

little is known about the specific regulation of UBP43 expression at

the transcriptional level.

An obvious question raised by our findings is what advantage is

conferred to a cell, normal or transformed, from a sustained

response to type I IFNs? While UBP43 deficiency results in

extended expression of ISGs, leading to increased resistance to

viral and some bacterial infections [11,24,28,31,32], it is difficult to

rationalize heightened resistance to potential infection as the

primary pressure to dysregulate UBP43 expression. Alternatively,

suboptimal expression of UBP43, and the resulting delay in the

negative feedback regulation of IFN signaling, may promote a

beneficial IFN-dependent function not necessarily related to the

antiviral response. Of the several hundred known ISGs, clearly not

all are involved in mediating resistance to infections [22]. Further,

UBP43 is constitutively expressed in liver, cells of the monocytic

lineage and within fetal spleen [29,33,34], and in Ubp432/2 mice

the complete lack of UBP43 expression is associated with elevated

ISG15-conjugation and cellular necrosis in brain that results in

severe neurological disorders [12,27,35,36]. Thus, UBP43 appears

to also contribute to a homeostatic (i.e., IFN-independent)

regulation of ISGylation, though the ISG15 gene does not appear

to be required for these detrimental effects [13,26,27]. Thus, given

the generally detrimental effect that prolonged IFN signaling

would have on a cell, and the negative consequences UBP43

deficiency has in some tissues, it would seem that dysregulation of

Figure 7. Constitutive expression of UBP43 reduces the induction and duration of IFN-a-induced tyrosine phosphorylation of
STAT1. A.2 pCR3.1 (vector control) and A.2 UBP43 cells were treated with IFN-a (100 U/ml) for up to 24 h. Phosphorylated (pTyr) and total STAT1,
FLAG-tagged UBP43 and b-actin (loading control) were detected by immunoblotting. Data shown is representative of three independent
experiments.
doi:10.1371/journal.pone.0006023.g007
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UBP43 as reported here would have greater relevance in the

setting of oncogenesis and tumor maintenance, as transformed

cells are characteristically resistant to at least some of the negative

properties of IFN, such as antiproliferative and proapoptotic

effects. Though few, there have been reports of UBP43 function

related to oncogenesis: 1) A UBP43-mediated block in cytokine-

induced terminal differentiation of the myeloid cell line M1 [33];

2) A potential anti-neoplastic influence in acute promyelocytic

leukemia [33,34]; and 3) Resistance to BCR-ABL induction of a

chronic myeloid leukemia-like myeloproliferative disease in

Ubp432/2 mice [37]. Of these, only the second report is consistent

with a potentially pro-oncogenic consequence of UBP43 deficien-

cy. However, this specific example would appear to have little

relevance to BL.

Our original intent for these studies was to determine whether

the restricted latency program of EBV interferes with the type I

IFN response, the impetus for which were findings from our group

and others that the EBER RNAs of EBV inhibit IFN-a-induced

apoptosis [7,8], and reports from Takada and colleagues that the

EBERs induce expression of IFN-a/b through direct activation of

RIG-I [9]. Specifically, the latter suggested to us that, given the

potent antiviral properties of the type I IFNs, it is quite possible

that EBV negatively targets the IFN-a-mediated signaling that

would be initiated as a consequence of EBER induction of type I

IFN expression. However, in contrast to the inhibition of type I

IFN signaling by the LMP-1 protein of EBV during the growth or

Latency III program [10], we found no evidence of such an effect

in this cell model of restricted EBV latency. Interestingly, we also

saw no indication of significant IFN-a/b production either from

latently infected BL cells, or by EBV-negative BL cells that stably

express the EBER RNAs (in addition to EBNA-1) at physiologic

levels. Specifically, we did not detect tyrosine phosphorylation of

either STAT1 or STAT2 in the absence of added IFN (Figs. 4 and

5), and consistent with this, little or no ISG mRNA expression

(Figs. 1, 2 and 6). Note that a low level of ISG15 mRNA detected

in the absence of IFN-a (as in KemI and SavI cells, Fig. 2) is

consistent with basal expression of ISG15 and a subset of other

ISGs [22]. Further, and consistent with the lack of detectable

STAT1/2 phosphorylation in these BL cells, we have been

consistently unable to directly detect IFN-a production (by ELISA)

from our panel of BL cell lines, including EBV-negative Akata cells

that stably express both EBERs (data not shown).

This apparent discrepancy with the earlier report may be due to

the different experimental systems employed. Notably, the

previous studies implicating EBER-induction of type I IFN

production through direct activation of RIG-I relied on transfec-

tion (by electroporation) for the expression of EBERs and/or a

GFP-tagged version of RIG-I (RIG-I/GFP) to show an effect [9].

This may have resulted in a functional interaction between the

otherwise nuclear EBERs [38] and cytoplasmic RIG-I that

normally would not occur during EBV latency. The activation

of endogenous RIG-I (as evidenced by type I IFN expression) was

not assessed in BL cells stably expressing the EBERs either

naturally from the EBV genome, or by stable expression from an

exogenously introduced vector in EBV-negative BL cells. Further,

upon infection of EBV-negative BL cells, induction of IFN-b RNA

expression could only be detected in cells stably overexpressing

RIG-I/GFP [9]. Thus, it would appear that induction of type I

IFNs by the EBERs is not a normal function of these noncoding

RNAs, at least within the context of BL cells.

In conclusion, we have uncovered a defect in the negative

feedback control of type I IFN signaling by the ISG15-specific

isopeptidase UBP43 within BL cells. This is unlikely to represent a

common cellular adaptation to enhance an IFN-induced antiviral

response to EBV or other infectious agents, as it does not occur

uniformly among EBV-positive BL cell lines, and such an antiviral

response would likely be inconsistent with the high incidence of

EBV infection associated with endemic BL. Further, the

observation that the underlying mechanism of prolonged IFN

signaling is also evident in several cell lines derived from

independent tumors suggests that this is not a random isolated

event, but rather that dysregulation of UBP43 expression confers

relatively frequently an advantage to some tumor cells, though

what this advantage may be is currently unclear. However,

because UBP43 is not constitutively expressed in BL cells, we

presume that any such advantage may lie in the effect that IFN-

induced ISG15ylation has on protein function. While earlier

studies have relied on gene knock-out technology to elucidate the

biochemical functions of UBP43 [13,26,27,35], this is the first

instance that we are aware of in which a natural deficiency in

UBP43 expression was observed. BL lines that exhibit a defect in

the type I IFN-induced expression of UBP43 may therefore

provide a useful model to further probe the biological roles of

UBP43 and ISGylation and their contributions to cell biology.

Materials and Methods

Cell Culture and Plasmids
Cells were maintained in RPMI 1640 medium containing 2 mM

L-glutamine (Mediatech) and 10% defined fetal bovine serum

(HyClone). Akata A.2 and A.15 cell lines are EBV-negative and -

positive derivatives, respectively, of the parental Akata BL cell line.

A.2.EBER and A.2.Vector are A.2 Akata cells that stably express

physiologic levels of EBER-1 and EBER-2, or which contain an

empty EBER expression vector, respectively [17]. Cell line 2A8 is an

independently-derived EBV-negative Akata clone (gift of J.W.

Sixbey). Isolation and characterization of all Akata cell lines, as well

as re-infection of 2A8 with EBV to generate 2A8.1, has been

previously described [17,18]. Akata Ak2 (EBV-negative) and Ak+

(EBV-positive) cell lines were kindly provided by K. Takada. KemI,

SavI and MutuI are EBV-positive BL cell lines that maintain a

Latency I program of EBV gene expression; OkuI BL cells are

similar, but also express EBNAs 3A, 3B and 3C [19]. To establish an

A.2 cell line that constitutively expressed UBP43, the UBP43 open

reading frame was generated by PCR from a sequence-verified full-

length cDNA purchased from Open Biosystems. PCR primers were

designed to incorporate an N-terminal FLAG epitope as well as

restriction sites for cloning. Primers used were: 59-ACGTGGAT-

CCGCCACCATGGATTACAAGGATGACGACGATAAGAG-

CAAGGCGTTTGGGCTCCTG-39 and 59-GATCCTCGAGTA-

GAAGACTCCGTAGATCCAG-39. Following amplification, PCR

products were digested with BamHI and XhoI, and cloned into

BamHI- and XhoI-digested pCR3.1 (Invitrogen) to generate an

expression vector encoding FLAG-UBP43. Ten micrograms of

FLAG-UBP43 or pCR3.1 (to generate vector-control lines) was used

to transfect 86106 A.2 cells by electroporation as described previously

[39]. Stable transfectants were selected in 200 mg of G418 per ml.

Following selection and expansion of cells, clones expressing UBP43

were identified by immunoblotting with anti-FLAG antibody (M2;

Sigma).

Analysis of RNA Expression
For analysis of IFN-induced RNA levels, cells were treated with

hu-IFN-a-A (PBL Biomedical Laboratories) as described in the text.

Total cellular RNA was isolated from 107 cells with RNA-Bee as

recommended by the manufacturer (Tel-Test), followed by extraction

with an equal volume of phenol-chloroform and then chloroform

prior to ethanol precipitation. For RNA (northern) blot hybridization,

Dysregulation of UBP43 in BL

PLoS ONE | www.plosone.org 8 June 2009 | Volume 4 | Issue 6 | e6023



10 mg of RNA was fractionated by electrophoresis in a 1.2% agarose-

2.2 M formaldehyde gel, followed by transfer to a GeneScreen Plus

membrane (PerkinElmer Life Sciences, Inc.). RNA blots were

subjected to hybridization to 32P-labeled (by nick translation) DNA

probes, washed, processed by autoradiography and quantified by

PhosphorImage analysis (Molecular Dynamics). Blots were stripped

and rehybridized to a probe specific for 28S rRNA to control for

differences in RNA loading. For analysis of UBP43 mRNA levels by

reverse transcription (RT)-PCR, 2.5 mg of total RNA isolated from

untreated or IFN-a-treated cells was reverse-transcribed using the

iScript cDNA synthesis kit (BioRad). Control reactions lacking

reverse transcriptase were run in parallel. One-tenth of each cDNA

reaction was then amplified using either UBP43- or ribosomal protein

gene S14-specific primers: UBP43, 59-AGCAAGGCGTTT-

GGGCTCCTG-39 and 59-GATCCTCGAGTAGAAGACTCCG-

TAGATCCAG-39; S14, 59-GGCAGACCGAGATGAATCCTCA-

39 and 59-CAGGTCCAGGGGTCTTGGTCC-39. Amplification

was for 25 cycles at 95uC for 2 min, 58uC (UBP43) or 55uC (S14) for

1 min, and 72uC for 2.5 min (UBP43) or 1.5 min (S14); after the final

cycle of amplification, samples were maintained at 72uC for 5 min.

Following amplification, one-tenth of each product was electropho-

resed in a 1.5% agarose gel, transferred to GeneScreen Plus

membrane and processed by standard Southern blot hybridization

techniques to detect UBP43 cDNA.

DNA Transfection and Reporter Assay
Cells were maintained in roller bottle cultures for at least two

feedings prior to transfection by electroporation, as previously

described [39]. Briefly, 86106 cells were transfected in triplicate

with 10 mg of pISG15-hGH reporter plasmid. pISG15-hGH was

created by PCR amplification of bases 2125 to +50 of ISG15 from

human genomic DNA (Promega) utilizing the following primers:

ISG15a: 59-GGGCATGCCTCGGGAAAGGG-39 and ISG15b:

59-GGCACGAGCTCCTGTACTGG-39. The resulting fragment

was blunt-end ligated into the BamHI site of the human growth

hormone (hGH) reporter plasmid pWGH (Nichols Institute). At

14 h post-transfection, hu-IFN-a-A (PBL Biomedical Laborato-

ries) was added to cell cultures to a final concentration of 100 U/

ml. The level of hGH in the culture medium was determined by

radioimmunoassay (Nichols Institute) in duplicate at various

intervals following addition of IFN-a.

Electrophoretic Mobility Shift Assay (EMSA)
For preparation of whole-cell extracts, 26107 cells either

untreated or treated with IFN-a (100 U/ml) for 4, 8, or 24 h

were washed in phosphate-buffered saline (PBS) and resuspended

in 200 ml extraction buffer (20 mM HEPES-KOH [pH 7.9],

450 mM NaCl, 0.2 mM EDTA, 0.5 mM DTT, 25% glycerol,

1 mM sodium orthovanadate, 1 mM phenylmethylsulfonyl fluo-

ride, 50 mM sodium fluoride, 10 mM b-glycerophosphate, and

CompleteTM protease inhibitor cocktail [Roche]). Lysates were

gently sonicated on ice and clarified by centrifugation at 12,0006
g for 5 min at 4uC [40]. Protein concentration of the supernatant

was determined by the Bradford method (BioRad). A dsDNA

probe containing the ISG15 IFN-stimulated response element

(ISRE) was generated from annealed complementary oligonucle-

otides containing 4-base 59 overhangs (sense strand: 59-

GATCCTCGGGAAAGGGAAACCGAAACTGA-39) by label-

ing with Klenow DNA polymerase in the presence of 1 mM each

of dGTP, dTTP, dATP and 100 mCi of [a32P]dCTP (3,000 Ci/

mmol). Unincorporated nucleotides were removed by passage

through Micro Bio-Spin 6 chromatography columns (BioRad).

Binding reactions were performed in a 25-ml reaction containing

10 mM HEPES-KOH (pH 7.5), 50 mM KCL, 1 mM EDTA,

0.1 mM DTT, 0.1% Triton X-100, 2.5% glycerol, 2 mg bovine

serum albumin and 2 mg salmon testes DNA. 32P-labeled

oligonucleotide probe (0.5 ng) was added to each binding mixture,

and then incubated for 20 min at room temperature. Protein-

DNA complexes were resolved by electrophoresis in non-

denaturing 5% acrylamide gels run at 4uC in 0.56 TBE (16
TBE is 90 mM Tris, 88 mM boric acid and 2 mM EDTA).

Following electrophoresis, gels were dried and processed by

autoradiography.

Immunoblotting
Cells (107) were washed once in PBS and lysed in 200 sl of lysis

buffer (50 mM Tris-HCl [pH 8.0], 150 mM NaCl, 1 mM EDTA,

1% Triton X-100, 1 mM sodium orthovanadate, 1 mM phenyl-

methylsulfonyl fluoride, 50 mM sodium fluoride, 10 mM b-

glycerophosphate, and CompleteTM protease inhibitor cocktail

[Roche]) by incubation on ice for 10 min. Insoluble material was

removed by centrifugation at 12,0006 g for 10 min, and protein

concentration of the supernatant determined by the Bradford

method (BioRad). Fifty micrograms of protein was fractionated by

SDS-PAGE, transferred to an Immobilon P membrane (Milli-

pore), and immunoblotted using an enhanced chemiluminescence

detection system (Amersham). For detection of STAT1 and

STAT2 phosphorylation, blots were initially probed with a

phosphorylation site-specific antibody, subsequently stripped of

antibody in 62.5 mM Tris-HCl (pH 6.8), 100 mM 2-mercapto-

ethanol and 2% SDS (50uC for 30 min) and re-probed with a

phosphorylation-state independent antibody. Immunoreactive

proteins were detected with secondary antibodies conjugated to

horseradish peroxidase. Blots were then stripped a second time

and re-probed with a mouse monoclonal antibody to b-actin

(Amersham) as a control for protein loading. Primary antibodies

used for immunoblotting were rabbit polyclonal antisera to

STAT1 p84/p91 (Santa Cruz Biotechnology), phospho-STAT1

(Tyr701 and Ser727; Upstate Biotechnology), STAT2 (Santa Cruz

Biotechnology), phospho-STAT2 (Tyr689; Upstate Biotechnolo-

gy), and IRF9/ISGF-3c/p48 (Santa Cruz Biotechnology). Detec-

tion of FLAG-UBP43 was with anti-FLAG antibody (M2; Sigma).

Signal intensity was quantified using ImageJ [41].

Supporting Information

Figure S1 Duration of tyrosine phosphorylation of STAT1 is

independent of EBV status. Two EBV-positive BL cell lines (KemI

and MutuI) as well as two independently derived matched sets of

EBV-negative (Ak2 and 2A82) and EBV-positive (Ak+ and

2A8+) Akata BL cells were treated with IFN-a for up to 24 h.

Tyrosine phosphorylation of STAT1 was monitored by immuno-

blotting, as in Figs. 4 and 5. The faster-migrating background

band (asterisk) served as protein loading controls on all blots.

Found at: doi:10.1371/journal.pone.0006023.s001 (0.55 MB TIF)
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