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Abstract

Background: Histamine is a biogenic amine that has been shown to contribute to several pathological conditions, such as
allergic conditions, experimental encephalomyelitis, and malaria. In humans, as well as in murine models of malaria,
increased plasma levels of histamine are associated with severity of infection. We reported recently that histamine plays a
critical role in the pathogenesis of experimental cerebral malaria (CM) in mice infected with Plasmodium berghei ANKA.
Histamine exerts its biological effects through four different receptors designated H1R, H2R, H3R, and H4R.

Principal Findings: In the present work, we explored the role of histamine signaling via the histamine H3 receptor (H3R) in
the pathogenesis of murine CM. We observed that the lack of H3R expression (H3R2/2 mice) accelerates the onset of CM
and this was correlated with enhanced brain pathology and earlier and more pronounced loss of blood brain barrier
integrity than in wild type mice. Additionally tele-methylhistamine, the major histamine metabolite in the brain, that was
initially present at a higher level in the brain of H3R2/2 mice was depleted more quickly post-infection in H3R2/2 mice as
compared to wild-type counterparts.

Conclusions: Our data suggest that histamine regulation through the H3R in the brain suppresses the development of CM.
Thus modulating histamine signaling in the central nervous system, in combination with standard therapies, may represent
a novel strategy to reduce the risk of progression to cerebral malaria.
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Introduction

The main cellular reserves of histamine in peripheral tissues are

mast cells and basophils. Histamine release is involved in the

pathogenesis of various inflammatory reactions [1,2]. In the

central nervous system (CNS), histamine also acts as a neuro-

transmitter that is released by histaminergic neurons. The cell

bodies of histaminergic neurons are located exclusively in the

tuberomammillary nucleus of the posterior hypothalamus and

project their axons in a highly divergent manner to many cerebral

areas including the hypothalamus, thalamus, cerebral cortex,

amygdala, and septum [3,4,5,6]. Four histamine receptors have

been identified and termed H1-, H2-, H3-, and H4 receptors [3,7]

all of which are G-protein coupled receptors. The H1 receptor

(H1R) mediates most of the proinflammatory effects of histamine.

Anti-inflammatory and immunosuppressive effects of histamine,

such as inhibition of polymorphonuclear chemotaxis [8], and

interleukin (IL)-12 secretion by monocytes, and induction of IL-10

production [9], are mainly dependent on stimulation of the H2

receptor (H2R), which is positively coupled to the adenylyl cyclase

pathway. Unlike the other histamine receptors, H4 receptor (H4R)

is predominantly expressed on hematopoietic cells [10,11,12], and

H4R agonists were shown to induce chemotaxis of mast cells and

eosinophils [13] as well as the production of IL-16 by T cells [14].

Recently, using a murine model of allergic asthma, it was

demonstrated that H4R stimulation induces inhibition of airway

resistance and inflammation via a CD25+FoxP3+ T regulatory

cell-dependent mechanism [15].

In contrast to H1R, H2R, and H4R, H3R are mainly expressed

in neurons of the central and peripheral nervous system [16].

Presynaptic H3Rs located on histaminergic nerve endings, act as

autoreceptors to control the synthesis and release of histamine

[5,17]. Presynaptic H3Rs also act as heteroreceptors that influence

the release of other neurotransmitters including dopamine, c-

aminobutyric acid, noradrenaline, acetylcholine, serotonin and

tachykinins [18]. There is also some evidence for the existence of

H3R in the gastrointestinal tract where it exerts negative control

on gastric acid secretion [19]. Given the location of its expression,
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it has been suggested that H3R, by modulating the brain

histaminergic tone, mediate various CNS functions affecting a

variety of behaviors. In this context, histamine was shown to play a

critical role in the regulation of the arousal state [20], locomotor

activity [21], food intake [22], memory and cognition [23].

With regard to neurological disorders, mice lacking H3R

(H3R2/2) develop more severe experimental allergic encephalo-

myelitis (EAE) with a marked increase of blood brain barrier

permeability and an increased expression of macrophage-inflam-

matory protein (MIP)-2 and interferon-inducible protein-10 (IP-

10/CXCL10) on peripheral T cells. Furthermore, increased tissue

levels of histamine correlate with the onset of EAE [24,25,26].

Experimental cerebral malaria (CM) in mice is a severe

pathological condition resulting from infection with particular

strains of Plasmodium parasites, namely Plasmodium berghei ANKA

strain (Pb ANKA). Increased levels of histamine in plasma and

tissue is associated with the severity of human infection with P.

falciparum and in animal models of malaria [27]. In a recent study,

using pharmacological and genetic approaches, we demonstrated

that histamine plays a critical role in malaria pathogenesis in mice

[28]. We found that histamine signaling through H1R and H2R

increases the susceptibility of mice to infection with lethal strains of

P. berghei [28]. Furthermore, mice genetically deficient for the

histidine decarboxylase (HDC2/2) gene, and thus lacking

histamine, were highly resistant to severe malaria whether infected

by mosquito bites or via injection of infected erythrocytes. To

investigate the role of H3R signaling in the regulation of the

inflammatory response in the brain during malaria, we studied Pb

ANKA-induced CM in H3R2/2 mice. Herein, we report an

accelerated onset of cerebral malaria and increased blood brain

barrier (BBB) permeability in H3R2/2 mice as compared to wild-

type mice.

Results

Lack of H3R expression accelerates the onset of CM
Wild type C57BL/6 mice display neurological signs character-

istic of CM within 6–11 days after infection with parasites from the

Pb ANKA strain, and death usually occurs within 24 h after the

onset of these signs [29]. Those mice that do not succumb during

this period will die later due to hyperparasitemia and anemia.

Based on previous data showing that the lack of histamine

production confers resistance to CM and given that H3R signaling

inhibits the synthesis and the release of histamine by histaminergic

neurons [5,17], we hypothesized that the uncontrolled histamine

release by histaminergic neurons, resulting from a deficiency in

H3R signaling, would be detrimental to the host during malaria

disease. To experimentally assess this hypothesis we studied the

role of the H3R in malaria pathogenesis, by monitoring the

parasitemia and death over time in H3R2/2 mice inoculated with

106 infected erythrocytes. As shown in figure 1A, death occurred

significantly earlier (n = 6, p = 0.0092) in H3R2/2 mice than in

similarly infected C57BL/6 control mice (median survival: day 6

and 9, respectively). A significantly higher parasitemia was

observed in H3R2/2 mice at day 4 (p = 0.0015) and day 5

(p = 0.0124) post-infection (Fig 1B). Decreasing the infectious dose

of RBC to 105 per mouse did not alter the phenotypic difference

between the two mouse strains (data not shown), suggesting that

parasitemia does not represent the critical parameter for

accelerated disease expression and mortality in H3R2/2 mice.

Among the critical signs observed during CM is the drop in body

temperature. In this regard, both H3R2/2 and C57BL/6

displayed a decline in body temperature starting from day 5 and

no significant difference was observed between groups (Fig 1C).

Accelerated loss of BBB integrity in infected H3R2/2 mice
The rapid onset of CM in H3R2/2 mice prompted us to

determine whether or not the H3R signaling affects BBB

permeability during infection with Pb ANKA. We compared the

BBB permeability of C57BL/6 and H3R2/2 mice at various time

points after inoculation with 106 infected erythrocytes. As shown

in figure 2B, the loss of BBB integrity occurred earlier at day 3 and

at a higher magnitude in H3R2/2 mice than in C57BL/6 mice

(n = 5, p = 0.04) with almost no visible Evans blue dye extravasa-

tion in the brains from C57BL/6 mice (Fig. 2A). At day 6, the loss

of BBB integrity became more visible both in C57BL/6 and

H3R2/2 mice (Fig. 2A) with a greater BBB permeability index in

H3R2/2 mice (n = 5, p = 0.038) (Fig. 2B). The earlier loss of BBB

integrity in infected H3R2/2 mice is consistent with the

accelerated onset of mortality (Fig. 1A).

The neurological signs that characterize CM are generally

accompanied by the sequestration of infected erythrocytes in the

cerebral vasculature [30,31]. Histological analysis of brain sections

obtained from naı̈ve or at day 5 post-infection of C57BL/6 did

show very discrete erythrocyte aggregates observed in sections

from olfactory bulbs and other anatomical parts of the brain

(mouse 1, panel 4, Fig 3A). Deposition of erythrocyte aggregates,

representing either erythrocyte sequestration or cerebral hemor-

rhages, becomes more significant in C57BL/6 mice only by day 7

post-infection (data not shown, and [28]. In sharp contrast, higher

Figure 1. Role of H3R in Plasmodium berghei infection. H3R2/2 and C57BL/6 mice were inoculated with 106 infected erthrocytes with Pb ANKA.
Kaplan-Meier Survival plots (A), parasitemia (B), and body temperature (C) were recorded. Significant differences in mortality/survival were observed
between C57BL/6 and H3R2/2 mice using the log-rank test (n = 6, p = 0.0092). Differences in parasitemia between groups are significant at day 4 and
5 (Mann-whitney test, *** p = 0.0015, and *p = 0.0125, respectively), values represent mean6s.d. Data shown are representative of four independent
experiments.
doi:10.1371/journal.pone.0006004.g001
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amounts of aggregates of much larger size were found in

identically infected H3R2/2 mice (Fig 3A). Importantly, these

aggregates consisted of infected erythrocytes as shown by

fluorescence from GFP-expressing parasites used for infection

(Fig 3A). Quantification of brain lesions, expressed as the number

of erythrocyte aggregates in 100 consecutive microscopic fields

from each of the 3 histological sections made from the cerebellum,

confirmed a significantly larger number of infected erythrocyte

aggregates in H3R2/2 mice as compared to C57BL/6 mice

(Fig. 3B). These data show that the loss of BBB integrity in infected

H3R2/2 mice is associated with an accelerated formation of

hemorrhagic lesions and with earlier development of CM.

CM expression is associated with infiltrates of
inflammatory cells in the brain

To determine the number of adherent cells present in the brain,

nonadherent cells were removed by extensive perfusion of the

brain of anesthetized mice before sacrifice at various times after

infection with Pb ANKA. The perfused brains were removed and

the cells dissociated. Then the adherent leukocytes were isolated,

immunolabeled, and quantified by FACS. Given that recruitment

of CD4+ and CD8+ T cells in the brain is a hallmark of cerebral

malaria [28,29], a comparative analysis of CD4+ and CD8+ T cells

infiltrating the brain was performed in H3R2/2 and C57BL/6

mice. The data were expressed as percentage of sequestered cells

(Fig. 4A) and as the absolute number of adherent cells (Fig. 4B).

We could observe a progressive sequestration of both CD4+ and

CD8+ T cells starting 3 days post-infection in both mouse strains.

At day 5, however, a higher sequestration of CD4+ and CD8+ T

cells was observed in H3R2/2 mice as compared to C57BL/6

mice (p = 0.04). FACS phenotyping, extended to other inflamma-

tory cell lineages, revealed an increase in the numbers of

macrophages/monocytes (CD11b+-GR1 low) with a significantly

higher sequestration in H3R2/2 mice that occurred relatively late

at day 5 post-infection (p = 0.046). Analysis of CD11b+-GR1 high

cells, likely representing neutrophils or inflammatory monocytes as

reported previously [32], also indicates a progressive increase

starting from day 3 post-infection with significantly higher levels in

H3R2/2 mice as compared to C57BL/6 mice (p = 0.04). More

detailed analysis of this cell population is described in supporting

figure 1.

tele-Methylhistamie contents in the brains of Pb ANKA-
infected mice

Once released from histaminergic neurons histamine is

metabolized by two major enzymes, histamine-N-methyl transfer-

ase (HMT) and monoamine oxidase B [5,17]. The HMT activity

gives rise to tele-methylhistamine (t-MeHA), an inactive metabolite

of histamine, the level of which accurately reflects neuronal

histamine activity [5,17]. To assess whether t-MeHA contents in

the brains are differentially modulated by the parasites in C57BL/

6 and H3R2/2 mice, these mice were inoculated with 106 infected

erythrocytes and their brains harvested at various time points after

infection. As expected, given the regulatory role of H3

autoreceptors on histamine production, levels of t-MeHA in

uninfected mice were significantly higher in H3R2/2 mice. At day

4 post-infection, there was a more dramatic decrease of the

amounts of t-MeHA in H3R2/2 mice as compared to C57BL/6

mice (Fig. 5A). In H3R2/2 mice, the decrease in t-MeHA contents

at all time points was significant as compared to the basal level.

Also, at all time points tested, the levels of t-MeHA were higher in

H3R2/2 than in C57BL/6 mice. These findings suggest the

existence of either an infection-induced metabolism of histamine

after its release from its cerebral stores or an infection-induced

decrease of cerebral histamine synthesis.

To assess whether these changes in t-MeHA levels during

infection reflect a regulation at the level of the biosynthetic

pathway of histamine, we examined the level of expression of

histidine decarboxylase (HDC), the enzyme that converts histidine

into histamine. Kinetic analysis of HDC expression in the brain of

C57BL/6 and H3R2/2 mice was performed at indicated times

after the initiation of the infection until the expression of clinical

signs of CM in H3R2/2 mice. As shown in figure 5B, the basal

level of HDC mRNA was 3-fold higher in H3R2/2 mice than in

C57BL/6 mice, a finding consistent with the higher level of t-

MeHA in the brains of naive H3R2/2 mice (Fig. 5A). Until day 5

Figure 2. Accelerated loss of blood brain barrier in the brain of
H3R2/2 mice. (A), Wild-type C57BL/6 mice and H3R2/2 mice (3 mice
per group) were inoculated intraperitoneally with 106 infected
erythrocytes per mouse of Pb ANKA strain. At day 3 and day 6 post-
infection, mice were injected with a solution of Evans blue dye and 1 h
later were perfused with PBS and macroscopic observation of the brains
was made. Brains from uninfected mice were used as controls. (B)
Measurement of Evans blue dye extravasation by spectrophotometry.
Data are representative of two experiments. Significant differences were
determined by Mann-Whitney test.
doi:10.1371/journal.pone.0006004.g002
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post-infection, this level remained relatively stable in H3R2/2

mice but at day 6, there was a marked decrease in the level of

HDC expression. The regulation of the HDC expression was

different in C57BL/6 mice where the HDC gene was significantly

upregulated and was maintained at a constant level through day 6.

It is striking to observe that, except for naive mice where the

amounts of brain t-MeHA were well correlated with levels of HDC

gene expression, in infected mice this correlation was poor in both

mouse strains. This indicates that additional regulatory mecha-

nisms associated with histamine metabolism are brought into play.

In an attempt to evaluate the impact of Plasmodium infection on

serum histamine levels, we compared histamineamia of H3R2/2

mice and C57BL/6 mice infected or not with Pb ANKA. As shown

in figure 5C, higher levels of histaminaemia were observed in

infected H3R2/2 mice as compared to C57BL/6 mice only at day

3 and 5 (p = 0.0117) post-infection. This suggests an association

between higher plasmatic levels of histamine and the severity of

the disease in H3R2/2 mice, a parallel previously observed in

murine models of CM [28] and in human infection [33]. These

data also show that histamine levels are differentially regulated in

peripheral compartments as compared to the brain.

Splenic cytokine production during Pb ANKA infection
To explore the immune response of peripheral tissues during Pb

ANKA infection, IL-10, IFN-c, and TNF-a produced in vitro by Pb

ANKA stimulated splenocytes from infected H3R2/2 and

C57BL/6 mice were measured at various time points after

infection. As shown in Fig. 6, all three cytokines could be elicited;

IL-10 and TNF-a production peaked with a delay of one day in

H3R2/2 mice as compared to C57BL/6 mice. Kinetically, the

pattern of IFN-c looks similar in the two mouse strains with

however a 3-fold higher production (p,0.01) in H3R2/2 mice. At

day 5, splenocytes from both mouse strains showed an inability to

produce IL-10 and IFN-c and a drastic reduction of TNF-a
production upon antigenic challenge which at this time was

maintained in H3R2/2 mice (Fig. 6). Since cytokines were

induced in an antigen-dependent manner and no cytokines could

be detected in antigen-stimulated unprimed splenocytes, cytokines

were presumably produced by antigen-specific T cells. This

pattern of time-dependent cytokine production, parallel to

previous findings [34], was consistent with cell proliferation as

measured with thymidine uptake (data not shown). These data

indicate that the divergent susceptibility to CM of H3R2/2 and

C57BL/6 mice could be a result of likely differences in T cell

cytokine responses and thus supports a role for locally and

peripherally dysregulated inflammatory response.

A protective role for H3R agonists and H1R, and H2R
inhibitors in CM

The higher susceptibility of H3R2/2 mice to CM suggests that

histamine regulation via H3R has a protective effect in CM. To

further assess the function of H3R during malaria disease,

C57BL/6 mice were treated with (R)-alpha-methylhistamine, a

standard H3R agonist [5,17], and infected with Pb ANKA

parasites. As shown in Figure 7A, administration of (R)-alpha-

Methylhistamine had a significant protective effect with a median

survival time of 24 days as compared with a median survival time

of 15.5 days for untreated mice (n = 8, p = 0.029). Since we

previously found that histamine signaling via H1R and H2R has a

profound impact in malaria disease [28], and to verify that H1R

and H2R inhibitors have additional beneficial effects to the

naturally protective function of H3R, we examined the effect of

Levocetirizine (H1R inhibitor) and cimetidine (H2R inhibitor) on

CM in C57BL/6 mice. Administration of Cimetidine prolonged

Figure 3. Formation of hemorrhagic lesions occurs earlier in the brain of H3R2/2 mice. Wild-type C57BL/6 mice and H3R2/2 mice (3 mice
per group) were inoculated intraperitoneally with 106 Pb ANKA-infected erythrocytes per mouse. At day 5 post-infection, mice were perfused with
PBS then PFA 4% and brain sections were made. (A) Brains Sections stained with May-Grünwald Giemsa. Blood-stage parasites associated with
sequestered erythrocytes (panels 10, 11, and 12) in the brain could be visualized by fluorescence (panels, 7, 8, and 9) because of their expression of
GFP only in H3R2/2 mice (white shadow indicated by arrows). At this time, no deposition of fluorescent parasites could be observed in brain sections
from uninfected (not shown) and only scarce number of aggregates could be detected in infected C57BL/6 mice (arrow in panel 4 for mouse 1). Data
are representative of three mice per group. (B), The density of erythrocyte aggregates in brain sections of infected H3R2/2 and C57BL/6 mice were
expressed as the average of aggregates in three sections and counted in 250 consecutive microscopic fields per section at magnification 2506. These
data are from two different experiments. *** Significant difference was obtained between infected H3R2/2 and C57BL/6 mice using Mann-Whitney
test (p = 0.0003). Bar, 100 mm.
doi:10.1371/journal.pone.0006004.g003
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mouse survival with a median survival time of 22 days for treated

mice as compared to a survival time of 15.5 days for untreated

ones (n = 8, p = 0.03) (Figure 7B). Preventive treatment with

Levocetirizine had a more protective effect against CM since

median survival time was more than 25 days for treated mice as

compared to a survival time of 8 days for untreated ones

(Figure 7C). These data on median survival time demonstrate the

shift from death by CM to mortality associated with hyperpar-

asitemia mediated by pharmacologically decreasing histamine

activity.

To further examine the efficacy of the preventive therapeutic

effect of H1R and H2R inhibitors in the absence of the naturally

protective H3R, H3R2/2 mice were treated with Levocetirizine

and Cimetidine and inoculated with Pb ANKA parasite-infected

erythrocytes. As shown in figure 7D, Cimetidine significantly

prolonged the survival time (p = 0.015) whereas Levocetirizine was

less effective (p = 0.08) (Figure 7E). Altogether, these data suggest

that mimicking (H3R) or antagonizing (H1R and H2R) the

biological effects of histamine may improve disease outcome in

malaria infection. The fact that no difference in parasitemia

between treated and untreated groups was observed suggests that

the pharmacologic effects of histamine receptor inhibitors are

exerted on host response rather than directly on the parasite.

To look whether histamine receptor inhibitors are able to

protect mice once the infection is established, C57BL/6 mice were

infected with Pb ANKA parasite-infected erythrocytes and

beginning 5 days post infection mice were treated every day with

either Levocetirizine or Cimetidine. As shown in figure 8A and C,

Levocetirizine but not Cimetidine significantly increased mouse

survival (p = 0.025, and p.0.05, respectively). Again, treatment

with either drug appears to not effect parasite development

directly since parasitemia in all treated groups was similar to that

of control untreated mice (Figure 8B and D). Additional

experiments where mice were treated using histamine H1 and

H2 receptor inhibitors at the time of neurological sign manifes-

tations did not show any therapeutic effect (supporting figure 2).

We subsequently examined whether histamine effector func-

tions via H1R and H2R alters expression of inflammatory genes in

the brain in the context of functional (C57BL/6) or non functional

H3R (H3R2/2). Analysis of mRNA expression of TNF-a and

IFN-c, two cytokines typically associated with CM, was performed

by RT-PCR in the brain from C57BL/6 and H3R2/2 mice

Figure 4. Characterization of brain infiltrating cells during infection with Pb ANKA parasites. At indicated time points post-infection,
brains from C57BL/6 and H3R2/2 mice infected with 106 infected erythrocytes per mouse of Pb ANKA strain were taken and leukocytes associated
with cerebral tissue were analyzed for the presence of CD4+ and CD8+ T cells and other inflammatory cells. Data are expressed as a percentage of
total cell population (A) and absolute cell numbers per brain (B). Six mice per group were used. Values represent the mean6standard deviation of
two experiments. (B) Differences between C57BL/6 and H3R2/2 mice are significant at day 5 for total CD4+ and CD8+ T cells (Mann-Whitney test,
*p = 0.04). Differences in total neutrophils/inflammatory monocytes (CD11b+ GR1 High cells) and (CD11b+ GR1 Low cells) between C57BL/6 and
H3R2/2 mice are significant at day 5 (Mann-Whitney test, *p = 0.04, and p = 0.046, respectively).
doi:10.1371/journal.pone.0006004.g004
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treated or not with Levocetirizine, or Cimetidine, and inoculated

or not with 106 Pb ANKA-infected erythrocytes. As shown in

figure 9, a significant decrease of TNF-a (p = 0.0005, and 0.0002)

and IFN-c (p = 0.0022, and 0.0028) mRNA expression was

observed in C57BL/6 mice treated with Levocetirizine, and with

Cimetidine, respectively. In H3R2/2, mRNA expression of TNF-

a was significantly reduced (p = 0.03, and p = 0.009) following

treatment with Levocetirizine and Cimetidine, respectively

whereas a significant down-regulation of IFN-c gene expression

was obtained only in mice treated with Cimetidine (p = 0.042).

These data demonstrate that the therapeutic effect of H1R and

H2R inhibitors appears to be more effective in the situation where

H3R is functional (wild-type C57BL/6 mice) and can be

interpreted at least in part by dampening the expression of

inflammatory response-associated genes known to be critical for

disease expression during CM.

Discussion

It is widely recognized that the production of proinflammatory

mediators and cytokines as well as the upregulation of endothelial

cell adhesion molecules play an important role in the development

Figure 5. Regulation of histamine metabolism upon infection
with Pb ANKA. (A) C57BL/6 and H3R2/2 mice were sacrificed at
indicated time points after receiving blood stage parasites of Pb ANKA
inoculated intravenously, and brain extracts were prepared for t-MeHA
measurements. Differences in t-MeHA level between groups are
significant (Mann-Whitney test, n = 5, *** p,0.001, ** 0.001,p,0.01,
and * 0.01,p,0.05). In C57Bl/6 mice, significant differences in t-MeHA
level appeared day 5 post-inoculation (Kruskal Wallis test, p = 0.0061
followed by Dunn’s Multiple Comparaison test, *** p,0.0001). In H3R
KO mice, significant differences in t-MeHA level appeared day 4 post
inoculation (Kruskal Wallis test, p = 0.008 followed by Dunn’s Multiple
Comparaison test, *** p = 0.0002). The t-MeHA level for H3R2/2 mice on
day 7 is absent due to the high level of mortality by that time point. (B)
Transcription of the HDC gene in the brain (n = 6/group) at different
time points post-infection as evaluated by real-time RT-PCR. mRNA
expression was normalized relative to hypoxanthinephophoribosyl-
transferase expression for each mouse strain. * indicates that
differences are significant (Mann-Whitney test, 0.01,p,0.05) relative
to the basal level in C57BL/6 mice (grey bars), and ** indicates that
these values are significantly different (Mann-Whitney test,
0.001,p,0.01) relative to the t-MeHA level measured at day 6 in
H3R2/2 mice (black bars). *** indicates that HDC mRNA from H3R2/2

mice are significantly down-regulated as compared to that of C57BL/6
mice at day 6 (Mann-Whitney test, * p = 0.0336). (C) Determination of
plasmatic histamine levels; histamineamia was measured by ELISA in
naı̈ve and infected C57BL/6 and H3R2/2 mice at different time points
after inoculation with 106 blood stage parasites of Pb ANKA. Values
represent mean6standard deviation from three experiments. *A
significant difference in histamineamia post infection between H3R2/2

mice and C57BL/6 mice were observed at day 3, and day 5 (Mann-
Whitney test, p = 0.0117) only.
doi:10.1371/journal.pone.0006004.g005

Figure 6. Antigen-specific T cell responses and cytokine
analysis. Spleen cell preparations from infected H3R2/2 and C57BL/6
mice were seeded at 26106 cells/ml and incubated for 72 h in the
presence or absence of 30 mg/ml of Pb ANKA lysate. After incubation,
the supernantants were harvested and tested for their content in IL-10,
TNF-a, and IFN-c and measured by ELISA. * indicates that differences
are significant (Mann-Whitney test, p = 0.039). Each experiment is
representative of three distinct infections.
doi:10.1371/journal.pone.0006004.g006
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and progression of cerebral pathology in malaria disease [35]. It

has been hypothesized that CM is precipitated by the disruption of

the brain microvasculature that results from the uncontrolled

inflammatory reaction associated with inappropriate immune

response [35]. During malaria pathogenesis, it is difficult to

establish which comes first, the breakdown of BBB integrity or the

pathogenic inflammatory response. We propose that resistance to

CM development relies in the ability to control the inflammatory

response that otherwise mediates immunopathological processes.

Our recent research was been based on the hypothesis that

histamine is one of the earliest and potent inflammatory mediators

that affects the host immune response to Plasmodium parasites.

Recently, we tested this hypothesis by investigating the role of

histamine in the occurrence of CM [28]. We found that HDC2/2

mice that lack histamine are resistant to the induction of CM

during infection with Pb ANKA. In this mouse model, we found

that the absence of histamine prevents leukocyte adhesion and

sequestration of infected erythrocytes to the brain vasculature, and

Figure 7. Effect of preventive treatment with histamine receptor agonists and antagonists on the occurrence of cerebral malaria.
Wild-type C57BL/6 and H3R2/2 mice were left untreated (diamonds) or treated (squares) with a H3R agonist R-a-MeHA or either the H1R or H2R
inhibitors, respectively, Levocetirizine, and Cimetidine, before and during infection with 106 infected erythrocytes per mouse. These data are from
two independent experiments. Significant differences in mortality/survival (A, B, C, D, E) were observed between drug-treated and untreated mice
using the log-rank test. No significant differences in parasitemia between treated and untreated groups (F, G, H, I, J) were observed.
doi:10.1371/journal.pone.0006004.g007

Figure 8. Effect of treatment with histamine receptor inhibitors on ongoing Pb ANKA infection. Panels A and C indicate survival rates of
C57BL/6 infected with Pb ANKA 5 days prior daily treatments until the end of the experiment with either Cimetidine or Levocetirizine. These data are
from one experiment using 7 mice per group. Significant differences in mortality/survival were observed between drug-treated and untreated mice
using the log-rank test. Parasitemia (B, and D) were not significant.
doi:10.1371/journal.pone.0006004.g008

Disrupted H3R & Malaria Severity

PLoS ONE | www.plosone.org 7 June 2009 | Volume 4 | Issue 6 | e6004



decreases the expression of ICAM-1 by brain vascular endothelial

cells [28]. Given the predominant expression in the central

nervous system of the H3R, one of the four identified histamine

receptors, the possibility exists that signaling through this

particular histamine receptor may control the development of

Plasmodium-associated brain pathology. We investigated the role of

H3R in the onset of CM, using mice with non-functional H3R

gene. We observed a significantly earlier emergence of clinical

signs of CM with more rapid death in H3R2/2 mice as compared

to identically infected wild type C57BL/6 mice. Although higher

parasitemia was observed at day 4 and 5 in H3R2/2 mice as

compared to wild-type mice, it is unlikely that a causative

relationship exists between parasitemia levels and pathology.

Indeed, high parasitemia levels could be elicited in histamine-

deficient HDC2/2 mice [28] and RAG2/2 mice (personal

observation) without any disease expression. The accelerated

death of H3R2/2 mice is associated with an earlier and more

pronounced loss of BBB integrity than in infected C57BL/6 mice

(Fig 2). These findings are consistent with an uncontrolled

histamine release by histaminergic neurons in H3R2/2 mice.

Indeed, histamine release by these neurons is tightly regulated by

H3R, which act as inhibitory autoreceptors for the synthesis and

release of histamine [5,17] and as H3 heteroreceptors to inhibit

the release of other neurotransmitters including dopamine, c-

aminobutyric acid, noradrenaline, acetylcholine, and serotonin in

the CNS [18]. Estimating neuronal histamine levels in the brain,

by measuring the histamine metabolite t-MeHA as an index,

confirmed that neuronal histamine activity is significantly higher in

naive H3R2/2 mice than in C57BL/6 mice. However, following

infection, tele-methylhistamine levels in the brain dropped sharply

below constitutive levels in H3R2/2 mice while in C57BL/6 mice

this decrease was not obvious. This observation is consistent with a

tighter control exerted by the H3R on histamine release from

neuronal cells in C57BL/6 mice, which is absent in H3R2/2

mice. This decrease could be due either to a down-regulation of

the HDC gene expression or an up-regulation of the HMT

expression in response to the infection. We found that the

catabolism pathway was not affected since the expression of HMT,

which converts histamine into the biologically inactive compound

tele-methylhistamine, was not altered throughout the infection

period (data not shown). In naı̈ve mice the biosynthetic pathway as

determined by HDC mRNA expression indicates that expression

in the brain was 3-fold higher in H3R2/2 mice than in C57BL/6

mice, a finding consistent with the control of histamine synthesis

by H3 autoreceptors [5,17]. After infection with Pb ANKA, the

regulation of HDC mRNA expression showed distinct patterns in

H3R2/2 and in C57BL/6 mice. It appears that while the

expression of HDC increased in both mouse genotypes, at day 6

post-infection a down-regulation occurred only in H3R2/2 mice.

A possible explanation for the earlier loss of BBB integrity in

H3R2/2 mice consists of a surge in histamine available in the

brain. This histamine likely binds to H1R and H2R which may

then alter the permeability of brain capillaries resulting in the loss

of BBB integrity. Our data show that the expression of clinical

signs is associated with decreases in tele-methylhistamine levels, and

HDC mRNA expression in the brain. However, it remains unclear

by which mechanism these decreases occur in an accelerated

manner in infected H3R2/2 mice. Because histamine neuron

activity is involved in the regulation of body temperature [5] the

earlier down-regulations observed in H3R2/2 mice might result as

an effect of hypothermia [36,37] known to occur during CM and

just prior death. As part of the established neuroprotective effect of

hypothermia, it was also reported very recently that hypothermia

induced increased concentrations in the brain of galanin, a

neuropeptide known to be co-localized with histamine in rodent

histaminergic neurons and to modulate their activity [38]. Hence,

an up-regulation of the neuropeptide galanin could provide a

possible explanation [39,40,41]. Nonetheless, we could not detect

differences in either the expression of galanin or in the drop of

body temperature between H3R2/2 and C57BL/6 mice (data not

shown). Given the complexity of the physiological regulations of a

vast array of neurotransmitters by histamine via H3R signaling

[38], future studies will explore if and how these neurotransmitters

are modulated during Plasmodium infection in wild-type mice and

in H3R2/2 mice.

In CM pathogenesis, it has been well established that a major

effector is CD4+ and CD8+ T cells which sequester within cerebral

blood vessels [42] along with parasitized red blood cells. Previous

studies indicated that association of activated CD4+ and CD8+ T

cells [42,43,44] and other inflammatory cells with the endothelial

cells of brain vasculature is a characteristic of experimental CM.

We examined whether the higher susceptibility of H3R2/2 mice

was reflected by a differential recruitment of these cells as

compared to wild type C57BL/C mice. Analysis of brain-

associated CD4+ and CD8+ T cells after infection with Pb ANKA

parasites displayed a constant rise in T cells with similar kinetics in

both genotypes until day 5 where a higher number of cells was

detected in the brains from H3R2/2 mice. Considering the fact

that other inflammatory cells such as neutrophils [45,46] and

monocytes [47] contribute to CM pathogenesis, we evaluated and

observed, as for T cells, a sequestration of a higher number of cells

in the brains of infected H3R2/2 mice. Furthermore, T cell

sequestration was dominated by CD8+ T cells. Looking at a

possible difference in terms of peripheral T cell response, the

splenocytes from the mouse strains, challenged ex-vivo with Pb

ANKA lysate, produced variable amounts of IL-10, IFN-c and

Figure 9. Down-regulation of inflammatory response-associat-
ed genes by histamine receptor antagonists. Wild-type C57BL/6
and H3R2/2 mice were treated or not with H1R inhibitor (Levocetirizine)
or H2R inhibitor (Cimetidine) one day before and throughout the
infection period by inoculating 106 Pb ANKA-infected erythrocytes. Six
days post-infection, brains were analyzed for the expression of TNF-a
and IFN-c as measured by quantitative RT-PCR. Gene mRNA expression
is normalized relative to hypoxanthinephophoribosyltransferase. Data
are presented as the means6SD from two independent experiments.
Significant differences between groups indicated by presence of a bar
over the respective columns were determined by Kruskal-Wallis test
followed by Dunn’s Multiple Comparison test.
doi:10.1371/journal.pone.0006004.g009
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TNF-a with different kinetics between the two genotypes

ultimately ending with an immunosuppression at day 5 post-

infection occurring in both mouse strains. This immune

suppression is consistent with earlier data [34], further suggesting

that inhibition of the T cell proliferation and cytokine production

was under the control of CD4+CD25+ T regulatory cells elicited

during Pb ANKA infection. One exception for this immune

suppression is TNF-a whose production by splenocytes from

H3R2/2 mice was less affected. The sustained TNF2a
production by splenocytes combined with a sequestration of a

higher number of CD4+ and CD8+ T cells and increased

production of pro-inflammatory cytokines in the brain may

account for the more severe disease developed by H3R2/2 mice.

A critical and consistent difference between the two mouse

genotypes is the earlier disruption of the BBB and the concomitant

hemorrhagic lesions in H3R2/2 mice at day 3 post-infection, a

time when no clinical sign had manifested.

Histamine is implicated in the pathophysiology of multiple

sclerosis and its animal models, collectively termed EAE [48]. Our

findings are in agreement with a recently published report on EAE

showing that, compared with wild-type animals, H3R2/2 mice

develop a more severe disease and neuroinflammation along with

dysregulated BBB permeability [48]. Typically, the increased

clinical disease observed during the early phase of EAE in H3R2/

2 mice was associated with earlier and more severe inflammatory

infiltrates. Also, the degree of the BBB permeability was

significantly higher in H3R2/2 compared with C57BL/6 mice.

As for EAE, two opposite, although not exclusive hypotheses, may

account for the pathogenetic mechanisms involved in the disease

expression during experimental CM. The immune-based hypoth-

esis which contends that parasite-specific CD4+ and CD8+ T cells

exert their effector functions within brain capillaries, and the

alternative hypothesis that emphasizes the brain tissue-initiated

inflammatory response, which represents the primary pathological

event leading to disease progression. Disruption of H3R reveals

that during Pb ANKA infection, the ability of this receptor to

normalize histamine release within the brain tissue is important for

limiting immunopathology and supporting a positive outcome.

Subsequent to the brain-initiated inflammatory events (Fig. 2, and

3), CD4+ and CD8+ T cells and inflammatory cells adhere to brain

capillaries leading to their detrimental effect. In this regard, we

propose a similar chronological pattern of pathogenetic events as

in EAE and as discussed by Teuscher et al. [48].

Uncontrolled histamine release in various immunopathological

conditions where the brain tissue represents the site of pathoge-

netic events may support the utility of pharmacological targeting of

H3R via receptor agonists to prevent the development of tissue

lesions either in multiple sclerosis or during CM. Our data support

this pharmacological approach since the use of (R)-alpha-

methylhistamine, a standard H3R agonist [5,17], was demon-

strated to be effective in reducing progression to CM. Although,

such class of drug is not available yet for a therapeutic use in

humans, our work provides a rational basis for a future use of H3R

agonists, alone or in combination with H1R or H2R inhibitors, as

they become available. The single use, however, of an H1R

inhibitor Levocetirizine or an H2R inhibitor Cimetidine when

H3R is functional appears to be promising since both drugs were

effective in preventing the development of clinical signs and

mortality due to CM. This therapeutic effect was translated at the

molecular level at least in part by the down-regulation of

inflammatory response-associated genes such as IFN-c and

TNF-a. Hence, the beneficial role of H3R in limiting disease

expression by controlling histamine release and metabolism is

highlighted by the higher therapeutic effectiveness and better

control of inflammatory gene expression exerted by H1R and

H2R inhibitors when H3R is functional. The compensatory

protective effect provided by Cimetidine and to a lesser extent by

Levocetirizine in H3R2/2 mice suggest that expression of a

functional H3R constitutes a minimal condition that helps slow the

development of severe disease. Once the infection was established,

we found that only Levocetirizine significantly increased survival

to CM. Furtheremore, Levocetirizine appeared to be more

efficient when delivered as a preventive treatment than when it

was administered therapeutically. This argues for a preferential use

of H1R and H2R inhibitors as a preventive therapy. This would

be more feasible in areas where malaria transmission is seasonal.

In the absence of any impact or alteration of parasite development,

our data are not consistent with previous findings showing that

Astemizole, an H1R inhibitor, directly interferes with Plasmodium

parasite metabolism, thus altering its development [49]. Our

previous and current data with histamine support a mechanism by

which anti-histamines administered during infection with Pb

ANKA affect the host immune response by maintaining the

inflammatory response at levels that are less detrimental to the

host and thereby reducing progression to CM.

Materials and Methods

Ethics statement
All animal care and experimentation were conducted in accord

with Pasteur Institute animal care and use committee guidelines.

Mice
Female C57BL/6 mice 6–8 wk old were purchased from

Charles River Breeding Laboratories (Saint-Aubin les Elbeufs,

France). H3R2/2 mice [50] were provided by Dr Robin L.

Thurmond (Johnson & Johnson Pharmaceutical Research and

Development, San Diego, California). All knockout mice origi-

nated from the C57BL/6 background.

Parasites and infection
For all infections, a cloned line of Plasmodium berghei ANKA (Pb

ANKA) strain stably transfected with the green fluorescent protein

(GFP) on hsp70 promoter [51], was utilized allowing the detection

of sporozoites and blood stage parasites by fluorescent microscopy.

Pb ANKA was provided by Dr. T. Ishino (Department of Medical

Zoology, Mie University School of Medicine, Edobashi, Tsu,

Japan). Infection of mice induces experimental CM, characterized

by paralysis, ataxia, convulsions and coma between 6–11 days

post-infection. This parasite was maintained in a cycle between

C57BL/6 mice and An. stephensi [52]. The erythrocytic stages of

the parasite were maintained in liquid nitrogen as parasitized red

blood cells in Alsever’s solution (Sigma, France) containing 10%

glycerol. The infection was induced by intraperitoneal injection of

106 parasitized red blood cells.

Preparation of brain cell suspensions
The brains were obtained from H3R2/2 mice at the coma stage

of CM and at the same time from wild-type C57BL/6 mice (day

6). Briefly, mice were anesthesized with ketamine (600 mg/kg) and

xylazine (20 mg/kg) and perfused with 30 ml of PBS via the left

ventricle of the heart to remove circulating and nonadherent RBC

and leukocytes from the brain vasculature. Brain-associated

leukocytes were obtained as described previously [28].

Flow cytometric analysis of brain leukocytes
Brain cells were stained for FACS analysis according to

standard protocols in cold PBS containing 2% FCS and 0.01%
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sodium azide (FACS buffer) with the following Abs (all from BD

Biosciences, Le Pont de Claix, France): FITC-labeled anti CD45,

APC-labeled CD4, phycoerythrin (PE)-labeled anti-CD8a, PE-

labeled anti-GR1, and APC-labeled anti-CD11b. After staining

with Abs, cells were washed then resuspended in FACS buffer

before flow cytometric analysis. A total of 56104 living cells for

brain, gated as CD45-positive cells, were analyzed using a four-

color FACSCalibur flow cytometer with ProCellQuest software

(BD Biosciences, Mountain View, California).

Permeability of the blood-brain barrier
When mice infected with Pb ANKA strain began showing

neurological symptoms, usually at day 6–7 post-infection. A

volume of 200 mL of 2% (w/v) solution of Evans Blue in PBS was

injected into the mice retro-orbitally. One hour later, mice were

perfused with PBS after anesthesia with ketamine (600 mg/kg) and

xylazine (20 mg/kg). Each brain was removed and photographed.

Animal perfusion and histological analysis
To analyze only brain-associated leukocytes, mouse perfusion

consisted of intracardiac injection of 100 ml PBS, followed by

200 ml of 4% paraformaldehyde in PBS. The brains were fixed for

3 days in 1% paraformaldehyde solutions and then were

subsequently cryoprotected in a 30% sucrose phosphate-buffered

solution at 4uC for 3 days before cutting. For May-Grünwald

Giemsa staining procedure, the protocols used to obtain brain

sections (40 mm thick) were described elsewhere [53,28]. Although

sequestration of infected erythrocytes occurs evenly without any

particular localization in the brain tissue (infected erythrocytes

were found in olfactory bulbs, cortex, thalamus, hypothalamus,

and cerebellum), sections were made in three different mice from

the same anatomical sites of the cerebellum only. Detection of

blood-stage parasites associated with sequestered erythrocytes in

the brain could be visualized either by May-Grünwald Giemsa

staining or GFP fluorescence. The density of erythrocyte

aggregates in brain sections of infected and control mice were

expressed as the average of aggregates per field and counted in 100

consecutive microscopic fields from 3 histological sections per

brain at magnification 2506. Images of randomly selected were

collected using an Olympus upright microscope (BX61) (Center

Valley, Pennsylvania) equipped with an oil-immersion lens (606)

and a cooled video camera (Qimaging, Retiga 2000R, Burnaby,

Canada) with a color conversion filter. Digitizing was performed

with a PC computer using the image analysis system Image-Pro

Plus (MediaCybernetics, Silver Spring, USA).

Splenocyte proliferation assay and cytokine production
Spleen cells from C57BL/6 or H3R2/2 mice were collected at

different time points after infection with Pb ANKA and incubated

for 72 h in the presence or absence of 30 mg/ml of Pb ANKA

lysate. For proliferation assays, 200 ml total splenocyte suspensions,

diluted in complete RPMI 1640 medium–5% fetal calf serum,

were seeded in 96-well plates at a density of 26106 cells/ml. Cells

cultured in medium alone were used as background controls.

[methyl-3H]thymidine (2 mCi/well; Amersham Biosciences, Unit-

ed Kingdom) was added 16 h before harvesting, and radioactivity

was measured using a Betaplate counter. For cytokine detection,

the cell culture supernatants were collected and analyzed for their

cytokine content by capture enzyme-linked immunosorbent assay

(ELISA). Detection of IL-10, IFN-c, and TNF-a was performed

according to the manufacturer’s instructions (BD Biosciences,

Mountain View, California).

Quantification of brain-associated HDC, HMT, and
immune signaling molecules

Gene expression in the brains from H3R2/2 and C57BL/6

mice at various time points post-infection was analyzed by the real-

time RT-PCR. RNA utilized for these assays was isolated by

means of a two-step extraction process. First, brains were

surgically removed from mice as previously described and placed

immediately in RNAlater at 4uC overnight. After RNAlater

infused the samples, it was removed and samples were maintained

at 280uC until processing. Brains were thawed in 1 ml of Trizol

and subjected to bead disruption in a polytron 3 times from 2 min

at a setting of 30 cycles/sec. Samples were spun at high speed

(10,0006g) for 3 min to remove debris and lipids. Half of the

sample was transferred to a new tube and mixed with 500 ml of

Trizol reagent by vortexing. Following this step, RNA extraction

proceeded according to manufacturers protocol. Precipitated

RNA was resuspended in 100 ml of RNase-free water. The second

step of this extraction was followed by Qiagen’s protocol for RNA

clean-up including steps for removal of protein and DNA (Qiagen

RNeasy Kit). Samples were eluted with 50 ml of RNase-free water

and quality and quantity assured by photospectroscopy. Real-time

RT-PCR utilized various primer-probe sets and standard Taqman

protocols (Applied Biosystems) [54].

Determination of tele-Methylhistamine Levels in brain
After infection, animals were sacrificed and the brain was

homogenized in 10 volumes (w/v) of ice-cold perchloric acid

(0.4 N). t-MeHA levels in the supernatants were determined using

an enzymoimmunoassay derived from a radioimmunoassay

described previously [55]. Briefly, t-MeHA of the sample was

derived with p-benzoquinone (BZQ) (2.8 mg/ml). The reaction

was allowed to proceed at pH 7.9 for 3 h, then 2 M glycine was

added to eliminate the excess of p-benzoquinone. The extract was

mixed with t-MeHA-p-benzoquinone-Leu-Tyr-acetylcholinester-

ase as a tracer and an antiserum raised in rabbits against t-MeHA

conjugated with bovine serum albumin via p-benzoquinone in a

96-well plate (Nunc Immuno-Plate Maxi-Sorp Surface; Nunc,

Roskilde, Denmark) pretreated with swine anti-rabbit IgG

(Cayman Chemical, Ann Arbor, MI). After incubation for 16 h

at 15uC, plates were washed and the substrate for acetylcholin-

esterase, Ellmann’s reagent, was added. After 5 h, the optical

density was measured with a Dynatech Mr 5000 at 405 nm. The

limit of the detection was 5 pg of t-MeHA.

Treatments
The histamine receptor subclass-specific inhibitors Cimetidine

(H2R), and Levocetirizine (H1R) and the H3R agonist (R)-alpha-

methylhistamine (R-a-MeHA) were injected i.p. daily at 10 mg/kg

until the end of the experiment, starting 24 h before infection. To

test the therapeutic effect on histamine receptor inhibitors, in one

experiment, Cimetidine and Levocetirizine were injected daily

from day 5 post-infection until the end of the experiment.

Levocetirizine was kindly obtained from UCB Biopharma

(Brussels, Belgium), whereas Cimetidine and R-a-MeHA were

purchased from Sigma (St Louis MO). Histamineamia was

determined using ELISA kits purchased from Neogen Corporation

(Lexington, KY).

Statistical analysis
Significant differences in survival were evaluated by generation

of Kaplan-Meier plots and log rank analysis. p,0.05 was

considered statistically significant. For other analyses, when

differences between C57Bl/6 and H3R-KO mice were compared
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at a given time point, the Mann-Whitney test was performed with

significance set at p,0.05. When comparing differences between

days after inoculation within each strain of mice, we performed the

Kruskal-Wallis test followed by an a posteriori Dunn’s multiple

comparison test.

Supporting Information

Figure S1 Morphological characterization of the CD11b+GR1

high cell population. This cell population could represent a

population of GR1+ inflammatory monocytes that are elicited

during Plasmodium parasite infection. We have reassessed cellular

analysis using anti-GR1 Ab combined with the 7/4 mAb (Caltag

Laboratories) which reacts with the 7/4 antigen that is a

polymorphic 40 kD molecule expressed by polymorphonuclear

cells, but absent on resident tissue macrophages. This analysis is

shown in S1A. A similar pattern was obtained as previous

experiments based on high expression of GR-1 epitope. However,

the 7/4 antigen can also be expressed by inflammatory monocytes

as shown in S1D with a key difference in that inflammatory

monocytes express less GR1 and 7/4 antigen than neutrophils. We

further examined these cells which were sorted using a cell-sorter

(5 days post-infection) as shown in annex 1B (purity 96% based on

GR1High/7/4 expression) and which morphologically resemble

activated neutrophils as observed by electron microscopy (S1C).

These cells were also shown to release myeloperoxydase upon

phorbol myristate acetate stimulation.

Found at: doi:10.1371/journal.pone.0006004.s001 (1.10 MB TIF)

Figure S2 Treatments with histamine receptors inhibitors have

no therapeutic effect when administered at the time of CM

neurological symptoms. C57BL/6 mice were first infected with

106 parasitized erythrocytes and when the mice showed signs of

cerebral malaria at day 7 (60 to 80% of the mice), they received

daily either Levocetirizine or Cimetidine.

Found at: doi:10.1371/journal.pone.0006004.s002 (0.25 MB TIF)
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