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Abstract

Background: Expression level of many genes shows abundant natural variation in human populations. The variations in
gene expression are believed to contribute to phenotypic differences. Emerging evidence has shown that microRNAs
(miRNAs) are one of the key regulators of gene expression. However, past studies have focused on the miRNA target genes
and used loss- or gain-of-function approach that may not reflect natural association between miRNA and mRNAs.

Methodology/Principal Findings: To examine miRNA regulatory effect on global gene expression under endogenous
condition, we performed pair-wise correlation coefficient analysis on expression levels of 366 miRNAs and 14,174 messenger
RNAs (mRNAs) in 90 immortalized lymphoblastoid cell lines, and observed significant correlations between the two species
of RNA transcripts. We identified a total of 7,207 significantly correlated miRNA-mRNA pairs (false discovery rate q,0.01). Of
those, 4,085 pairs showed positive correlations while 3,122 pairs showed negative correlations. Gene ontology analyses on
the miRNA-correlated genes revealed significant enrichments in several biological processes related to cell cycle, cell
communication and signal transduction. Individually, each of three miRNAs (miR-331, -98 and -33b) demonstrated
significant correlation with the genes in cell cycle-related biological processes, which is consistent with important role of
miRNAs in cell cycle regulation.

Conclusions/Significance: This study demonstrates feasibility of using naturally expressed transcript profiles to identify
endogenous correlation between miRNA and miRNA. By applying this genome-wide approach, we have identified
thousands of miRNA-correlated genes and revealed potential role of miRNAs in several important cellular functions. The
study results along with accompanying data sets will provide a wealth of high-throughput data to further evaluate the
miRNA-regulated genes and eventually in phenotypic variations of human populations.
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Introduction

Expression level of many mRNA genes shows abundant natural

variation in human populations. The quantitative variations in

mRNA expression are thought to contribute to phenotypic

differences between individuals. Several molecular mechanisms

have been identified that control gene expression. In addition to

known transcription factors that bind to specific regulatory DNA

sequences [1,2] and extensively studied genetic polymorphisms

that determine transcription level via cis- or trans-effects [3–8],

newly discovered miRNAs have been proven to be a major player

in posttranscriptional regulation of gene expression [1,2,9,10]. The

miRNAs were first identified to play a role in developmental

timing of Caenorhabditis elegans in the early 1990s [11,12].

Subsequent studies have shown that cellular factors necessary for

miRNA biogenesis and many miRNAs are conserved in many

organisms, suggesting the importance of miRNAs during devel-

opmental processes and evolutions [13–17].

miRNAs are a novel class of non-coding small RNAs which

have been recognized as global regulators of gene expression that

control the key cellular processes such as growth, development and

apoptosis [9,10]. A single miRNA can potentially regulate several

hundreds of mRNAs forming a complex regulatory network that

can act in a flexible manner for precise and rapid effects on protein

translation and gene expression. Majority of the miRNAs are

expressed in a cell- or tissue-specific manner and may contribute
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to the establishment and/or maintenance of cellular and/or tissue

identity. It is estimated that several thousand human genes, up to

about one-third of the mRNA transcriptome, are potential targets

for regulation by miRNAs encoded in the genome [18]. The

regulatory process occurs posttranscriptionally and involves

miRNA interaction with a target site in the mRNA that has

partial or complete complementarity to the miRNA. The

regulatory effect of miRNAs on gene expression is a complex

process involving both translational repression and accelerated

mRNA turnover, each of which appears to occur by multiple

mechanisms. Moreover, certain miRNAs are also capable of

activating translation [19,20]. Hence, miRNAs are related to

diverse cellular processes and regarded as important components

of the gene regulatory network.

Importance of an individual miRNA is reflected in the diseases

that may arise upon the loss, mutation or dysfunction of specific

miRNAs [21–23]. One study reported mutations in 5 of 42

sequenced miRNAs in 11 of 75 patients with chronic lymphocytic

leukemia. Although the majority of these mutations were somatic,

at least one was germline [23]. Another study showed that up-

regulation of several miRNA genes was correlated with loss of their

target gene transcript (KIT) in papillary thyroid carcinoma. In 5 of

10 such cases, this down expression was associated with germline

single-nucleotide changes in the two recognition sequences in KIT

for these miRNAs [22]. Recently, a series of papers presented

conceptually related ideas linking the genetic variations and

alterations of biogenesis and function of miRNAs to the increased

risk of developing sixteen major human diseases. Significant role of

miRNAs in the pathogenesis of many major human disorders has

been proposed as part of disease phenocode concept [24–26].

These results suggest that germline changes in miRNAs and their

target genes may have a profound effect not only on disease

progression but also an individual’s risk of developing disease.

Current studies, however, have focused primarily on miRNA

role as posttranscriptional regulators of target mRNAs or at a

much higher level on their cell biological processes and organismal

roles [9,10]. Loss- or gain-of-function studies often analyzed effects

on mRNAs by expressing or suppressing specific miRNA in cells.

As these experiments create non-physiological levels of miRNAs

that may affect target mRNAs abnormally, accurate evaluation of

the miRNA effects may require normal range of variations in

miRNA expression under an endogenous condition. Additionally,

because miRNAs can interact with their target genes directly and

influence expressions of many other genes indirectly, the miRNAs

may demonstrate correlations with their target genes as well as

non-target genes. Therefore, merely measuring target gene

expression may not be sufficient to gain understanding miRNA

regulatory effects. A complimentary approach is to identify

downstream genes that are tightly correlated with fluctuation of

miRNA expression. Liu et al [27] has reported significant miRNA

correlations with target genes as well as non-target genes by

performing expression profiling analysis on 12 brain tumor

biopsies. Subsequent experimental validations demonstrated a

directional causal relationship from miRNAs to mRNAs. Howev-

er, the small sample size and potential mutations in the samples

restrained statistical power to detect weak correlations.

To fully examine the miRNA-mRNA correlations at whole

genome scale, we measured both miRNA and mRNA transcrip-

tional profiles in 90 human Epstein-Bar virus transformed

lymphoblastoid cell lines. We performed pair-wise correlation

coefficient analysis and identified strong correlations between the

endogenous variations in the miRNA and mRNA expression.

Gene Ontology (GO) analysis identified over-representation of

these miRNA-correlated genes in several biological processes.

These high-throughput expression data provides a valuable

resource to examine global effects of miRNAs on gene expression

and hence on complex traits.

Results

Endogenous correlations between miRNA and mRNA
expression

We performed pair-wise correlation coefficient analysis to

evaluate potential correlations between 366 miRNA and 14,174

mRNA expression levels. When false discovery rate q value

(qFDR),0.01 (approximately p value,0.00076), we detected

significant correlation in 7,207 miRNA-mRNA pairs (Table S1),

which were involved in 2,448 (17.27%) of the 14,174 mRNA probes

and 90 (24.59%) of the 366 miRNAs. Of the 7,207 pairs, 4,085 and

3,122 pairs showed positive and negative correlations, respectively

(Table 1, also see Table S2 for all 366*14,174 correlation

coefficient r values). The most frequently involved miRNA was miR-

363, which was correlated with 672 mRNAs. Cumulative frequency

of these correlated genes for each of 366 miRNAs is shown in

Figure 1A. Significance level of each mRNA probe for its

correlation with miR-363 is demonstrated in Figure 1B.

When examining each of 7,207 significant miRNA-mRNA

pairs individually, we found that positive correlations dominated

highly correlated pairs. The positive correlations accounted for top

110 pairs (ranked based on qFDR values). The correlation

between miR-10a and HOXB4 was the most significant with a

positive correlation qFDR = 2.21610219. The most significant

negative correlation was between miR-98 and SERBP1

(qFDR = 3.9761027), which was ranked 111th of the most

significant pairs. Table 2 lists top 20 most significant positive

and top 20 negative correlation pairs.

To confirm and validate the Illumina BeadArray data, we tested

6 miRNAs (miR-10a, -20b, -181b, -181c, -34b, -372) and 7 mRNA

genes (GRK5, KIF3B, ADD3, HOXB4, SERBP1, ST7 and ZNF532)

using TaqMan-based quantitative RT-PCR in each of the 90

lymphoblastoid cell lines. The 6 miRNAs were chosen because

they demonstrated various degrees of correlations with mRNAs

and were in the same multiplex RT pool (human pool 1) of

TaqMan miRNA assays. The 7 mRNA genes were selected based

on various levels of correlations with the selected miRNAs. Four of

the six miRNAs (miR-10a, -20b, -181b, -181c) and all 7 mRNA

genes had a Ct (cycle threshold) value#35 and so were used in our

final analysis. The results showed high level of concordance

between the BeadArray and quantitative RT-PCR in 26 of the 28

comparisons (Table 3). Two miRNA-mRNA pairs (miR-20b and

ST7, and miR-181c and ST7) gave poor reproducibility, and this

may have resulted from the use of the two separate assays in

targeting different isoforms (a and b) of the gene ST7.

miRNA-correlated genes and biological processes
To functionally classify miRNA-correlated genes, we used

11,417 known genes (14,174 mRNA probes) as a reference set

and applied GOMiner (http://discover.nci.nih.gov/gominer/) for

enrichment analysis of selected gene sets. We first evaluated GO

classification for each miRNA-correlated gene set. To correct for

multiple comparisons, we performed 1000 randomization analy-

ses. For each of these gene sets, we observed various degrees of

GO term enrichments. For example, eight of the top 20 miRNAs

in Table 1 had at least one GO term that was significantly over-

represented (randomization-corrected FDR,0.01). The most

striking findings were from gene sets that were correlated with

miR-331, miR-98 and miR-33b. For miR-331-correlated genes (269

genes from 284 probes), we detected significant over-representa-

miRNA-Correlated Genes
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tion for the GO terms of DNA replication (p = 2.65610223, 8.67

fold enrichment), DNA metabolic process (p = 2.35610222, 4.15

fold enrichment) and cell cycle (p = 1.94610219, 3.66 fold

enrichment). Further analysis demonstrated that these enrich-

ments were exclusively derived from negatively correlated genes.

While we did not see any significant GO term in positively

correlated genes, we observed significant enrichments in 58 GO

terms for 191 negatively correlated genes (200 probes). Again, the

most marked GO term included DNA replication

(p = 9.21610228, 11.59 fold enrichment), cell cycle

(p = 7.99610227, 4.89 fold enrichment) and DNA metabolic

process (p = 1.09610226, 5.34 fold enrichment) (Table 4).

For the gene sets that were correlated with miR-98 (239 genes

from 348 probes) and miR-33b (124 genes from 126 probes), we

observed similar GO term enrichments as the miR-331 correlated

genes. This was particularly true for the GO terms related to cell

cycle. When considering both types of the correlated genes

separately, however, we found the cell cycle-related GO term

enrichments only in the miR-98 negatively correlated (153 genes

from 159 probes) and in the miR-33b positively correlated gene sets

(84 genes from 85 probes) (Table 4).

We then evaluated overall influence of miRNA expression on

the GO categories. For a total of 2,248 miRNA-correlated genes

(from 2,448 mRNA probes), we detected significant enrichments

on several GO terms, in particular those pertinent to cell cycle

with 72% (8 of 11 significantly enriched terms) relevant. Other

significant GO terms included those related to cell communica-

tion, signal transduction and response to stimulus. To see if these

cell cycle-related enrichments were driven by the miR-331, miR-98

and miR-33b, we excluded genes that were correlated with these 3

miRNAs and re-evaluated the GO term distribution. We found

that cell cycle-related terms were no longer over-represented, but

the two terms (cell communication and signal transduction) still

remained enriched. Interestingly, further analysis identified that

only positively correlated gene set contributed to the enrichments

with p = 6.8561029 for cell communication and p = 1.0561027

for signal transduction (Table 4). Other enriched terms included

immune system process (p = 6.3061027) and multicellular organ-

ismal process (p = 5.3761026). Table S3 provides these signifi-

cant GO terms with randomization-corrected FDR,0.01 in

detail.

Direct vs. indirect miRNA-mRNA correlations
To test if miRNA-correlated mRNA genes are direct miRNA

targets, we downloaded the predicted miRNA targets from

TargetScan5.1 (http://www.targetscan.org) and compared them

Table 1. Correlation between miRNAs and mRNAs in lymphoblastoid cell linesD.

Bonferroni-corrected p,0.05 qFDR,0.01

Positive
correlation

Negative
correlation Any Correlation

Positive
correlation

Negative
correlation Any Correlation

miRNA-mRNA pairs 204 15 219 4085 3122 7207

mRNAs involvedDD 103 14 116 1453 1417 2448

miRNAs involvedDD 26 13 30 72 64 90

Top 20 miRNA-correlated mRNAs

miR-363 33 0 33 383 289 672

miR-18b 33 1 34 370 214 584

miR-20b 34 0 34 349 207 556

miR-181b 10 2 12 304 164 468

miR-10a 13 1 14 259 208 467

miR-181a 18 1 19 267 173 440

miR-181c 8 0 8 243 144 387

miR-213 9 0 9 199 125 324

miR-221 11 0 11 196 125 321

miR-9* 1 1 2 136 184 320

miR-222 9 1 10 173 122 295

miR-331 0 1 1 84 200 284

miR-9 2 1 3 111 160 271

miR-98 0 2 2 93 159 252

miR-339 2 0 2 111 92 203

miR-486 2 0 2 80 56 136

miR-33b 0 0 0 85 41 126

miR-194 4 0 4 83 38 121

miR-192 2 0 2 76 38 114

miR-130b 0 0 0 47 38 85

DThe number in the table are mRNA probe counts.
DDBecause one miRNA (mRNA) may be correlated with one mRNA (miRNA) positively and another mRNA (miRNA) negatively, number of any correlation is smaller than

sum of positive and negative correlations.
doi:10.1371/journal.pone.0005878.t001
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with the miRNA-correlated genes. Because miRNA annotation

file was based miRBase v9.1, some of miRNA names did not

match the new version of TargetScan such as missing the -3p or -

5p. Therefore, we limited our analysis to these miRNAs with name

or sequence match in the TargetScan 5.1. We also limited the

analysis to these genes with a reference sequence accession

number. Before statistical analysis, we further filtered out the

miRNAs that had less than 10 correlated mRNAs. Finally, 31

miRNAs were left for target prediction. We then compared each

list of miRNA-correlated gene set to the list of predicted miRNA

target genes. For the 31 miRNAs, we found 8 miRNAs whose

targets were significantly enriched among their correlated gene

sets (p,0.05 when included both conserved and non-conserved

targets). The target gene set of miR-181a remained significant

after multiple testing correction (FDR = 0.048).

Physical proximity and expression correlations
To estimate the effect of miRNA-mRNA proximity on their

expression correlation, we extracted all miRNA-mRNA pairs that

mapped on the same chromosomes and had correlation

qFDR,0.01. We plotted r value of each correlation against

distance between the miRNA and mRNA (Figure 2). For positive

correlations, we observed clear trend of r value decrease when the

distance increased. Specifically, the highest positive correlations

were observed when miRNA and its corresponding mRNA was

physically close each other on a chromosome. The highly positive

correlations gradually decreased to baseline (at ,$2 Mb). For

negative correlations, however, we observed constant r values from

0.4 Mb to over 140 Mb. We did not observe any correlation when

the distance was ,0.4 Mb, where 26 positive correlations existed.

Discussion

miRNAs play an important role in regulation of gene

expression. In this study, we examined genome-wide expression

profiling in normal lymphoblastoid cell lines under routine culture

condition and identified strong correlations between miRNA and

mRNA expressions. Although complex gene-gene interactions

may greatly diminish the power to identify significant miRNA

effects, we were able to detect a variety of biological processes that

may indicate function of those miRNAs. These results demon-

strate that genome-wide transcriptional profiling analysis was able

to detect endogenous correlations between miRNA and mRNA

and that miRNA regulatory effect was discernable under natural

culture condition.

miRNAs have been shown to target transcripts that encode

proteins involved in cell cycle progression and cellular prolifer-

ation. Some of them display defective expression patterns in

human tumors with the consequent alteration of target oncogene

or tumor suppressor genes. These miRNAs modulate the major

proliferation pathways through direct interaction with critical

regulators such as MYC, RAS, PI3K/PTEN or ABL, as well as

members of the retinoblastoma pathway, Cyclin-CDK complexes

or cell cycle inhibitors of the INK4 or Cip/Kip families[28,29]. It

is postulated that by regulating an entire cellular program

through the cooperative repression of target genes, miRNAs may

serve as buffers to limit the accumulation of many gene products

that impact cell cycle progression under a variety of con-

texts[28].

Interestingly, the miR-98 in this study is one of miRNAs that

show significant association with cell cycle-related genes. The miR-

98 is a member of let-7 family which plays a critical role in cell

cycle control with respect to differentiation and tumorigenesis.

The let-7 family is a master regulator of cell proliferation pathways

by regulating the expression of the RAS as well as MYC

oncogenes[30–32]. Over-expression of let-7 miRs alters cell cycle

progression and reduces cell division in lung cancer cells[30] and

causes cell cycle arrest by directly regulating the gene Cdc34 in

human fibroblasts[33]. Clearly, the let-7 is a negative regulator of

cell cycle process, which is consistent with our observation that

Figure 1. Frequency and significance level of miRNA-correlated genes. A. 90 of the 366 individual miRNAs are correlated with at least one
mRNA. We align the 90 miRNAs on 20 of 24 chromosomes based on their genomic locations (X axis). For each miRNA, the number of the correlated
mRNA probes is demonstrated on Y axis (red dot). For example, miR-363 on Xq26.2 is correlated with 672 mRNA probes. Both miR-181b (correlated
with 468 mRNA probes) and miR-181a (correlated with 440 mRNA probes) have two copies, each on different chromosomes (1 and 9). B. Among
11,417 known genes (14,174 mRNA probes), we successfully map 11,278 individual genes on the 24 chromosomes (X axis). We plot–log10 values of
the correlation coefficient qFDRs between miR-363 and the 11,278 genes along Y axis (blue dot). The horizontal dot line (black) indicates qFDR = 0.01.
Above the line are the mRNA probes that were significantly correlated with the miR-363. For example, the miR-363 is significantly associated with the
gene SASH (chromosome 6q24.3) at qFDR = 3.70610211 (equal to 10.43 of 2log scale in the figure).
doi:10.1371/journal.pone.0005878.g001
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miR-98 is negatively correlated with cell cycle genes in this study.

Additionally, we also noticed a correlation of other let-7 members

(especially let-7i and let-7g) with cell cycle-related genes (Table S1)

in the lymphoblastoid cell lines, suggesting that let-7 family

members do regulate cell cycle not only in fibroblasts and cancer

cells but also in lymphoblastoid cell lines.

Because direct regulation of gene expression by miRNAs, we

expect to see enrichment of miRNA-correlated genes among

predicted targets. Indeed, we observed significant concordance

between miRNA-correlated genes and miRNA predicted target

genes in 8 of 31 miRNA sets. In particular, the miR-181a gene set

showed significance of concordance even after multiple testing

Table 2. Top 20 miRNA-mRNA pairs (based on correlation qFDR values).

miRNAs mRNA genes r p
Bonferroni-
corrected p Correlation qFDR Co-localization

Top 20 positively correlated pairs

miR-10a HOXB4 0.823 2.63E-23 1.36E-16 2.21E-19 yes

miR-151 PTK2 0.795 8.10E-21 4.21E-14 9.30E-17 yes

miR-28 LPP 0.791 1.92E-20 9.96E-14 1.99E-16 yes

miR-18b SASH1 0.757 6.16E-18 3.20E-11 5.36E-14 no

miR-20b SASH1 0.739 9.51E-17 4.94E-10 8.62E-13 no

miR-10a HOXB2 0.720 1.23E-15 6.37E-09 5.18E-12 yes

miR-18b TCF2 0.718 1.62E-15 8.42E-09 7.06E-12 no

miR-20b TBX15 0.718 1.60E-15 8.31E-09 7.24E-12 no

miR-222 ACVR1B 0.722 9.62E-16 4.98E-09 9.77E-12 no

miR-18b TBX15 0.707 6.94E-15 3.60E-08 2.01E-11 no

miR-363 SASH1 0.715 2.61E-15 1.35E-08 2.30E-11 no

miR-424 MGC16121 0.716 2.10E-15 1.09E-08 2.62E-11 yes

miR-20b TCF2 0.702 1.30E-14 6.73E-08 3.93E-11 no

miR-363 TCF2 0.705 8.97E-15 4.65E-08 3.96E-11 no

miR-20b BC062771 0.698 2.11E-14 1.09E-07 4.78E-11 no

miR-363 TBX15 0.695 2.97E-14 1.54E-07 8.73E-11 no

miR-20b HLXB9 0.683 1.27E-13 6.59E-07 2.31E-10 no

miR-221 ACVR1B 0.693 3.64E-14 1.89E-07 3.39E-10 no

miR-363 HLXB9 0.680 1.63E-13 8.45E-07 3.60E-10 no

miR-222 RBMS1 0.686 8.11E-14 4.21E-07 4.12E-10 no

Top 20 negatively correlated pairs

miR-98 SERBP1 20.625 4.58E-11 0.0002 3.97E-07 no

miR-18b C13orf18 20.58 2.11E-09 0.0109 7.04E-07 no

miR-181b CKLF 20.586 1.27E-09 0.0066 1.95E-06 no

miR-363 SMARCA2 20.557 1.16E-08 0.0600 2.63E-06 no

miR-10a CUGBP2 20.570 4.58E-09 0.0238 2.76E-06 no

miR-363 CHST2 20.554 1.52E-08 0.0787 3.27E-06 no

miR-222 DDR2 20.577 2.58E-09 0.0134 3.27E-06 no

miR-18b CUGBP2 20.550 1.99E-08 0.1032 4.22E-06 no

miR-363 TGFBR3 20.548 2.21E-08 0.1146 4.24E-06 no

miR-18b SMARCA2 20.549 2.06E-08 0.1069 4.27E-06 no

miR-363 BAG3 20.547 2.35E-08 0.1219 4.42E-06 no

miR-181a BPNT1 20.562 8.39E-09 0.0436 4.50E-06 no

miR-181b ST7 20.571 4.34E-09 0.0225 5.12E-06 no

miR-363 ARL8B 20.544 2.90E-08 0.1504 5.22E-06 no

miR-18b AP1S3 20.545 2.71E-08 0.1402 5.35E-06 no

miR-331 E2F2 20.596 5.67E-10 0.0029 5.38E-06 no

miR-151 VIM 20.590 9.67E-10 0.0050 5.55E-06 no

miR-18b C22orf16 20.544 2.99E-08 0.1548 5.65E-06 no

miR-363 KIF3B 20.542 3.45E-08 0.1790 5.67E-06 no

miR-363 SAV1 20.540 3.82E-08 0.1984 6.14E-06 no

doi:10.1371/journal.pone.0005878.t002

miRNA-Correlated Genes

PLoS ONE | www.plosone.org 5 June 2009 | Volume 4 | Issue 6 | e5878



correction. For some reasons, we did not see any evidence of

concordance in most miRNA sets. Generally, miRNA is believed

to bind 39UTR of a target gene and regulates gene expression at

protein level. Therefore, miRNA target itself may not demonstrate

noticeable change at mRNA level although some exceptions have

been reported[34]. It is especially true when these correlations are

examined under endogenous condition and there is limited range

of variations in miRNA expression (contrary to extremely high

Table 3. Confirmation of beadarray data with TaqMan-based quantitative RT-PCRD.

Genes miR-10a miR-20b miR-181b miR-181c

Beadarray qRT-PCR Beadarray qRT-PCR Beadarray qRT-PCR Beadarray qRT-PCR

GRK5 20.012 20.060 0.024 0.027 20.172 20.027 20.147 0.178

KIF3B 20.483 20.469 20.509 20.540 20.529 20.391 20.532 20.229

ADD3 0.113 0.158 0.201 0.404 0.436 0.514 0.399 0.404

HOXB4 0.823 0.773 0.503 0.524 0.348 0.547 0.345 0.375

SERBP1 0.062 0.067 0.192 0.131 0.125 0.051 0.131 0.204

ST7 20.364 20.268 20.440 20.096 20.571 20.337 20.529 20.083

ZNF532 0.307 0.290 0.218 0.261 0.276 0.259 0.228 0.215

DSpearman rank correlation coefficients (r value) between these miRNA and mRNA gene expressions are used for the comparison. Among the 28 comparisons, 26 show
high concordance. One discordant pair is the gene ST7 and miR-20b with an r value of 20.440 in Beadarray and 20.096 in qRT-PCR. Another pair is the gene ST7 and
miR-181c with an r value of 20.529 in Beadarray and 20.083 in qRT-PCR. The two different assays that target different isoforms (a and b) of the ST7 is a plausible
explanation.

doi:10.1371/journal.pone.0005878.t003

Table 4. Gene Ontology analysis of miRNA-correlated genesD.

GO ID GO terms Total Genes
miRNA-correlated
Genes

Enrichment
Fold

Enrichment p
value

Enrichment
qFDRDD

miR-331 negatively associated genes (191 genes from 200 probes)

GO:0006260 DNA replication 142 34 11.59 9.21E-28 0

GO:0007049 Cell cycle 574 58 4.89 7.99E-27 0

GO:0006259 DNA metabolic process 489 54 5.34 1.09E-26 0

GO:0022402 Cell cycle process 489 49 4.85 4.31E-22 0

GO:0022403 Cell cycle phase 214 31 7.01 2.02E-18 0

miR-98 negatively associated genes (153 genes from 159 probes)

GO:0007049 Cell cycle 574 38 4.12 6.01E-15 0

GO:0000278 Mitotic cell cycle 201 22 6.80 4.97E-13 0

GO:0022403 Cell cycle phase 214 22 6.39 1.81E-12 0

GO:0006259 DNA metabolic process 489 32 4.07 2.22E-12 0

GO:0022402 Cell cycle process 489 32 4.07 2.22E-12 0

miR-33b positively associated genes (84 genes from 85 probes)

GO:0000279 M phase 176 12 8.04 2.16E-08 0

GO:0007049 Cell cycle 574 20 4.11 2.88E-08 0

GO:0007067 Mitosis 146 11 8.88 3.17E-08 0

GO:0000087 M phase of mitotic cell cycle 148 11 8.76 3.65E-08 0

GO:0051301 Cell division 163 11 7.95 9.91E-08 0

All miRNA positively associated genes (1,206 genes from 1,453 probes) D D D

GO:0007154 Cell communication 1553 251 1.36 6.85E-09 0

GO:0007165 Signal transduction 1430 229 1.34 1.05E-07 0

GO:0002376 Immune system process 401 81 1.70 6.30E-07 0

GO:0032501 Multicellular organismal
process

1143 182 1.34 5.37E-06 0.0005

GO:0006955 Immune response 307 63 1.72 6.99E-06 0.0004

Donly top five GO terms are listed here. For other enriched GO terms, please see Table S3.
DDrandomization-corrected FDRs are reported here. Refer to Materials and Methods for detail.
DDDthe gene list has excluded the genes that are correlated with miR-331, miR-98 and miR-33b.
doi:10.1371/journal.pone.0005878.t004
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level of expression by transfection study). Because miRNA

inhibitory effect is at posttranscriptional level, the most significant

changes could be downstream genes of the miRNA target at

transcript level. Furthermore, because background noise and weak

correlation between miRNAs and their targets, each tested

miRNA had relatively small number of correlated genes when

applying FDR,0.01. This also limited statistical power to detect

significance.

Although the results from this study need further validation, the

importance of the present study is clear. First, the study adopts a

whole genome approach and identifies thousands of highly

correlated miRNA-mRNA pairs. Second, the study measures

expression levels under endogenous condition and without

extremely high or low levels of miRNAs caused by transfection

approach. Third, the study correlates miRNAs with their targets as

well as downstream genes. The downstream genes are closer to the

final consequences of miRNA-mRNA interactions. Fourth, the

study identifies several biological processes that are associated with

variations in miRNA expression. Lastly, the study results are

supported by other publications using different materials and

methods, demonstrating feasibility of this approach in studying

miRNA function. We believe that these results along with

supplementary data sets will provide a valuable resource to further

investigate the miRNAs and their functions.

Materials and Methods

Ethics Statement
All subjects provided written informed consent; and the study

was approved by the Mayo Clinic IRB.

Cell lines and Cell culture
We collected peripheral bloods from 90 Caucasian men with

median age of 68 years old (44–74) and transformed the peripheral

blood lymphocytes with Epstein-Bar virus to establish immortal

cell lines. We then grew all transformed cell lines in RPMI 1640

media supplemented with 15% fetal bovine serum, and 1%

penicillin/streptomycin at 37uC in humidified incubators in an

atmosphere of 5% CO2. Experimental series were set up by

seeding 5-ml cultures in T25 flasks. Each culture was fed with 5 ml

Figure 2. Physical proximity and expression correlations. We extract all miRNA-mRNA pairs that map on same chromosomes and have
correlation qFDR,0.01. We plot the physical distances between miRNAs and mRNAs on x-axis and correlation coefficient r values on y-axis. The
distance is based on the starting position of each miRNA and mRNA. We draw a logarithmic trend line (red) for positive and negative correlations
separately. A. the distances from near 0 to 140 Mb are shown. For positive correlations (black dots), the trend line shows significant r value drop at far
left side (short distance). However, for negative correlations (blue dots), the trend line tends to be constant. B. the distance from 0 to 0.5 Mb was
shown. The positive correlations (26 pairs) are clearly clustered when the distance is ,0.4 Mb (particularly ,0.1 Mb), where no negative correlation is
found.
doi:10.1371/journal.pone.0005878.g002
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of fresh media twice a week until the cell number reached ,106 in

a T75 flask. The cells were harvested and suspended in 500 ml of

RNAlater and stored at 280uC for further processing.

RNA extraction
We extracted total RNA from each cell culture using miRNeasy

Mini Kit (QIAGEN) under the manufacturer’s guidelines. This

protocol could effectively recover both mRNA and miRNA. The

integrity of these total RNAs was assessed using an Agilent 2100

Bioanalyzer.

mRNA and miRNA microarrays
We used the Illumina human-6 V2 BeadChip for mRNAs

profiling and Illumina microRNA expression profiling panel

(based on miRbase release 9.0) for miRNA analysis according to

the manufacturer’s recommendation (Illumina, Inc., San Diego,

CA). 200 ng of RNA from each cell culture was first labeled and

then hybridized to each array using standard Illumina protocols.

BeadChips (mRNA) or sample array matrices (miRNA) were

scanned on an Illumina BeadArray reader. For mRNA, we

repeated 30 samples in triplicate, 30 samples in duplicate and 30

singleton samples for a total of 180 expression profiles. For

miRNA, we repeated 84 samples in duplicate and 6 samples in

quadruplicate for a total of 192 expression profiles. We also

arranged each of these replicates in separate arrays to reduce

potential batch effect. Before data processing, we used various

bioinformatics tools to examine the quality and reproducibility of

each expression profiles. Based on principal component analysis,

we removed 26 individual miRNA profiles due to substantial shifts

away from a main cluster. However, replicates from each of the 26

individuals were still included in the analysis because they were in

the main cluster. The expression profiles have been deposited in

NCBI’s Gene Expression Omnibus (GEO) with accession number

GSE14794.

Data processing
We processed 180 mRNA and 166 miRNA profiles which

included all 90 subjects. For both mRNA and miRNA data, we

first transformed raw data generated from BeadStudio (Illumina,

San Diego, CA) using a variance stabilization transformation

algorithm [35] and then normalized them using quantile

normalization implemented in Bioconductor (www.bioconductor.

org). After normalization, the samples with replicates were

averaged. As a large fraction of mRNAs and miRNAs were either

not expressed or non-detectable, we filtered out probes with

median detection p value$0.01 (the p values were automatically

reported in BeadStudio). This procedure reduced the number of

mRNA probes from 48702 to 14174 and of miRNA probes from

736 to 366 for final data analysis. Among the 366 miRNAs, 273

are in miRBase database (http://microrna.sanger.ac.uk, v9.1), and

93 are potential miRNAs identified in a RAKE analysis[36,37].

Data analysis
For each of the 366 miRNAs, we correlated them with 14,174

mRNA probes in the 90 individuals using Spearman’s rank

correlation analyses. We assessed statistical significance using q

value of false discovery rate (qFDR) based on Storey et al [38] and

Bonferroni correction. In this study, we defined the miRNA-

mRNA correlation coefficient qFDR,0.01 to be statistically

significant. We also reported our findings using Bonferroni-

corrected p,0.05 (an equivalent to un-corrected p,9.6461029,

0.05 divided by 366614,174). These analyses were done using

Partek Genomics Suite (Partek Inc, St. Louis, Missouri). To

explore whether miRNA affects expression of genes that share a

common biological relationship, we searched for over-representa-

tion in GO categories from miRNA-correlated genes. We labeled

genes with positive correlation (+1) and genes with negative

correlation (21). One gene list for each miRNA was submitted to

the High-Throughput GoMiner at http://discover.nci.nih.gov/

gominer/. The reference gene list was 11,417 known gene names

from the 14,174 mRNA probes. The GO annotation was obtained

by matching to the gene names in the UniProt database. We

specified 1,000 randomizations for calculating the GO enrichment

FDR q-value. The enrichment p-value for each GO category was

calculated using Fisher exact test and the q-value was calculated

using the distribution of the p-values obtained by randomly re-

sampling from the reference genes[39,40].

Real-Time PCR analyses of mRNAs and miRNAs
For mRNAs, 1.2 ug of total RNAs from each of the 90 subjects

was converted to cDNA by High Capacity RNA-cDNA Master

Mix (Applied Biosystems, Foster City, CA) in a 40 ul reaction

according to the manufacturer’s protocol. 1 ul of the cDNA was

used for real time quantitative PCR in a total volume of 15 ul

containing 16 TaqMan Gene Expression Master Mix and gene

specific assay for selected genes which included GRK5

(Hs00992173), KIF3B (Hs01122781_m1), ADD3 (Hs00249895_m1),

HOXB4 (Hs00256884_m1), SERPB1 (Hs00854675_gH), ST7

(Hs00251157_m1), ZNF532 (Hs00539543_m1) and GADPH (Ap-

plied Biosystems). For miRNAs, 0.4 ug of total RNAs was

converted to cDNA using TaqMan MicroRNA Reverse

Transcription Kit and multiplex RT primer pool 1. 1.8 ul of

1:10 diluted cDNAs was used for real time quantitative PCR in

a total volume of 15 ul containing 16 TaqMan Universal PCR

Master Mix and specific assay for selected miRNAs which

included miR-10a, miR-20b, miR-181b, miR181c, miR-34b, miR-

372 and RUN48 (Applied Biosystems). All PCR assays were run

in triplicate, and expression values were averaged. In order to

increase the reliability, we excluded the assays with Ct

value$35, which included the miRNA assays for miR-34b and

miR-372. To calculate the relative expression for each transcript,

all real-time PCR data were normalized to GAPDH (mRNA) or

RUN48 (miRNA) by DCt method. We also converted the DCt

into a value of 20-DCt such that the latter value was positively

proportional to the log of copy number and was comparable

with log transformed data from microarrays.

Supporting Information

Table S1 Excel spreadsheet containing all miRNA-mRNA pairs

with significant correlation (qFDR,0.01).

Found at: doi:10.1371/journal.pone.0005878.s001 (3.28 MB

XLS)

Table S2 Pairwise correlation coefficient r values between 366

miRNAs and 14,174 mRNAs.

Found at: doi:10.1371/journal.pone.0005878.s002 (19.72 MB

ZIP)

Table S3 Excel spreadsheet listing gene ontology analysis of

miRNA-correlated genes.

Found at: doi:10.1371/journal.pone.0005878.s003 (0.06 MB

XLS)
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