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Abstract

Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase that has been implicated in learning, synaptic
plasticity, neurotransmission, and numerous neurological disorders. We previously showed that conditional loss of Cdk5 in
adult mice enhanced hippocampal learning and plasticity via modulation of calpain-mediated N-methyl-D-aspartic acid
receptor (NMDAR) degradation. In the present study, we characterize the enhanced synaptic plasticity and examine the
effects of long-term Cdk5 loss on hippocampal excitability in adult mice. Field excitatory post-synaptic potentials (fEPSPs)
from the Schaffer collateral CA1 subregion of the hippocampus (SC/CA1) reveal that loss of Cdk5 altered theta burst
topography and enhanced post-tetanic potentiation. Since Cdk5 governs NMDAR NR2B subunit levels, we investigated the
effects of long-term Cdk5 knockout on hippocampal neuronal excitability by measuring NMDAR-mediated fEPSP
magnitudes and population-spike thresholds. Long-term loss of Cdk5 led to increased Mg2+-sensitive potentials and a lower
threshold for epileptiform activity and seizures. Biochemical analyses were performed to better understand the role of Cdk5
in seizures. Induced-seizures in wild-type animals led to elevated amounts of p25, the Cdk5-activating cofactor. Long-term,
but not acute, loss of Cdk5 led to decreased p25 levels, suggesting that Cdk5/p25 may be activated as a homeostatic
mechanism to attenuate epileptiform activity. These findings indicate that Cdk5 regulates synaptic plasticity, controls
neuronal and behavioral stimulus-induced excitability and may be a novel pharmacological target for cognitive and
anticonvulsant therapies.
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Introduction

Cyclin-dependent kinase 5 (Cdk5), a proline-directed serine/

threonine protein kinase, and its neuronal-specific activating

cofactors have been implicated in numerous physiological and

pathological processes in the mammalian nervous system [1–14].

Cdk5 has been implicated in hippocampal learning and synaptic

plasticity [5,7,10,15–17] and the pathogenesis of neurodegenera-

tive disorders, such as Alzheimer’s disease and neuropsychiatric

illnesses, such as addiction [2,15,18,19].

We previously reported that Cdk5 controls hippocampus-

dependent learning and synaptic plasticity [7]. Conditional loss

of Cdk5 improved performance in several hippocampal learning

tasks and reduced the threshold for LTP induction. The

enhancement in synaptic plasticity was due to increased

NMDAR-mediated currents secondary to elevated surface expres-

sion of NR2B. Cdk5 was shown to facilitate the calpain-mediated

degradation of NR2B upon activation of NMDARs. The

regulation of NMDAR degradation appears to play a critical role

in synaptic plasticity [20].

Our initial study revealed a number of positive effects that

resulted from conditional loss of Cdk5 in the brains of adult

mice [7,15]. Inducible loss of Cdk5 in adult mice improved

learning and increased NMDAR-mediated synaptic plasticity (2–

4 weeks after knockout) [7,15]. Here, we report the effects of

adult, conditional Cdk5 loss on the induction of synaptic

plasticity and hippocampal and stimulation-induced behavioral

excitability. Since the loss of Cdk5 enhanced plasticity via

increased NMDAR-mediated currents, we examined NMDAR-

mediated field excitatory postsynaptic potential (fEPSP) magni-

tudes and population-spike thresholds in knockout (KO) and

control (WT) mice. Although enhanced hippocampal plasticity is

associated with increased learning we hypothesized that synaptic

plasticity associated with loss of Cdk5 would also lead to

increased hippocampal epileptiform activity and seizure suscep-

tibility.
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Results

Conditional knockout of Cdk5
To circumvent the neonatal lethality of the constitutive Cdk5

KO mice and non-specificity of pharmacological inhibitors

[11,21–23], conditional KO of Cdk5 was achieved by deriving

mice in which loxP elements flanked critical exons in both Cdk5

alleles. Recombination was mediated with a transgenic estrogen

receptor-Cre recombinase fusion, under control of the prion

promoter [24] in response to a 15-day regimen of hydroxytamox-

ifen as previously described [7]. Hydroxytamoxifen-dosed wild-

type littermate mice served as controls (WT).

Altered theta burst synaptic response accompanies
enhanced LTP after conditional knockout of Cdk5

LTP was induced in hippocampi from Cdk5 WT and KO

animals within the SC/CA1 pathway on a 64-channel multielec-

trode array (Figure 1A). As expected, Cdk5 KO mice displayed a

reduced threshold for LTP induction (Figure 1B) [7]. To

determine if this enhancement was due to increased responsiveness

during the theta burst stimulation (TBS) used to induce LTP we

examined the fEPSPs during TBS. In WT slices, theta bursts

briefly led to facilitation followed by moderate depression. In

contrast, in KO slices, a TBS produced an immediate depression

and subsequent larger magnitude depression compared to controls

(Figure 1C). The 10 ms inter-stimulus interval produced a

8.166.3% facilitation in WT slices, but in KO slices we observed a

12.964.7% depression (Figure 1C; Burst 1, EPSP 2). Interest-

ingly, this significant and notable discrepancy between WT and

KO mice was specific for the shortest intervals of 10 ms (100 Hz).

Paired-pulse potentiation at inter-stimulus intervals (ISI) between

25 and 800 ms (40–1.25 Hz) were not significantly different [9].

Repolarization after a theta burst stimulus is, in part, dependent

on Ca2+-activated K+-channels [25]. To evaluate for possible

aberrations in Ca2+-activated K+-channels, burst duration and

repolarization were examined. Analysis revealed no differences

between KO and WT in both burst duration and rebound during

theta burst stimuli.

Responses to CA1 hippocampal tetanic stimuli in WT and
Cdk5 KO mice

To further evaluate synaptic plasticity in WT versus Cdk5 KO

mice, responses to high and low frequency tetani were measured.

The fEPSP amplitudes were measured during a 100-Hz high

frequency tetanus in the presence of NMDAR antagonism. As

with the TBS in Figure 1, this experiment revealed a paired-pulse

disparity between KO and WT (Figure 2A). Because this

experiment was performed in the presence of a NMDAR-

antagonist, the enhanced depression was not due to NMDA

activation. After the 2nd pulse, Cdk5 KO and WT mice displayed

similar responses to 100-Hz tetani (Figure 2A). The fEPSPs

during low frequency tetani are often measured to assess the status

of the presynaptic reserve vesicle pool. A 14 Hz train in the

presence of a NMDAR antagonist elicited equivalent fEPSP

facilitation followed by vesicle depletion and fEPSP depression in

both groups (Figure 2B). In the presence of NMDA antagonism

these data show no detectable aberration in the presynaptic

reserve vesicle pool due to Cdk5 loss.

Conditional loss of Cdk5 leads to an enhancement in CA1
hippocampal post-tetanic potentiation

After a high frequency tetanus, neurons exhibit a form of short-

term plasticity called post-tetanic potentiation (PTP). Although

much of this phenomenon remains uncharacterized, PTP is likely

due to a tetanus-induced elevation in presynaptic Ca2+ which leads

to a short-lived increase in vesicle release [26]. Changes in PTP

could result from alterations in presynaptic Ca2+ channel

properties or the size of the readily releasable pool of vesicles.

Conditional loss of Cdk5 led to an enhancement in PTP following

a either a 100 Hz tetanus (Figure 2C) or TBS [7]. In the presence

of a NMDAR antagonist, a 100 Hz tetanus produced

120.764.3% and 142.469.7% PTP in WT and KO slices,

respectively. These findings indicate that loss of Cdk5 enhances

NMDA-independent short-term plasticity.

Conditional loss of Cdk5 leads to elevated Mg2+-sensitive
potentials

In addition to their role in LTP induction, NMDARs play key

roles in many intracellular signaling cascades, neuronal excitability

as well as seizure generation [27]. Consequently, in vitro slice

physiology epileptiform activity is often measured in Mg2+-free

conditions [28,29]. Since loss of Cdk5 led to a NMDAR-mediated

enhancement in synaptic plasticity, we analyzed Mg2+-sensitive

potentials in Cdk5 KO mice, thus allowing measurement of

fEPSPs containing a predominant NMDA component. Mg2+-

sensitive evoked fEPSP measurements were taken within the SC/

CA1 hippocampal pathway. The removal of NMDA receptor

Mg2+-blockade produced a 1.71-fold larger fEPSP amplitude

change in KO than WT (148.967.6 vs. 128.664.7% of baseline,

respectively; Figure 3A, left). There was also greater overall

charge transfer in Cdk5 KO mice versus controls as measured by

fEPSP areas (162.364.4 vs. 145.265.7% of baseline, respectively;

Figure 3A, right). These findings indicate that loss of Cdk5 led to

increased Mg2+-sensitive post-synaptic potentials suggesting in-

creased NMDAR function.

Chronic loss of Cdk5 reduced threshold for epileptiform
population-spike activity

Hippocampal NMDAR activation is an important step in many

in vitro and vivo seizure models [27]. Abnormal neuronal excitability

may produce epileptiform-like activity in acute brain slices.

Hyperexcitability can be characterized by an increased propensity

for populations of cells to fire in synchrony generating, so called,

population spikes. We examined whether conditional loss of Cdk5

increased susceptibility to in vitro epileptiform activity in the SC/

CA1 pathway after unmasking NMDARs. Synaptically-evoked

fEPSPs in the stratum pyramidale were measured in Mg2+-free

conditions. Stimulation of the SC/CA1 pathway at 20%-maximal

stimulation intensity produced population spikes in 3.762.5% of

WT and 10.465.0% of KO slices. A stronger 50%-maximal

stimulation intensity produced population spikes in 89.664.0% of

KO slices but only 16.7467.7% of WT slices (Figure 3B). Stronger

stimulation intensities elicited population spikes in greater number

and larger magnitude in both KO and WT slices. These results

suggest show that loss of Cdk5 reduces the threshold to induce

evoked epileptiform activity in hippocampal slices.

Aberrations in Na+ channel properties can affect neuronal

excitability [30–33] and Na+ channel antagonists serve as a

therapeutic anticonvulsants. Basal population-spike thresholds are

dependent on Na+ channel activation. Therefore, we surveyed the

basal in vitro population-spike threshold and the effects of partial

Na+ channel blockade on fEPSPs. To analyze population spike

threshold, input/output measurements were collected in the strata

radiatum and pyramidale. The stimulation thresholds to induce

population spikes in both layers were equivalent between groups.

Furthermore, partial blockade (.50%) of Na+ channels with

Cdk5 KO Increases Excitability
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50 nM TTX produced no changes from baseline in fiber volley or

fEPSP amplitudes in KO and WT groups (Figure 4A). Loss of

Cdk5 lowered the threshold for population spikes and this could

not be rescued by substantial reduction (.50%) in Na+ channel

availability [34].

Although the increase in NMDAR-mediated current in Cdk5

KO mice [7] likely contributes to the neuronal hyperexcitability,

additional mechanisms are also possible. Statistical analysis of

basal synaptic responses in the SC/CA1 stratum radiatum layer in

Mg+-containing conditions revealed that Cdk5 KO mice, 2–4

Figure 1. Altered theta burst topography in SC/CA1 pathway accompanies enhanced LTP in Cdk5 KO mice. A, An acute hippocampal
slice resting on MED-64 multi-electrode array. fEPSPs were recorded (blue) after stimulation of the SC/CA1 pathway (red). B, LTP after a ten-burst
theta stimulus in representative WT and KO slices plotted as percent amplitude of baseline (210 to 0 min). C, Effects of Cdk5 KO on theta-burst
responses. Representative theta burst traces were extracted from LTP experiment illustrated in B, Quantitation plotted as percentage change in
amplitude (relative to the 1st fEPSP) of the 2nd, 3rd, and 4th field EPSP within a single stimulus train of 4 pulses at 100 Hz in control and KO slices. The
measures are shown for bursts 1–4 of a train. Similar results were obtained with slope calculations, n = 5–8. *P,0.05 vs. WT; post hoc t-test. Data
represent mean6s.e.m.
doi:10.1371/journal.pone.0005808.g001
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weeks post-KO, had significantly longer fEPSP half-widths

compared to WT mice (7.760.4 vs. 6.360.4 ms, respectively;

Figure 4B). This increase in fEPSP duration likely represents an

impairment in repolarization and may contribute to increased

neuronal excitability. Antagonism of NMDARs, Ca2+ channels,

and Na+ channels did not reverse the elevated fEPSP half-width in

Cdk5 KOs (not shown). Impairments in inhibitory signaling could

result in behavioral hyperexcitability [27,35,36]. Therefore, the

effects of GABAA channel antagonists on fEPSPs were measured.

Administration of SR95531 led to equivalent increases in fEPSP

amplitudes in WT and KO (20.165.2 vs. 25.1612.1% increase

from baseline, respectively; Figure 4C, left). However, SR95531

decreased the fEPSP half-width in WT but not KO slices

(212.865.9% vs. +5.961.7% change, respectively; Figure 4C
right). These results suggest that GABAA-mediated signaling in

Cdk5 KO mice may compensate for the increased fEPSP

duration.

Increased behavioral seizure susceptibility follows
chronic loss of Cdk5

Although NMDARs are critical for synaptic plasticity and

learning, too much NMDAR activity may be harmful [37].

During our studies, we found that prolonged loss of Cdk5 was

associated with handling induced seizures and lethality when

compared with controls. This observation prompted quantitative

assessment of susceptibilities to handling-, pharmacologically-, and

audiogenically-induced seizures. Hydroxytamoxifen-dosed Cre

negative mice (WT) and vehicle-dosed animals carrying the Cre

transgene alone displayed no spontaneous, handling-induced, or

audiogenically-induced seizures. Furthermore, pharmacologically-

induced behavioral seizure susceptibilities and latencies were

equivalent between the vehicle-dosed and WT groups (not shown).

On the other hand, chronic loss of Cdk5 led to handling-induced

head nodding, wet dog shakes, or clonus behavioral seizures in

80% of mice after 8 weeks of Cdk5 KO (Figure 5A, top; Table 1).

While mild handling induced Racine scale 1–3 class seizures, more

stressful conditions, such as water immersion, triggered Racine

scale 3–5 seizures, tonus and death in additional cohorts of chronic

KO mice. Interestingly, increased seizure susceptibility correlated

with lethality as loss of Cdk5 for 8 weeks and daily handling

resulted in 40% mortality (Figure 5A, bottom; Table 1). In

summary, chronic loss of Cdk5 led to increases susceptibility to

handling-induced behavioral seizures and increases lethality.

To evaluate and quantify seizure susceptibility in Cdk5 KO

mice, seizure latencies were scored after animals were treated with

a convulsant, pilocarpine. Cdk5 KO mice displayed increased

susceptibility (Table 1) and significantly shorter latencies than

WT to undergo wet dog shakes (5.460.6 vs. 17.364.3 min,

respectively), clonus (9.063.0 vs. 19.364.8 min), and rearing and

falling (12.5361.9 vs. 37.0612.3 min; Figure 5B). Hence, Cdk5

KO led to 68.7%, 53.7%, and 66.2% decreases in mean latencies

to induce wet dog shakes, clonus, and rearing and falling

behavioral seizures. Chronic loss of Cdk5 led to increase central

nervous system excitability exhibited by the decreased threshold

for chemically-induced seizures.

Cranial electronencephalographic (EEG) electrodes and elec-

tromyographic (EMG) electrodes were implanted into mice and

spontaneous activity was recorded for characterization of electro-

graphic activity in WT versus Cdk5 KO mice. After loss of Cdk5

for 8 weeks, KO mice displayed epochs of multiple bursts (at 3–

4 Hz) of spike waves which correlated with tremor activity on

EMG (Figure 5C–D). Post- and inter-ictally, there were normal

EEG/EMG activities during wakefulness and sleep (Figure 5E–
F). Seizure activity was not observed in littermate hydroxytamox-

ifen-dosed WT controls (Figure S1). In summary, loss of Cdk5 for

2 months led to increased lethality, elevated seizure susceptibility,

and electrographic evidence of seizure activity.

Figure 2. Tetanic stimulation and post-tetanic potentiation after
conditional loss of Cdk5. A, fEPSPs during high frequency
tetanus. fEPSPs amplitudes during 100 Hz tetani are plotted relative to
the 1st response in the presence of 75 mM AP5. Asterisk indicates that the
2nd fEPSP during the train was significantly different between WT and KO
(P,0.05, student’s t-test). B, Effects of Cdk5 KO on fEPSPs during low
frequency tetanus. fEPSPs amplitudes during 14 Hz tetani are plotted
relative to the 1st response in the presence of 75 mM AP5. C, Post-tetanic
potentiation after a 100 Hz stimulus. Representative traces and fEPSP
amplitudes were measured and plotted relative to baseline (75 mM AP5,
n = 5–8; P,0.05, student’s t-test). Data represent mean6s.e.m.
doi:10.1371/journal.pone.0005808.g002
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Increased acoustic startle reactivity in Cdk5 KO mice
As an additional study of behavioral excitability, the brainstem

primary acoustic startle circuit was examined by measuring

acoustic startle reactivity. Animals were exposed to auditory

stimuli (white noise) at various decibels and startle responses were

measured. Cdk5 KO startle responses were 1.860.6-, 2.260.5-,

2.560.4-, and 2.360.6-fold larger than WT after 90, 100, 110,

and 120 db pulses, respectively (Figure 6A). No differences

between WT and KO were observed in habituation of startle

responses (Figure 6B) or pre-pulse acoustic inhibition

(Figure 6C). Thus, loss of Cdk5 in the adult brain elevated the

acoustic startle responses but had no detectable difference on

short-term acoustic habituation or pre-pulse inhibition.

Audiogenic behavioral seizures after chronic loss of Cdk5
Audiogenic stimulation rarely produces seizures in healthy wild

types animals. However, in special animal breeds, after kindling,

or with certain genetic modifications, high-frequency acoustic

tones can produce behavioral and electrographic seizure activity.

While chemically-induced seizures are generally thought to model

seizures of hippocampal or temporal lobe origin, audiogenic

seizures may originate in the brainstem [29]. Given that loss of

Cdk5 led to increases in acoustic startle reactivity, we examined

whether loss of Cdk5 reduced the susceptibility to audiogenic

seizures. Short-term loss of Cdk5 (2–4 weeks) did not increase

susceptibility to audiogenic behavioral seizures (0/10 short-term

Cdk5 KO animals exhibited behavioral seizure activity). In

contrast, prolonged loss of Cdk5 (for 8 weeks) increased

susceptibility to audiogenically-induced seizures. High frequency

audiogenic stimulation had no effect on WT but induced wild

running in 37% of KO mice in 32.3 sec (Table 2). Wild running

progressed to tonic-clonic seizures and tonus followed by death in

18% of KO animals within 56.0 sec. Consequently, chronic loss of

Cdk5 in the adult brain increased the propensity towards

acoustically-induced behavioral seizures.

Status epilepticus and electroconvulsive shock leads to
the production of Cdk5-activating cofactor in the
hippocampus

Both conditional KO of Cdk5 [7] and transient overexpression

of p25 [5] result in increased synaptic plasticity and learning.

There may be common mechanistic features between loss of Cdk5

and diversion of Cdk5 to form a complex with p25. Interestingly,

human hippocampal sclerosis is accompanied by p25 generation

and altered Cdk5 activity [38]. To further assess the role of Cdk5

in acute seizures and the homeostasis of neuronal excitability,

Figure 3. Increased Mg2+-sensitive post-synaptic potential and reduced threshold for epileptiform activity after conditional loss of
Cdk5. A, Representative traces and quantitation of fEPSP amplitude (n = 12) and area (n = 6) in the stratum radiatum relative to baseline following
Mg2+ wash-out. B, Representative traces and quantitation showing reduced threshold for population spikes in the stratum pyramidale of KO slices
after stimulation in the hippocampal SC/CA1 pathway in Mg2+-free conditions. Quantitation shows % of slices displaying population spikes at
indicated stimulation intensities (% of maximum). Recordings were performed 4–6 weeks post-KO. n = 16–18; ANOVA revealed a main effect of
genotype (F1,217 = 36.16, p,0.0001), stimulation (F6,217 = 115.41, p,0.0001) and interaction between genotype and stimulation (F6,217 = 11.76,
p,0.0001). **P,0.05, *P,0.01, {P = 0.067 vs. WT, post hoc t-test. Data represent mean6s.e.m.
doi:10.1371/journal.pone.0005808.g003
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status epilepticus was induced pharmacologically in WT mice and

p25 levels were assessed in hippocampal lysates. Kainate-induced

status epilepticus led to 5.062.7- and 3.961.3-fold increases in

p25 level and p25/p35 ratio, respectively (Figure 7A, left).

Similarly, pilocarpine-induced status epilepticus caused 2.860.8-

and 2.560.6-fold increases in p25 level and p25/p35 ratio

(Figure 7A, right). Hence, chemically-induced status epilepticus

in normal WT animals caused p25 levels in increase in

hippocampal lysates.

Chemically-induced acute seizures only represents one of many

models used to study seizures. Generation of p25 was also

analyzed following electrical electroconvulsive shock. Electrocon-

vulsive shock, which causes broad forebrain epileptiform activity,

is clinically used to treat depression [39] and experimentally used

for the generation of seizures [40]. Acute electroconvulsive shock

resulted in time-dependent accumulation in p25 in hippocampus

(Figure 7B). Sixty minutes following electroconvulsive shock, p25

levels increased 2.4760.08-fold. The findings suggest that both

pharmacologically- and electrically-induced epileptiform activity

results in accumulation of the Cdk5 activating cofactor, p25.

Chronic but not acute loss of Cdk5 leads to reduced
levels of Cdk5-activating cofactor in the hippocampus

Studies implicating Cdk5 and p25 in neuronal excitability

suggest that Cdk5 may be activated in order to either attenuate or

modulate excitability during seizures. Since Cdk5 KO mice

displayed elevated neuronal excitability and susceptibility to

seizures, we examined the levels of p25 in Cdk5 KO mice.

Hippocampi from subacute Cdk5 KO mice (2–4 weeks after KO)

contained similar levels of p25 compared with controls

(111.7613.7% of WT, p = 0.6). However, chronic loss of Cdk5

for 6–8 weeks led to a 58.4612.4% reduction in basal levels of p25

(Figure 7C). Consequently, chronic but not acute loss of Cdk5

leads to reduced levels of p25. The decrease in p25 levels

corresponds to an increase in neuronal excitability and seizure

susceptibility.

Figure 4. GABAA-mediated signaling partially compensates for increased fEPSP half-width in Cdk5 KO mice. A, Effect of partial Na+-
channel blockade on fEPSP amplitude. Representative fEPSPs traces from WT (red) and KO (black) are shown before and after TTX treatment (n = 12).
B, Increased basal fEPSP half-width in SC/CA1 pathway of KO hippocampus. Representative fEPSPs traces from WT (red) and KO (black) are shown
with quantitation (n = 9–10). C, Representative fEPSPs traces before and after GABAA blockade (top) are shown with quantitation (bottom).
Histograms show the changes in amplitude and half-width following treatment with 2 mM SR95531 (n = 7). 1 and 2 indicate traces before and after
treatment with SR95531, respectively. SR95531 had similar effects on fEPSP slope measurement. *P,0.05 vs. WT; post hoc t-test.
doi:10.1371/journal.pone.0005808.g004
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Figure 5. Elevated seizure susceptibility after chronic conditional Cdk5 loss. A, Kaplan-Meier seizure morbidity and survival curves. Percent
of animals observed to have handling-induced seizures and percent survival are plotted against weeks post-KO; n = 10–14; the differences for
morbidity and mortality were statistically significant, P,0.01, log-rank test. B, Latency to pilocarpine-induced wet-dog shakes (WDS), clonus (Cl), and
rearing/falling (RF) seizures in mice, 8 weeks post-KO (n = 7–10). *P,0.05 vs. WT, Student’s t-test. Data represent means6s.e.m. C–F, Representative
spontaneous EEG/EMG recordings from a conditional KO mouse, 8 weeks post-KO. C, Appearance of multiple bursts (at 3–4 Hz) of spike waves which
were frequently clustered as shown and accompanied by evident tremor and clonic seizures. D, Expanded view of 10 sec of the recording period
shown in Figure C, displaying two spike bursts separated by about 2 sec. E, Post-ictally, there was rapid return to normal EEG/EMG and resumption of
ongoing activity as displayed here during a period of wakefulness. F, Expanded view of 10 sec of the recording period shown in Figure E, Calibration
1 sec and 50 mV; the recording periods shown in panels D and F are annotated by the 10 sec bars in C and E respectively.
doi:10.1371/journal.pone.0005808.g005

Table 1. Long-term conditional Cdk5 knockout increases susceptibility to seizures.

Category of seizures genotype Morbidity Seizure latency (wks1) Mortality2

Handling-induced WT 0% (0/12) n/a 0% (0/12)

KO 80% (8/10) 5.6360.53 40% (4/10)

Category of seizures genotype Clonus Status epilepticus Tonus & Death

Chemically-induced3 WT 71% (5/7) 57% (4/7) 42% (3/7)

KO 100% (7/7) 100% (7/7) 86% (6/7)

1Weeks after last dose of hydroxytamoxifen.
2Within 8 wks.
3325 mg/kg pilocarpine, i.p./2.5 mg/kg scopolamine, s.c.
doi:10.1371/journal.pone.0005808.t001

Cdk5 KO Increases Excitability

PLoS ONE | www.plosone.org 7 June 2009 | Volume 4 | Issue 6 | e5808



Figure 6. Increased acoustic startle reactivity with normal short-term acoustic habituation and prepulse inhibition in Cdk5 KO mice.
A, Acoustic startle reactivity in Cdk5 KO mice (4–8 weeks post-KO, n = 17–19). ANOVA revealed a main effect of genotype (F1,204 = 16.35, p,0.0001),
decibels (F5,204 = 19.67, p,0.0001) and interaction between genotype and decibels (F5,204 = 3.72, p = 0.003). *P,0.01, **P,0.001, {P = 0.08 vs. WT, post
hoc t-test. B, Habituation to a 120 db sound is shown as startle reactivity in three consecutive time blocks. ANOVA revealed effects of genotype
(F1,68 = 8.62, p,0.006) and trial (F2,68 = 14.65, p,0.0001) but no interaction between genotype and trial (F2,68 = 0.31, p = 0.7326). n = 17–19. C, Prepulse
inhibition in Cdk5 KO mice. Prepulse at indicated decibels were given 5 ms prior to a 120 db sound. Prepulse inhibition is represented as percent
decrease compared to an isolated 120 db sound. ANOVA revealed effect of decibel (F2,32 = 143.74, p,0.0001) but no effect of genotype (F1,32 = 2.03,
p = 0.1735) or interaction (F2,32 = 0.78, p = 0.469). n = 8–10. Vehicle-treated animals behaved similarly to WT. Data represent mean6s.e.m.
doi:10.1371/journal.pone.0005808.g006

Table 2. Audiogenic seizures after long-term conditional Cdk5 knockout1.

Genotype Wild Running Tonic-clonic seizure Tonus/death

Morbidity Latency (s) Morbidity Latency (s) Morbidity Latency (s)

WT 0% (0/10) n/a 0% (0/10) n/a 0% (0/10) n/a

KO 27% (3/11) 32.366.7 18% (2/11) 50.0611.0 18% (2/11) 56.066.0

1After exposure to 90 db, 2.8 kHz pulse tone for 3 min
doi:10.1371/journal.pone.0005808.t002
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Discussion

Previous studies have implicated Cdk5 in the regulation of

neuronal excitability [1]. Cdk5 has been suggested to both increase

[41,42] and decrease [43] neurotransmitter release and modulate

striatal neuron excitability [1]. Cdk5 has specifically been

implicated in exocytosis and endocytosis via phosphorylation of

numerous substrates including synapsin, amphiphysin I, dynamin,

and others [44–47]. We previously demonstrated that conditional

loss of Cdk5 led to enhancements in plasticity and learning via

modulation of NMDAR degradation [9]. Furthermore, transient

overexpression of Cdk5-activating cofactor, p25, increases

NMDAR-mediated plasticity and synaptic transmission [7,15].

Here, we further characterize the enhancement of hippocampal

plasticity in Cdk5 KO mice by studying fEPSPs during theta bursts

and tetanic stimuli. We first show that within the SC/CA1

pathway, Cdk5 KO mice displayed altered LTP-inducing TBS

topography. During the detailed LTP analyses, we find that loss of

Cdk5 also leads to an NMDAR-independent enhancement in

PTP, a presynaptic form of short-term plasticity. Although Cdk5

KO had no effect on paired pulse facilitation (PPF) with

interstimulus intervals between 25 and 800 [7], Cdk5 KO did

lead to depression with a shorter 10 ms inter-stimulus interval.

Cdk5 may theoretically confer these changes by increasing the

number of presynaptic vesicles, increasing presynaptic Ca2+-influx,

or increasing sensitivity to presynaptic Ca2+. Changes in

probability of presynaptic vesicle release are usually accompanied

by broad impairments in PPF. However, since loss of Cdk5 only

conferred a PPF deficit at a very short interstimulus interval,

additional information is necessary to better elucidate Cdk59s role

in the presynapse. Although several studies implicate Cdk5 in

vesicle release and recycling [41–43,48], the exact nature of

Cdk59s role in the presynaptic compartment is still unclear. Future

studies examining Cdk59s role in presynaptic terminal would be

beneficial.

Conditional loss of Cdk5 initially leads to enhanced learning,

plasticity and increased NMDAR-mediated currents [7]. In the

present study, electrophysiological extracellular hippocampal

recordings in vitro reveal that conditional loss of Cdk5 also leads

to elevations in fEPSPs with a predominant NMDA component

and reduced threshold for population-spike activity. It is known

that the NR2B NMDAR subunit directly modulates neuronal

excitability and contributes to seizures [49–52], so it is possible

that a similar mechanism is involved following loss of Cdk5. Other

mechanisms may also contribute to the enhanced hippocampal

excitability. For example, loss of Cdk5 led to a subtle impairment

in fEPSP repolarization in the hippocampal SC/CA1 pathway.

Nonetheless, the data suggests that Cdk5 functions to attenuate

hippocampal neuronal excitability via several mechanisms includ-

ing the modulation of NMDARs.

Over time, Cdk5 KO mice displayed an increase in seizure

susceptibility, suggesting a progressive increase in excitability.

Chronic loss of Cdk5 increased the propensity for pharmacolog-

ically- and audiogenically-induced seizures. The reduced threshold

for behavioral seizure activity correlated with EEG/EMG

evidence of spontaneous seizures. Given the complexity, impact,

and significance of spontaneous seizure activity, additional EEG

recordings over an extended period of are warranted in future

studies. In addition, conditional Cdk5 KO mice also displayed an

increase in behavioral startle reactivity. We also found an

Figure 7. p25 generation in the hippocampus after pharmacologically-induced status epilepticus and electroconvulsive shock. A,
Representative immunoblots (top) and quantitation of p25 per tubulin (middle) and p25/35 ratio (bottom) after treatment with kainate and
pilocarpine. VEH = saline; KA = kainate (50 mg/kg); SC = scopolamine (2 mg/kg)/saline; and SC/PI = scopolamine (2 mg/kg)/pilocarpine (280 mg/kg).
n = 4; *P,0.05 vs. VEH and SC in; Student’s t-test. B, Representative immunoblots of p25 and quantitation of p25/p35 ratio 15, 30, and 60 min
following electroconvulsive shock administration compared to unshocked controls (time = 0); n = 2. C, Hippocampal p25:p35 ratio 6–8 weeks post-KO.
Crude lysates were immunoblotted for p25 and p35. Double asterisk indicates P,0.05 versus aged WT, Student’s t-test; n = 3–4. Data represent
means6s.e.m.
doi:10.1371/journal.pone.0005808.g007
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association between the seizure phenotype and the lethality in

Cdk5 KO mice: after 10 weeks of Cdk5 KO, the majority of Cdk5

KO mice displayed signs of increased behavioral excitability and

propensity towards handling-induced seizures. Up to 40% of

affected mice died soon after displaying seizure activity.

The electrophysiological and behavioral experiments reveal

similar trends. Initially, Cdk5 KO mice display increased

NMDAR-mediated currents, enhanced plasticity, and impaired

neuronal repolarization. Later, mice exhibit increased startle

reactivity and reduced threshold for in vitro population spikes.

Then, mice exhibit spontaneous electrographic seizures, handling-

induced seizures, audiogenic seizures and lower threshold for

pharmacologically-induced seizures. Although the experiments

were performed at varying time-points after Cdk5 KO, together,

the results suggest that loss of Cdk5 leads to a progressive increase

in neuronal and behavioral excitability, ultimately leading to

seizures.

Abnormal expression and dysregulation of Cdk5 and its

cofactors have been demonstrated in tissues from human cortical

dysplasia [53] and hippocampal sclerosis [38,46,54]. KO of p35

leads to cortical lamination defects, seizures, and lethality [55–57].

Mice lacking p35 also display abnormal morphological and

functional organization of the hippocampus, dysplastic hippocam-

pi, heterotopic pyramidal cells, and granule cell dispersion and

may serve as a model for cortical dysplasia [29,57]. In this study

we show that chemically-induced status epilepticus and electro-

convulsive shock in healthy animals induced acute generation of a

Cdk5-activating cofactor, p25. Chronic loss of Cdk5 is associated

with both seizures and reduced levels of p25. These published and

new findings indicate that Cdk5 and its cofactors may play key

regulatory roles in neuronal excitability.

Recent data have demonstrated dual roles for both Cdk5 and its

activating cofactor, p25, in learning and plasticity [5,7]. A

dichotomy may also exist for Cdk5/p259s role in pathological

neuronal excitability associated with seizures. Loss of Cdk5

increases excitability and leads to seizures, which corresponds with

decreased levels of p25. Acute seizures in healthy animals and

chronic seizures in human epileptics produces elevated levels p25

[54]. During periods of increased Ca2+-influx, neurons produce p25

following calpain activation [58]. Initially, Cdk5/p25 may serve as a

homeostatic molecule to dampen excitatory transmission and

inhibit seizure activity. However, over-excitation could result in

excessive Ca2+-influx and p25 generation, aberrant Cdk5 activity

and neurotoxicity [59]. Thus, Cdk5 may serve to inhibit abnormal

epileptiform activity when a neuron is in a normal state or promote

cell death following excess and non-physiological Ca2+ influx. We

previously showed that Cdk5 facilitates calpain-mediated degrada-

tion of the NR2B NMDAR subunit [7]. Cdk5 KO may impair

calpain-mediated p25 generation and thereby disrupt normal

homeostatic mechanisms that prevent seizures. Future studies on

Cdk5, calpain, p25, and NR2B may better our understanding of the

divergent roles for Cdk5 in neuronal physiology and disease.

Current anticonvulsant therapeutics increase inhibitory neuro-

transmission, suppress high frequency neuronal firing by reducing

voltage-gated Na+ channels availability, or inhibit voltage-gated T-

type Ca2+-channels. Such therapeutic options produce unwanted

side effects, are only efficacious in 70% of adults suffering from

recurrent seizures [60], and generally alleviate the symptoms

rather than curing or modifying the underlying etiology [27].

Aberrations in neuronal excitability can produce abnormal

electrical discharges in the brain leading to seizure activity. Thus,

a better understanding of the cellular mechanisms underlying

neuronal excitability will aid in the development of novel

therapeutics for seizures.

In future studies, it will be worthwhile to directly assess whether

the increase in neuronal excitability following Cdk5 KO has any

affects on presynaptic transmission, neuronal fiber sprouting, cell

count, and cell survival. Furthermore, it would be interesting to

study how long-term loss of Cdk5 affects hippocampal plasticity

and learning. Although short-term loss of Cdk5 produced

enhancements in plasticity and learning [7], it is possible that

chronic loss of Cdk5 and the associated epileptiform activity leads

to neurodegeneration and impaired synaptogenesis, learning, and

structural plasticity [5,16].

Materials and Methods

Animals and reagents
All procedures have been conducted in accordance with

relevant NIH, national and international guidelines and were

approved by the UT Southwestern Institutional Animal Care and

Use Committees. Unless otherwise noted, mice were housed 4 per

cage in a colony maintained at 23uC with a 12 h light/dark cycle

(lights on from 7:00 A.M. to 7:00 P.M.) and ad libitum food and

water. Breeding, genotyping, and KO induction were performed

as previously described [7]. Adult mice were treated with 4-

hydroxytamoxifen for 15 days (66.67 mg per kg, i.p.). Post-KO

time period refers to the time following end of hydroxytamoxifen

treatment. Hydroxytamoxifen-dosed mice with floxed Cdk5 alleles

mice served as WT littermate controls, as previously reported [7].

As additional controls, electrophysiolgical and behavioral exper-

iments were also performed on genetic control strains: vehicle-

dosed and undosed mice with and without Cre transgene and floxed

Cdk5 alleles. All experiments were performed on adult male mice

with experimenter blind to genotype. Unless otherwise specified,

reagents were purchased from Sigma.

Electrophysiological recordings
Transverse hippocampal slices from 8–14 week old males were

prepared in cutting saline (200 mM sucrose, 3 mM KCl, 1.4 mM

NaH2PO4, 26 mM NaHCO3, 2 mM MgCl2, 2 mM CaCl2,

10 mM glucose) and maintained in an interface chamber

containing artificial cerebrospinal fluid [61,62]. Extracellular field

excitatory post-synpatic potentials (fEPSPs) in the Schaffer

Collateral/CA1 hippocampal pathway (SC/CA1) were synapti-

cally evoked at 0.033 Hz and recorded in the stratum pyramidale and

stratum radiatum layers using a 64-channel array (150 mm interpolar

distance, MED-P5155, Alpha MED Sciences). Input-output

measurements were performed as described [7] and, unless

otherwise stated, fEPSPs were evoked using a stimulation intensity

which elicited 50% maximal response. Data acquisition and

analysis were performed using the Multielectrode MED64

hardware and software packages (Panasonic) essentially as

described [7]. Stimulus artifacts were removed and additional

analyses were performed using custom macros running under Igor

Pro, Microsoft Excel, and Graphpad Prism. LTP experiments

were performed as described [7]. Theta burst topography was

assessed 2–4 weeks post Cdk5 KO as previously described [7,63].

fEPSP amplitudes in the stratum radiatum layer were measured with

respect to the first fEPSP within each theta burst.

Post-tetanic potentiation
Post-tetanic potentiation was assessed as previously described,

2–4 weeks post-KO [7]. Basal input/output measurements were

performed to determine stimulus intensity to elicit 40% of the

maximal fEPSP amplitude. Input/output analysis, paired-pulse

facilitation, and tetani were performed in the absence of any drugs

unless otherwise indicated. Post-tetanic potentiation (PTP) was
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elicited in the presence of 75 mM AP5. Baseline was followed by a

brief 100 Hz tetanus [23] and post-tetanus recordings. PTP

measurements were made on the initial recording after the tetanus.

Measurements of fEPSP slope showed similar results.

fEPSP measurements in Mg2+-free conditions and
epileptiform activity

Mg2+-free fEPSP and epileptiform activity experiments were

performed 4–8 weeks post-KO. fEPSP input/output measure-

ments were made in regular ACSF to determine the stimulation

intensities required for 20% and 100% of maximal fEPSP

amplitudes. Baseline and Mg2+-sensitive fEPSP amplitudes and

areas were measured in regular ACSF and Mg2+-free ACSF,

respectively. Mg2+-sensitive fEPSP measurements in the stratum

radiatum were recorded using the 20%-maximal stimulation

intensity, which allowed for accurate measurement of fEPSP

magnitude in the absence of population spikes and epileptiform

activity. Any fEPSP measurements contaminated with population

spikes were excluded from calculations. Evoked population spikes

and epileptiform activity in the stratum pyramidale were recorded in

Mg2+-free buffer. Input/output measurements were recorded in

Mg2+-free buffer in triplicate and analyzed for population spikes.

Fiber volley amplitude versus stimulus intensity was not signifi-

cantly changed after washout of Mg2+. Maximum stimulation

intensities were pre-determined by measuring the stimulus and

fiber volley magnitudes necessary produced the maximum fEPSP

magnitudes during basal input/output measurements. Stimulation

intensities were binned and data was fit with a sigmoidal curve

with R2.95%.

Gross Na+ channel function was assessed by calculating

population spike threshold and measuring the effect of partial

Na+ channel blockade in normal ACSF. Traditional input/output

measurement were performed in regular Mg2+-containing ACSF

and visually analyzed for presence of population spikes in stratum

radiatum and stratum pyramidale. Pecentage of slices displaying

population spikes versus fiber volley amplitude was plotted. After

input/output measurements, a stable baseline was recorded at

20%-maximal stimulation. fEPSP magnitudes were measured after

addition of 50 nM TTX. fEPSP amplitudes were plotted relative

to baseline.

fEPSP repolarization
Repolarization experiments were performed 2–4 weeks post-

KO. Half-width was measured as the duration of fEPSP at the

half-maximal amplitude in normal Mg2+-containing ACSF. To

examine contributions of Na+ channel, NMDAR, voltage-gated

Ca2+ channel, GABAAR-mediated synaptic transmission on

fEPSP amplitudes, slopes, and half-widths, fEPSPs were measured

before and after treatment with 50 nM tetrodotoxin (TTX),

75 mM AP5, 0.1 or 0.5 mM NiCl, and 2 mM SR95531,

respectively.

Electronencephalographic (EEG)-Electromyographic
(EMG) recordings

Adult male mice were surgically implanted for long-term EEG/

EMG monitoring as previously described [64]. Mice were

anesthetized with a mixture containing 25 mg/ml ketamine and

2.5 mg/ml xylazine (administered i.p. at a dose of 0.1 mL/

mouse). They were then held in a stereotaxic frame fitted with a

mouse adaptor (David Kopf Instruments, Tujunga, CA). The

cranium was exposed, cleaned of all connective tissue, and 4 burr

holes were drilled, anterior and posterior to bregma, bilaterally

(AP 1.1, ML61.45 and AP 23.5, ML61.45). A prefabricated

implant, with 4 EEG and 2 EMG electrodes, was then

stereotaxically lowered and cemented to the skull using glass

ionomer dental cement (Ketac-Cem Aplicap; ESPE, Norristown,

PA). EMG wire electrodes were inserted contralaterally into the

nuchal musculature using blunt dissection techniques. After

suturing, the mouse was removed from the stereotaxic frame

and allowed to recover from anesthesia. This design for the EEG/

EMG implant allowed precise insertion of electrodes, targeting the

frontal and occipital cortices at a consistent depth, just touching

the dura, while minimizing surgical trauma.

EEG/EMG measurements were performed 8 weeks post-KO.

Mice were housed individually under a 12 h light-dark cycle at

2461uC, with standard laboratory chow (Harlan Teklad,

Madison, WI) and water being replenished as necessary each

day. Mice were not otherwise disturbed. They were habituated to

these conditions for a week before EEG/EMG signals were

recorded over 24 hour duration. Connections were made from the

implanted cranial electrodes to the amplifier (Grass Model 78;

Grass Instruments, West Warwick, RI) using a flexible, freely

moving, lightweight cable. Amplified and filtered (EEG: 0.3–

100 Hz; EMG: 30–300 Hz) signals were digitized at a sampling

rate of 250 Hz, displayed using custom polygraph software, and

archived for subsequent off-line analysis. Subsequently, the EEG/

EMG record was visually screened for seizure epochs.

Seizures and startle response behaviors
All behavioral experiments were performed with two groups of

8–14 week old males. The short-term KO group consisted of

animals 2–4 weeks after Cdk5 loss (i.e., 2–4 weeks following last

does of hydroxytamoxifen). The chronic KO group consisted of

animals 8 weeks following Cdk5 loss. Behavioral seizures were

scored based on the Racine scale [29,65,66]. Seizure classes one

through five were scored as mouth movements, head nodding or

wet dog shakes, clonus, rearing, and rearing/falling, respectively.

Behavioral seizure parameters such as wild running, tonic-clonic

seizures, and tonus were also scored. To assess handling-induced

seizures, animals which experienced daily handling were initially

observed for signs of spontaneous seizures in home cage for

30 min and then assessed for 30 min after tail lift and scruffing.

Handling-induced seizures typically included head nodding,

clonus, or clonus with loss of balance. Chemically induced seizures

were studied in mice 8-weeks post-KO. Animals were given

scopolamine (2.75 mg/kg, s.c.) 5 min prior to pilocarpine

(325 mg/kg, i.p.). Latency to and frequency of wet-dog shakes,

clonus, tonus, rearing and falling and other seizures classes were

recorded.

Startle response behaviors were studied 4–8 weeks post-KO

using the SR-Lab system (San Diego Instruments) as described

[23,67–69]. Audiogenic seizures were studied 2–4 weeks and 8

weeks post-KO and induced in a plexiglass shock box with clear

front and rear walls (MedAssociates). Mice were scored for

baseline behavior for 3 min and scored for seizure activity during

exposure to a 90 db, 2,800 Hz pulse tone for 3 min. Frequency of

and latency to wild running, tonic-clonic seizures, tonus, other

seizure stages, and death were recorded.

Pharmacologically-induced status epilepticus and
electroconvulsive shock

Six-week old C57BL/6 (Charles River Labs) wild-type mice

were injected with vehicle (saline, i.p.), kainate (50 mg/kg, i.p.;

Tocris), scopolamine (2 mg/kg, s.c.)/saline (i.p.), or scopolamine

(2 mg/kg, s.c.)/pilocarpine (280 mg/kg, i.p.). Scopolamine was

injected 5 min prior to pilocarpine. Animals were scored for

latencies to and frequencies of seizure stages including head
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nodding, wet dog shakes, forelimb clonus, tonic-clonic seizures,

rearing, and, rearing/falling. Hippocampi were dissected 25 min

after first robust episode of rearing/falling, flash frozen, and stored

at minus 80uC.

Electroconvulsive shock (ECS) was administered to adult male

Sprague–Dawley rats (175–200 g) by delivering a current of

50 mA for 0.3 sec via bilateral ear clips essentially as described

[70]. Hippocampi were dissected at the specified time-points after

stimulation, flash frozen, and stored at minus 80uC. Animals

which did not receive the shock served as controls.

Immunoblot analysis
Frozen samples were sonicated in boiling 1% SDS containing

50 mM NaF and boiled for an additional 5 min. Protein

concentrations were determined by the BCA protein assay (Pierce)

using bovine serum albumin standards. An equal amount of total

protein (100 mg) from each sample was subjected to SDS-PAGE

followed by electrophoretic transfer to nitrocellulose membranes

(Whatman). The membranes were immunoblotted using antibod-

ies for p35/p25 (1:200; C-19 Santa Cruz) and alpha-tubulin

(1:5000), followed by incubation with a horseradish peroxidase-

conjugated anti-rabbit or anti-mouse secondary antibody (1:8000;

Chemicon). Antibody binding was detected by autoradiography

using the enhanced chemiluminescence immunoblotting detection

system (Amersham Biosciences) and quantified by densitometry

using Image J software (NIH).

Statistical analysis
All data was represented at mean6s.e.m. Errors for fold

changes were calculated using standard error propagation rules.

Differences between data groups were evaluated for significance

using analysis of variance (ANOVA) with post hoc t-tests and

statistical significance was set to p,0.05.

Supporting Information

Figure S1 Representative EEG/EMG recordings from a wild-

type control mouse. A, A period of normal wakefulness. B,

Expanded view of 10 sec of the recording period shown in A.

Calibration 1 sec and 50 mV; the recording period shown in panel

B is annotated by the 10 sec bar in A.

Found at: doi:10.1371/journal.pone.0005808.s001 (0.19 MB TIF)
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