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Abstract

Background: Two decades of research showing that increasing plant diversity results in greater community productivity has
been predicated on greater functional diversity allowing access to more of the total available resources. Thus,
understanding phenotypic attributes that allow species to partition resources is fundamentally important to explaining
diversity-productivity relationships.

Methodology/Principal Findings: Here we use data from a long-term experiment (Cedar Creek, MN) and compare the
extent to which productivity is explained by seven types of community metrics of functional variation: 1) species richness, 2)
variation in 10 individual traits, 3) functional group richness, 4) a distance-based measure of functional diversity, 5) a
hierarchical multivariate clustering method, 6) a nonmetric multidimensional scaling approach, and 7) a phylogenetic
diversity measure, summing phylogenetic branch lengths connecting community members together and may be a
surrogate for ecological differences. Although most of these diversity measures provided significant explanations of
variation in productivity, the presence of a nitrogen fixer and phylogenetic diversity were the two best explanatory
variables. Further, a statistical model that included the presence of a nitrogen fixer, seed weight and phylogenetic diversity
was a better explanation of community productivity than other models.

Conclusions: Evolutionary relationships among species appear to explain patterns of grassland productivity. Further, these
results reveal that functional differences among species involve a complex suite of traits and that perhaps phylogenetic
relationships provide a better measure of the diversity among species that contributes to productivity than individual or
small groups of traits.
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Introduction

For nearly two decades, researchers have tested the prediction

that community productivity is positively related to plant diversity

[1–6]. One guiding assumption has been that greater diversity in

functional traits allows species to access more of the total resources

[7–9], whether they be nutrients, water, pollinators or fungal

symbionts, and allows multiple competing species to coexist [10].

Researchers have advocated measuring diversity in functional

attributes relevant to those critical limiting resources and assumed

that this should be the best predictor of community productivity

and ecosystem functioning [11–13]. However, identifying the

critical resources over pertinent temporal and spatial scales as well

as the most relevant functional traits can be challenging.

The first approximation to classifying critical functional

differences has been to group species into functional groups,

which is often based on broad morphological and physiological

similarities (e.g., C4, C3, legumes, etc.). The richness of functional

groups has been used to potentially explain variation in

community productivity [7,13,14]. But functional group richness

is a problematic measure for two reasons. First, the removal or

addition of ‘‘functionally redundant’’ species may have effects on

community dynamics and processes [15–17], indicating that there

are important functional differences not captured by broad

groupings. Competition theory suggests there must be some niche

differentiation, no matter how similar species are to stably coexist.

The second reason is that functional group richness tends to

predict only a limited amount of variation in productivity [18] and

may even explain less variation than having randomly assigned

groups [19].

Given that functional groups may be inadequate representations

of critical functional diversity, ecologists have sought other ways of

measuring functional diversity by measuring specific a priori

selected traits [e.g., 20,21,22]. In contrast to measuring specific

traits, other measures of functional diversity use multivariate

techniques to evaluate trait differences/similarities among species
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without reliance on a small number of traits selected a priori. The

first multivariate strategy, functional attribute diversity (FAD),

introduced by Walker and colleagues [23], sums species distances

in trait space as a measure of total trait or functional dissimilarity.

The second strategy, functional diversity (FD) by Petchey and

Gaston [24] essentially uses the FAD trait distance matrix to create

a functional dendrogram from a clustering routine. FD then

corresponds to the total dendrogram branch lengths connecting

community members together. In a comparison of FAD and FD,

Petchey et al. [25] show that FD better explains variation in

community biomass accumulation. The final multivariate strategy

we introduce here is a variation of the FD strategy. Since FD and

FAD do not account for groups of correlated traits, we use

nonmetric multidimensional scaling (NMDS) to create the distance

matrix that accounts for correlated traits. Then we perform the FD

clustering to produce branch lengths.

All these multivariate techniques, while relaxed from strict a priori

trait decisions, may still be sensitive to which traits are included in the

analyses [25]. Further, multivariate distances reflect the magnitude of

scale units used (e.g., cm vs. m) and the variation in scale for different

traits as opposed to the actual difference in ecological function (e.g.,

does a 10% difference in leaf size have the same ecological

consequences as a 10% difference in seed mass?). Given these

potential limitations of trait-based approaches, we advocate the use of

another metric, phylogenetic diversity (PD) –that is the sum of

phylogenetic branches connecting species together. If phenotypic

dissimilarity is correlated with evolutionary divergence times [26–28],

then the more divergent two species are, the greater likelihood that

they differ ecologically. As a diversity measure, PD has been shown

for some datasets to better explain variation in community

productivity than species or functional group richness [9,18].

In this paper, we compare the efficacy of explaining variation in

community productivity with seven different types of trait diversity

measures: 1) species richness, 2) variation in 10 individual traits, 3)

functional group richness, 4) Walker and colleagues’ (1999)

Functional Attribute Diversity (FAD), 5) Petchey and Gaston’s

(2002) Functional Diversity (FD), 6) our Nonmetric Multi-

Dimensional Scaling (NMDS) approach, and 7) community PD.

Our goal is to find which of these various diversity measures

provides the best possible explanation of patterns of community

productivity, moving from simple, single-variable models to

metrics that represent full community trait differences.

Methods

Study site
In 1993, the vegetation and seed bank in a post-abandonment

agricultural field located at Cedar Creek Natural History Area,

Minnesota, USA, were removed via herbicide, burn and

bulldozing treatments. The following year 13613 m plots were

seeded with 1, 2, 4, 8 or 16 grassland savanna species (experiment

120). Plot composition was randomly chosen from a pool of 18

species that included four C3 grasses, C4 grasses, legumes, non-

legume herbaceous forbs and two woody species. At each level of

diversity 28–35 replicates were established, and plot composition

was maintained by manually weeding and annual burns [for more

details see: http://www.cedarcreek.umn.edu/research/exper/

e120/, [2,13,29]]. In 1995 three more species were added to

substitute for poorly germinating species from the original 18, but

subsequent weeding did not target the poor germinators meaning

that 21 species were actually included in this experiment (species

are identified in Fig. 1).

As an estimate of productivity, peak aboveground biomass was

measured by clipping, drying and weighing four 0.1 m by 3.0 m

strips per plot. Biomass was sampled annually from 1996 to 2007

and we here use the average in biomass production as our

dependent variable. The long-term average biomass was used

because inter-annual variation was due largely to subsampling

variance and regional climatic variation [30,31]. In plots that

carried fire the oaks (Quercus ellipsoidalis and Q. macrocarpa)

performed poorly –contributing little to productivity, and so they

were excluded from the calculation of the trait, functional and

phylogenetic diversity metrics.

Phylogeny construction
We constructed a phylogeny for the species used in this

experiment and a second biodiversity experiment at Cedar Creek

(i.e., Experiments 120 and 123), which included a total of 31

species (see Appendix S1 for a list of all species). In February,

2008, for each of the 31 species, we searched GenBank [32] for

four gene sequences commonly used in published angiosperm

phylogenies : matK, rbcl, ITS1 and 5.8s. Of the 31 species, 14 had at

least one gene represented in Genbank and for a further 16

species, we used gene sequences from a congeneric relative not

included in these experiments. Collectively, the species used in this

experiment represent many of the deep historical angiosperm

bifurcations, relative to the number of branches connecting close

relatives. Therefore, the effect on branch length estimates from

using congeneric species is likely minimal, so long as congenerics

are monophyletic with the species used in the experiment. We also

included two representatives of early diverging angiosperm

lineages as outgroup species, Amborella trichopoda and Magnolia

grandiflora, and we added 4 other species, each represented by

multiple genes, that were included in clades whose members did

not have overlapping sequences (see Appendix S1). For these 36

species we aligned sequences using MUSCLE [33]. We then

selected best-fit maximum likelihood models of nucleotide

substitution for each gene using the Akaike Information Criterion,

as implemented in Modeltest [34,35].

Using the aligned sequences and the best-fit models of

nucleotide substitution, we estimated a maximum likelihood

phylogeny using the PHYML algorithm with a BIONJ starting

tree [36,37]. To assess nodal support on maximum likelihood

phylogenies, we report Approximate Likelihood Ratio Test

(aLRT) scores, which have been shown to correlate with ML

bootstrap scores, but require much less computational time [37].

The maximum likelihood tree is available in Appendix S1. A single

species that lacked any genetic data, Rudbeckia hirta, was added as a

polytomy with Liatris aspera and Coreopsis palmata because they are

all considered members of the Asteroideae subfamily (see

Appendix S1). For the analyses in the present paper, we pruned

out the 10 species not used in experiment 120 (Fig. 1 shows the

pruned phylogeny and Figure 1 in Appendix S1 shows the full

phylogeny for both experiments). We did not rerun PHYML on

the subtree members due to the sparseness of the gene matrix,

especially for the Asteraceae species.

From the phylogeny, we calculated phylogenetic diversity (PD)

for each experimental plot as the total phylogenetic branch lengths

connecting only the community members together not including

the root of the larger phylogeny [18]. Here we are using a single

method of phylogenetic construction, but there are other methods

that may alter PD estimates. However, recent analyses have shown

that the method of phylogenetic construction does not appear to

alter qualitative results [18,38].

Trait data
In the summers of 2007 and 2008, we measured leaf traits in the

Cedar Creek biodiversity experiment [E120]. We sampled three

Evolution and Productivity
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Figure 1. Three dendrograms representing relationships among species. The first is based on maximum likelihood analyses of genetic
sequences from four genes. The second uses the functional diversity methodology of Petchey and Gaston (2002) on all measured traits. The third
dendrogram also uses the functional diversity method on three orthogonal dimensions from nonmetric multi-dimensional scaling.
doi:10.1371/journal.pone.0005695.g001
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fully mature leaves from ten individuals of each species collected

within the maintained experimental plots as well as from the

unmaintained experimental plots. Each individual was identified

from a randomly chosen plot to cover the range of diversity

treatments. We scanned fresh leaves on a flatbed scanner on the

same day as collection with petioles and sheaths removed. Leaf

area, perimeter and Feret’s diameter (i.e., parallel lines touching

opposites ends of the leaf) were calculated from the scanned leaves

using ImageJ software [39]. These measures allowed calculation of

perimeter per area (P/A, cm?cm22), which is empirically

correlated with leaf hydraulic conductance across a wide range

of taxa [40]. Perimeter per leaf area?Feret’s diameter is a unitless

measure of leaf lobedness [e.g., 41] that influences the leaf

radiation balance [42]. After scanning, we dried the leaves at 65uC
for three days and weighed to calculate specific leaf area

(cm2?g21).

We determined seed mass by collecting seed heads for ten plants

per species after seeds were fully mature, air drying the seeds, and

then weighing together ten seeds (and dividing by ten) to calculate a

mean seed mass per plant. For five species that were not seeding,

seed mass was taken from online commercial databases, including

the Native Seed Network (www.nativeseednetwork.org), Wildflower

Farm Inc. (www.wildflowerfarm.com), and Prairie Moon Nursery

(www.prairiemoon.com). Plant height was taken from the USDA

Plants Database (plants.usda.gov). See table 1 for trait codes.

Trait variation at the plot scale was estimated by the coefficient

of variation in trait values for leaf area, leaf perimeter area ratio,

leaf lobedness, specific leaf area, seed weight and height, while plot

presence/absence was recorded for the C3, C4, forb and nitrogen

fixer functional groups. We calculated four trait diversity metrics:

the number of functional groups, FG; functional diversity, FD

[24]; functional attribute diversity, FAD [23]; and Nonmetric

Multi Dimensional Scaling, NMDS [e.g., 43]. FD estimates net

species similarity or differences as branch lengths from a functional

dendrogram based on a multivariate distance matrix [24]. To

calculate FD, we scaled the traits to have a mean of zero and

variance of one. We then calculated a Euclidean distance matrix

and performed hierarchical clustering on this matrix and

calculated FD as the total branch lengths connecting community

members together [24]. For FAD, we again used the traits scaled

to mean of zero and variance of 1 and calculated a Euclidean

distance matrix. We then summed the distances for all species in a

community [23]. Finally, since we were including multiple traits in

these analyses, we wanted to account for groups of correlated

traits. We performed NMDS on the trait matrix including

functional groups (Fig. 2). We ran the analysis using two to five

dimensions and choose the number of dimensions that reduced

stress and which had no deviations on a dissimilarity-distance plot

[44]. We selected a three-dimension model due to the stress

reduction associate with this model (i.e., 8.71 versus 16.68 for the

two-dimension model). We then calculated FD using the

dimensions as independent traits. All variables are defined in

Table 1. We have included the script, written in R 2.7.1 (www.R-

project.org), to calculate PD, FD and FAD from a community

membership list, a phylogeny and a trait matrix (see Appendix S2).

Statistical analysis
There were a total of 16 different diversity variables used in this

analysis (Table 1), and the goal was to construct the most

informative model explaining patterns of biomass production. To

narrow down the number of potential explanatory variables, we

searched for the best single-variable models where average annual

productivity was regressed against each diversity metric and

compared to the explanatory ability of these models using Akaike

weights, which can be interpreted as the probability that a

particular model is the best fit to the observed data among a set of

candidate models [45]. We further used mallow’s Cp to rank these

single variable models. We checked diagnostic plots (e.g., residual

versus fitted plots) for potential outliers and data trends.

We were not only interested in the best single variable

explaining patterns of productivity, but also combining PD and

trait metrics in multi-variable models. We performed a stratified all

subsets model approach where PD was included in models with

either single variable trait diversity metrics or multivariate

functional diversity metrics, but not both since the multivariate

metrics are based on the single variables. Mallow’s Cp was used to

select potential models up to 5 variables and Akaike weights to

compare them. Alternatively, we selected the best single variables

and constructed models around these, comparing them using

Akaike weights.

We also asked whether any of the continuous individual traits

themselves had significant phylogenetic signals. To do this we

generated phylogenetically independent contrasts [28] for the

various traits. We compared the summed absolute node contrast

values to that expected from 1000 randomizations (mean and 95%

confidence intervals) [46]. If the observed summed contrast is

significantly lower than the randomly generated values, sister

clades tend to be more similar to one another than random, and

there is a detectable phylogenetic signal. All analyses were done

using R 2.7.1 (www.R-project.org)

Results

Interestingly, the species in the FD dendrogram did not produce

the same sister pairings as in the molecular phylogeny (Fig. 1),

while the NMDS dendrogram shows species clustering more

similar to the molecular phylogeny (Fig. 1). As would be expected

because the number of branches, and thus the sum of all branch

lengths, increases with the number of plant species (N), PD and N

were highly correlated (Fig. 3). However, PD seems to better

explain variation in productivity compared with N, FG, FD, FAD

or NMDS (Table 2). Productivity was positively related to each of

Table 1. Diversity variables calculated.

Variable Code

Phylogenetic diversity PD

Number of species N

Number of functional groups FG

Functional diversity (Petchey & Gaston 2002) FD

Functional attribute diversity (Walker et al. 1999) FAD

Functional diversity from non-metric multi dimensional scaling NMDS

Variation in leaf area (SD) LA

Variation in leaf perimeter area ratio (SD) LPA

Variation in leaf lobiness (SD) LL

Variation in specific leaf area (SD) SLA

Variation in seed weight (SD) SW

Variation in height (SD) H

Presence of C3 grass C3

Presence of C4 grass C4

Presence of forb F

Presence of N fixer Nfix

doi:10.1371/journal.pone.0005695.t001
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these measures (Fig. 4). The better fit provided by PD compared to

the traditional variable, N, suggests that PD, which combines the

effect of differences (via branch lengths) with the effect of the

number of species (as N-1 branches) is a superior single measure of

diversity than N.

However, the single best explanatory variable was the presence

of a nitrogen fixer (Table 2). Only within the plots with a nitrogen

fixer present, which includes most plots, PD is still significantly

related to productivity (F1,103 = 19.98, P,0.0001) and a better

model (Akaike weight, AW = 0.634) than N, FAD, NMDS, FD or

FG (AW = 0.142, 0.089, 0.084, 0.047 and 0.037, respectively).

While the above analyses informs our understanding of how

individual models compare to one another, we were also interested

in combining variables in models to better explain variation in

productivity. We did this in two ways. First, we used a stratified all

subsets approach (Table 3). The best models contained PD along

with SW, PD and PA –while the multivariate functional diversity

metrics were not selected as variables in the best models. Secondly,

we took an informed approach by building various models from

the top five predictors from Table 2. The best model of 26

potential models (AW<1) is one that includes PD, SW and Nfix

(Table S1).

We also ran the model explicitly testing Westoby’s (1998) LHS

plant strategy scheme by regressing productivity against the

additive effects of SLA, SW and H. While this model was

significant (P,0.0001), only seed weight was significant as an

individual model term (P,0.0001) while SLA and H were not

(P = 0.261 and 0.190, respectively). Further, this model did not

have much of an explanatory advantage over the model with seed

weight alone (AIC = 1755.5 vs. 1756.7; and R2 = 0.41 vs. 0.40).

For each of the six continuous traits, we assessed whether traits

covaried with relatedness using phylogenetically independent

contrasts. SW had a significant phylogenetic signal (summed

observed contrasts = 0.131, null expectation [95% CI] = 0.185

[0.136–0.253]), while the rest of the traits lacked any significant

signal (LA: obs = 192.5, null [95% CI] = 190.4 [149.5–235.2];

LPA: obs = 306.4, null [95% CI] = 301.8 [229.3–387.9]; LL:

obs = 483.1, null [95% CI] = 293.5 [197.4–489.2]; SLA:

obs = 1406.4, null [95% CI] = 1374.9 [1121.8–1693.4]; and H:

obs = 14.8, null [95% CI] = 14.8 [11.9–18.1]). The significant

signal in seed weight is influenced by the fact that species in the

Fabaceae tended to have larger seed weights (Fig. 5). We

confirmed that the non-Fabaceae species lacked a significant

signal by removing Fabaceae species and re-running the analysis

(obs = 0.042, null [95% CI] = 0.053 [0.037–0.067]), and species

within the Fabaceae also lacked a signal (obs = 0.087, null [95%

CI] = 0.104 [0.066–0.135]).

Discussion

Phylogenetic diversity (PD) within a plot was an important

factor explaining community productivity patterns. This result is

not surprising; we fully expected PD to be a significant predictor of

productivity, given that previous studies have shown this [e.g.,

9,18]. On the other hand, we expected multivariate functional

diversity indices to better account for productivity patterns, since

trait differences should drive ecological differences –regardless of

patterns of shared ancestry on the traits. Even though multivariate

Figure 2. The ordination plot produced by nonmetric multi-dimensional scaling. Symbols refer to functional group membership.
doi:10.1371/journal.pone.0005695.g002

Figure 3. The relationship between species number and
phylogenetic diversity.
doi:10.1371/journal.pone.0005695.g003
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Table 2. Results of univariate models.

Variable Intercept Slope DF Pvalue AIC R2 AW Rank

Nfix 111.99 147.50 149 ,0.001 1747.47 0.436 9.31610201 1

PD 123.76 29.37 149 ,0.001 1752.78 0.415 6.54610202 2

SW 154.44 25126.37 149 ,0.001 1758.56 0.392 3.61610203 3

log(N) 123.30 62.51 149 ,0.001 1764.20 0.369 2.16610204 4

NMDS 129.10 20.06 149 ,0.001 1765.35 0.365 1.22610204 5

FG 95.62 38.29 149 ,0.001 1771.54 0.338 5.51610206 6

FD 140.82 4.06 149 ,0.001 1774.68 0.324 1.15610206 7

FAD 175.41 0.30 149 ,0.001 1785.59 0.273 4.90610209 8

SLA 203.94 24.02 149 ,0.001 1817.14 0.105 6.90610216 9

F 171.70 66.04 149 ,0.001 1818.94 0.094 2.81610216 10

C4 173.15 59.55 149 ,0.001 1822.70 0.071 4.28610217 11

H 180.90 2203.85 149 0.002 1823.53 0.066 2.83610217 12

C3 181.58 51.87 149 0.003 1824.66 0.059 1.61610217 13

PA 214.95 20.60 149 0.057 1830.13 0.024 1.04610218 14

LA 213.90 20.24 149 0.253 1832.49 0.009 3.20610219 15

LPA 213.10 0.06 149 0.418 1833.15 0.004 2.30610219 16

AW is Akaikes weight which is the probability of model I being the best model explaining variation in average annual productivity. The presence of a nitrogen fixer was
the best single variable model, followed by phylogenetic diversity, variation in seed weight, and log of the number of plant species. Rank indicates model ranking from
Mallow’s Cp.
doi:10.1371/journal.pone.0005695.t002

Figure 4. The relationship between average annual plot productivity and six diversity metrics. Of these six metrics, PD is the best single
explanatory variable, second only to the presence of a nitrogen fixer (see Table 2).
doi:10.1371/journal.pone.0005695.g004
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functional diversity metrics were significant predictors of produc-

tivity patterns [see also 25], PD was by far a better predictor.

Further, individual traits (besides nitrogen fixation and seed

weight) did not show detectable phylogenetic signals, meaning that

PD’s influence on productivity is likely driven by other,

unmeasured traits. This lack of signal could be due to the limited

size and coverage of our phylogeny. Further, the seed weight signal

appears driven by the fact that the species in the Fabaceae clade

tend to have larger seeds than other species, meaning the seed

weight results are at least partially driven by the covariance

between seed size and being a nitrogen fixer. Although the

alternative interpretation would be that the seed weight result

likely represents the effect of some other traits involved in a

tradeoff with seed size.

Beyond PD, the presence of a nitrogen fixer, was an important

explanatory variable. Given that grassland communities at Cedar

Creek are generally nitrogen-limited, it is not surprising that the

presence of a nitrogen fixer was the single most important factor

explaining patterns of community productivity [7]. Yet most

polycultures contained at least one nitrogen fixer, meaning that

the presence of nitrogen fixers does not inform our understanding

of productivity patterns among the most speciose plots. Further,

controlling for the presence of N-fixers allows us to overcome a

potential phylogenetic ‘‘selection’’ effect. Thus the analyses

examining the explanatory value of PD and the various trait

measures in plots containing an N-fixer are particularly illumi-

nating. Here again PD comes out as the best single measure, but

we cannot eliminate the role of selecting other highly productive

species or clades.

Limitations and future directions
While the results presented here strongly support using PD to

understand productivity patterns, there are at least two caveats

that should be the focus of future research. First, our conclusion

that PD is the best predictor of biomass production stems from a

single study system at one spatial scale, and PD may not prove to

be such a good predictor in other systems or at other scales. In a

metaanalysis of PD effects on productivity across 29 experiments,

Cadotte et al. (2008) found much variation in the explanatory

value of PD (R2 ranged from 0.01 to 0.69). Further, in some

systems or under some environmental conditions the critical

Table 3. Comparison of multivariate predictor models from
the stratified all subsets routine.

Variable DF Pvalue AIC R2 AW

PD 149 ,0.001 1752.78 0.415 3.92610220

PD/Nfix 148 ,0.001 1722.18 0.529 1.72610213

PD/SW 148 ,0.001 1701.54 0.589 5.24610209

PD/SW/PA 147 ,0.001 1683.04 0.641 5.43610205

PD/SW/Nfix 147 ,0.001 1683.75 0.640 3.82610205

PD/SW/PA/Nfix 146 ,0.001 1667.04 0.682 1.62610201

PD/SW/PA/LPA 146 ,0.001 1680.46 0.652 1.98610204

PD/SW/PA/Nfix/LPA 145 ,0.001 1664.53 0.691 5.68610201

PD/SW/PA/Nfix/FG 145 ,0.001 1666.02 0.688 2.70610201

doi:10.1371/journal.pone.0005695.t003

Figure 5. The distribution of seed size across the phylogeny.
doi:10.1371/journal.pone.0005695.g005
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functional traits may have much more important roles and thus

more explanatory value than PD. Such critical traits may be very

labile with a low phylogenetic signal, which a phylogeny fails to

capture, or else these traits exhibit considerable phenotypic

plasticity. Future analyses should include belowground traits,

which may be critical in this system for understanding mechanisms

of niche partitioning that enhance productivity. A mechanistic

understanding of the productivity-diversity relationship may

provide greater insight and is often more relevant for practical,

management objectives than finding relationships that lack a clear

mechanistic basis, as with PD.

Secondly, future research is also required to link PD to

ecological differentiation. In this paper, we assume that change

in PD is proportional to change in niche space or ecological

function, meaning that the magnitude of variation in niche

differentiation is dependent on the time since divergence (i.e.,

Brownian trait evolution). Under such a model, taxa covary in

their niche trait based on the amount of time they are represented

by a single ancestor in a phylogeny, then differentiate in that niche

trait, according to a Markov process of probabilistic trait change

diverging from some mean ancestral trait [27]. Other models

relating phylogenetic distances to niche or phenotypic divergence

could be compared, including those that do not assume that trait

divergence is proportional to genetic change [47]. Further,

alternative models have been proposed that incorporate explicit

models of stabilizing or strong directional selection [e.g.,

48,49,50]. Addressing alternative models of how phylogenetic

distances correspond to trait changes would offer insight into what

extent niches are conserved [51] and what this means for

ecosystem function. Thus, future work should center on finding

probable models that relate phylogenetic differentiation with

actual niche and functional differences.

Given these caveats, it is still remarkable that PD is such a

strong predictor of productivity patterns. PD might be further

preferable because it is becoming increasingly simpler to measure

PD compared with functional diversity metrics. Online databases,

such as the GenBank (www.ncbi.nlm.nih.gov), the genetic

sequence repository, or TreeBASE (www.treebase.org) that stores

phylogenetic data from publications, or Phylomatic (www.

phylodiversity.net/phylomatic/), which constructs phylogenies

for species lists from available Angiosperm supertrees, provide

straightforward paths to developing phylogenies. While trait

repositories are being developed (e.g., TraitNet; www.columbia.

edu/cu/traitnet/) there is no widely available, comprehensive

source for multiple traits, and it is unlikely it would cover all the

physical and biochemical traits that matter in different systems.

Relating experimental results to natural communities
While phylogenetic diversity may be useful in understanding the

consequences of diversity change in ecosystems not amenable to

experimental manipulation (e.g., the open ocean, communities

with endangered species, communities of long-lived organisms,

etc.), future research needs to relate our results to mechanisms of

coexistence and productivity in natural communities [10]. In a

recent study by Flombaum and Sala [52], primary productivity in

natural ecosystems showed a greater response to gradients in

species number compared to those from artificially assembled

experimental plots, such as with the data used here. Is the stronger

diversity-productivity relationship in naturally assembled commu-

nities driven more by critical functional traits, or would PD still

better explain productivity? Additionally, how communities are

assembled could have important ramifications for patterns of PD.

Natural community assembly does not select species randomly

from a regional species pool, meaning that phylogenetic

relationships or ecological traits may inform basic coexistence

patterns. Phylogenetic relatedness likely depends on the spatial and

taxonomic scale being considered [41], where at broad scales,

phylogenetic clustering corresponds to trait selection, while at

narrow scales, very close relatives are less likely to co-occur

[41,53]. Certain ecological traits should be selected for in the

process of community assembly, and phylogenetic patterns likely

reflect the phylogenetic signal of selected traits [54,55]. Depending

on the exact nature of trait evolution and community assembly,

communities could show greater phylogenetic diversity with low

trait variation and vice versa [55]. The relative contribution of

trait variation vs. PD on ecosystem productivity may then also vary

with community assembly processes; for instance if community

assembly favors high PD and lower critical trait variance [55],

then PD may still represent other ecological traits, and thus be

significantly related to productivity. Phylogenetic information may

be a way to scale from organismal physiology to ecosystem-level

processes [56,57].

Conclusions and implications
We explicitly tested the explanatory power of PD on community

productivity against a suite of individual and multivariate traits for

experimentally created grassland communities. The trait metrics did

not explain productivity patterns as well as PD and one major reason

appears to be that we did not measure those functional traits, such as

root types, rooting depth or resource requirements, which the

phylogeny is representing. We assume that since PD is such a good

explanatory variable, it provides a measure of diversity that must be

associated with critical functional differences among species within a

community that contribute to maximization of productivity.

Even without a clear mechanistic basis, these results have

important implications for habitat restoration and biofuel

production. If one of the goals of habitat restoration activities is

to maximize community functionality, then restoration biologists

should attempt to maximize the evolutionary diversity among

members of the planned community. For biofuel production,

especially in Midwestern prairies, in addition to choosing species

with fast growth rates, biofuel-producing communities should

consist of phylogenetically distinct mixtures while paying attention

to critical functional groups such as nitrogen fixers.
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