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Abstract

Background: Numerous endemic mammals, including dwarf elephants, goats, hippos and deers, evolved in isolation in the
Mediterranean islands during the Pliocene and Pleistocene. Most of them subsequently became extinct during the
Holocene. Recently developed high-throughput sequencing technologies could provide a unique tool for retrieving
genomic data from these extinct species, making it possible to study their evolutionary history and the genetic bases
underlying their particular, sometimes unique, adaptations.

Methodology/Principals Findings: A DNA extraction of a ,6,000 year-old bone sample from an extinct caprine (Myotragus
balearicus) from the Balearic Islands in the Western Mediterranean, has been subjected to shotgun sequencing with the GS
FLX 454 platform. Only 0.27% of the resulting sequences, identified from alignments with the cow genome and comprising
15,832 nucleotides, with an average length of 60 nucleotides, proved to be endogenous.

Conclusions: A phylogenetic tree generated with Myotragus sequences and those from other artiodactyls displays an
identical topology to that generated from mitochondrial DNA data. Despite being in an unfavourable thermal environment,
which explains the low yield of endogenous sequences, our study demonstrates that it is possible to obtain genomic data
from extinct species from temperate regions.
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Introduction

Paleogenomics, the study of genomes from extinct organisms, is

an emerging scientific field that has been fuelled by recently

developed technologies in high-throughput DNA sequencing [1,2].

In the first of such approaches to be undertaken [3], about 27,000

base pairs (bp) of cave bear (Ursus spelaeus) genomic sequences were

obtained with cloning vectors from 42,000 and 44,000 years-old

cave bear samples, respectively. Using sequencing-by-synthesis

(SBS) technology, as applied through the Roche/454 Life Sciences

GS20 and FLX pyrosequencing platforms [4], 13 million bp of the

woolly mammoth (Mammuthus primigenius) genome were generated

from a 28,000-year-old permafrost mammoth bone [5], complete

mitochondrial genomes from mammoth and thylacine hairs [6,7]

and, finally, about 80% of the nuclear genome from ,20,000-

year-old mammoth hairs [8]. The same approach has been

applied to other ancient bones, including Neanderthal samples

that provided around 1 million bp of its genome [9], as well as

other Pleistocene mammals from Denisova cave in Siberia [10].

However, the efficiency of these metagenomic analyses is notably

variable: while in the mammoth bone it was possible to identify

from 45.4% (mainly in bone samples) to 90.45% (in hair samples)

of the sequences as endogenous, this fraction was significantly

reduced in cave bear (between 1.1 and 5.8%), Neanderthal (6%,

although a significant fraction of contamination was posteriorly

estimated to be present in this particular extract [11]), ancient

horse (0.7%), ancient wolf (1.8%) and cattle (1.1%) [3,5,9,10]. In

addition, due to the low genomic coverage, the degradation of the

template DNA, and the innate error rate of the sequencing

platforms [12], the paleogenomic data contains a significant

number of sequencing errors, resulting in an excess of C to T

substitutions due to cytosine deaminations as compared to the

corresponding reference genome [3,5,9,13]. Thus, it is likely that

in the future, specific loci in regions with low shotgun coverage

would need to be verified by targeted approaches, such as the

polymerase chain reaction (PCR). Several studies in mammoths

and Neanderthals have already focussed on the specific retrieval of

nuclear genes and the problems of distinguishing endogenous

variants from DNA damage [14–16].

Paleogenomic data can be useful for understanding the rate and

nature of some evolutionary processes, because it allows us to

investigate the genetic basis of adaptive traits in extinct species [14].

At present, however, it is not clear what the limits of these new

technical approaches are, in terms of efficiency (ratio of endogenous

versus exogenous DNA retrieved), age of the sample, geographic

location and/or thermal history. For instance, some mammal species,
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including goats, cervids, elephants and hippos, have gone extinct in

the last few thousands years in the Mediterranean islands [17 and

references therein], a temperate area which is clearly not favourable

to DNA preservation. The possibility of having access to the genome

of these species is therefore of great interest for exploring unique

insular evolutionary patterns.

In previous studies [18–20], we have retrieved by PCR

mitochondrial genes (Cytochrome b, 12S rRNA) and a multi-

copy nuclear gene (28S rRNA) from one of these species, Myotragus

balearicus, an extinct goat from the Western Balearic Islands

(Western Mediterranean). Myotragus is an extremely modified

caprine [21] that evolved in insularity conditions since the end of

the Messinian crisis (5.35 million years ago) in the islands of

Mallorca and Menorca [22,23]. It became extinct between 3,700

and 2,040 years BC, probably after the arrival of modern humans

to the Balearic Islands [24], that took place between 2,350 and

2,150 years BC [25]. The unclear taxonomic position of this

caprine is related to its amazing morphological peculiarities, which

include extreme size reduction (250–500 mm shoulder height), a

single, ever-growing rodent-like lower incisor, shortened distal

limb bones, frontal eyes, and reduced brain size [26–31]. Although

ancient mitochondrial DNA (mtDNA) data have provided

statistical support for a Myotragus clade with Ovis [20], the general

phylogeny of the caprine group is not yet fully established [20].

Here, we demonstrate that it is possible to undertake shotgun

sequencing approaches from ancient bones from the thermally

unfavourable Mediterranean area. Additionally, the paleogenomic

data obtained from Myotragus support phylogenetic relationships

previously generated with mtDNA sequences.

Results

A total of 96,357 singleton GS-FLX sequence reads were

obtained and analysed by means of database searches. No

significant identity was found for 98.49% of the sequences, a

figure higher than that found in the ancient wolf, horse and cattle

(86.8% on average), Neanderthal (79%) and mammoth shotgun

(5.53%, 18.4% and 24.92%, depending on the study) [5,8,9,10]. A

fraction of those sequences could be endogenous, but remain

unidentified due to the incompleteness of the cow and specially of

the sheep genome. Alternatively, the high fraction of sequences

without any match may reflect a lack of environmental DNA

studies in the Mediterranean area. The remaining 1.51% of the

sequences were taxonomically classified by the highest identity

found in the database.

Only 0.27% of the sequences, comprising 15,832 nucleotides,

gave the best hit to the cow genome, with an average percentage

identity of 94.95%. This figure seems to be in agreement with

divergence times of about 12–14.3 million years for the cattle-

caprine lineages, as suggested from genetic and morphological

data [32]. In addition, 0.35% of the sequences gave the best hit to

the human genome, with almost 100% of identity, indicative of

exogenous contamination. The most represented taxonomic

group, however, was bacteria (0.69%), followed in decreasing

order by invertebrates (0.12%), plants (0.05%), fungi (0.02%)

environmental sequences (0.02%) and others (0.02%). The average

length of these sequences was 59.97 nucleotides, and they ranged

from 30 bp (determined by the length cut-off in the analysis) to

245 bp (limited by the GS-FLX technology) (Figure 1). The length

was similar to those of putatively endogenous sequences found in

the Neanderthal and the cave bear metagenomic library (52 and

69 nucleotides, respectively) [3,33]. The presence of two sequences

deriving from the Bos Y chromosome indicated that the Myotragus

specimen analysed was likely male.

The human contaminant sequences were significantly longer on

average than the Myotragus ones (81.57 and 59.97 respectively,

P,0.0001), suggesting that they were more recent and therefore,

less degraded. The longest (.200 bp) Myotragus sequences did not

Figure 1. Size distribution, plotted in 10 bp bins, of Neandertal [10], cave bear [3] and Myotragus sequences obtained from
metagenomic analyses. The average hit size in each case is indicated by a dotted line.
doi:10.1371/journal.pone.0005670.g001
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have higher identities to the cow sequences than the shorter ones

(85.6% versus 94.95%, respectively), indicating that they are

unlikely to derive from recent cow-mediated DNA contamination.

Furthermore, no remains of cow were found inside the Cova

Estreta cave.

To additionally confirm that the bovid-like DNA fragments

were endogenous, we designed five primer pairs from the shotgun

sequences that matched Myotragus specific substitutions in their 39

ends and represented unambiguous (those that did produce only

one match to the Bos genome) BLAST hits. These nuclear

fragments, varying between 80 and 112 nucleotides in length, were

co-amplified with a previously known 113 bp fragment of the 12S

mtDNA gene [20]. In the PCR, we used, to overcome inhbitors

present in ancient extracts, rat serum albumin (RSA) [34] instead

of the usual bovine serum albumin (BSA) to avoid possible cow

contamination in the BSA. One nuclear fragment, along with the

mtDNA gene, showed an amplification product and was

subsequently cloned and sequenced. The nuclear sequence was

identical to that obtained in the shotgun sequencing except for two

nucleotide changes that could be related to DNA damage, both in

the shotgun and in the PCR-generated sequence (Figure S1).

The plotting of the Myotragus sequences along the Bos

chromosomes showed an excess of sequences in chromosomes 3,

16 and 23, although they were not statistically significant after

applying a Bonferroni correction (Figure 2). This pattern could

correspond to chromosomal duplications unique to the Myotragus

lineage or shared by all the Caprinae species, although more

sequences and the completion of the Ovis genome are needed to

explore in the future this possibility. Most of the identified

Myotragus sequences correspond to unannotated genomic regions

of the cow, with only 3.42% of the sequences and 3.90% of the

nucleotides belonging to coding regions (Figure S2). The predicted

Myotragus genes are listed in Table S1.

To explore the phylogenetic signal of the Myotragus sequences, we

further searched for orthologous sequences in three Bovidae species

(Bos taurus, Ovis aries and Capra hircus) and one Cervidae species

(Muntiacus) in GenBank. However, we noticed a greater genomic

coverage of the Bos genome that generated an excess of matches due

to the presence of multiple paralogs. These sequences might remain

undetected in the other genomes due to their more limited coverage.

Therefore, we created a sub-dataset of 80 sequences (accounting for

a total of 1,987 nucleotides after removing gaps and missing data)

that included only those sequences that did not produce multiple

matches in none of the genomes. With these sequences, we

generated a maximum-likelihood phylogenetic tree that showed the

topology previously established from mtDNA data for these species

[20] (Figure 3), in which Myotragus grouped first with Ovis. However,

the bootstrap support for this tree was low (64%). The same

topology was found with Bayesian trees with a probability of 0.97 for

the Myotragus-Ovis group. The overall congruence of this partial

genomic phylogeny and the mtDNA tree further supports the

authenticity of the Myotragus sequences.

The large branch found for Myotragus in the phylogenetic tree

(Figure 3) could be attributed to sequence changes due to DNA

damage or to an accelerated evolution of the Myotragus genome. To

test these possibilities, we characterised the nucleotide changes

exclusively present in the aligned Myotragus sequences (and different

to those from Ovis and Bos) and found a statiscally significant

(P,0.05) bias towards higher C to T/G to A ratios, as compared to

the T to C/A to G (Figure 4, Table S1). This feature has been

previously described as damage-derived lesions due to cytosine

deaminations [35]. However, the removal of these substitutions from

the alignment only barely shortened the Myotragus branch in

subsequently generated trees. Specifically, the Myotragus branch

was 3.1 times longer than the Ovis branch in the original alignment

and it was still 2.8 times longer than Ovis after removing putatively

Figure 2. The proportion of the Bos genome contained on each chromosome (blue bars) is shown with the proportion of Myotragus
sequences (red line) aligning to each Bos chromosome with exactly 1 hit with e-value,1e-3 BLAST. The observed distribution is not
significantly different from the expected one when we compare all the chromosomes together (P = 0.081) or when we tested each one independently
and correct for multiple testing.
doi:10.1371/journal.pone.0005670.g002
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damaged positions. Thus, an important contribution of accelerated

evolution in the Myotragus genome cannot be discarded. However, a

similar acceleration in Capra indicates that this phenomenon is not

specific to the Balearic lineage.

Discussion

Molecular studies, mainly based on mtDNA data, have failed

until now to fully resolve the caprine phylogeny, probably due to

the explosive radiation of this group [20]. The phylogenetic

analysis of the present paleogenomic data supports the previous

caprine relationships established from mtDNA, but also indicates

the potential of this approach for testing evolutionary hypothesis

and establishing robust phylogenies.

Despite being excavated in a region with a mean annual

temperature of 14uC and below 40 degrees North latitude, we have

been able to successfully retrieve nuclear genome sequences from a

,6,000 years old Myotragus balearicus bone. The extremely low

efficiency of the paleogenomic retrieval is striking, as is the fact that

the level of human contaminant sequences is higher than that of the

endogenous ones (0.34 vs 0.27). In contrast, the ratio of endogenous

to contaminant human sequences among the colder preserved

Denisova mammalian samples was 49:1 [10], and the human

sequences accounted for less than 0.015% [10]. In a mammoth

sample from the Artic Circle [5], this ratio was 32:1, and the human

contaminants up to 1.4% of the total sequences. The Myotragus

sample was retrieved with no special precautions against contam-

ination. However, the histological structure of the bone also

correlates with contamination levels [36], and the cortical tissue in

Myotragus limb bones is thinner than in other, larger extinct

mammals, such as mammoths and Neanderthals. Thus, it is not

clear if this figure can be taken as an estimate of potential human

contamination in ancient bone specimens stored in museums.

The efficiency ratio of retrieval of endogenous Myotragus

sequences is the lowest among those observed in some other

bone-based metagenomic studies, obtained from samples at higher

latitudes: 47.4uN [3], 74uN [5], 45.5uN [8] and 51.23uN [10].

Figure 3. Maximum-likelihood phylogenetic tree of Myotragus
balearicus and other artiodactyls. The tree was rooted in the cervid
Muntiacus reevesi. Numbers along the branches indicate bootstrap
support of the maximum-likelihood analyses (first number) and
Bayesian support of an independent Bayesian analysis (second
number). The scale bar represents 0.01 substitutions/site.
doi:10.1371/journal.pone.0005670.g003

Figure 4. Frequency distribution of 113 Myotragus-specific substitutions observed in 3,602 bp of aligned Ovis, Myotragus and Bos
genomic sequences. Complementary substitutions (such as C to T and G to A) are considered equivalent events. Fisher’s exact test was used to
calculate the excess of Myotragus-specific C to T and G to A transitions. The total number of each substitution is in parentheses.
doi:10.1371/journal.pone.0005670.g004

Myotragus Paleogenomics

PLoS ONE | www.plosone.org 4 May 2009 | Volume 4 | Issue 5 | e5670



Despite the low efficiency values, the mean fragment length and

the range value of the Myotragus sequences are similar to those

found in samples with higher efficiencies. In addition, the

frequency of damage-derived lesions in the Myotragus sequences

is 4.2 times lower than those found in Neanderthal sequences [33].

Even so, some inconsistencies have been found between the

shotgun and the PCR-based sequence, indicating the need for

targeted approaches in genomic regions with low coverage. A

previous study has estimated that a 12-fold coverage would be

needed to have an error rate of 1 in 10,000 nucleotides [37],

something extremely expensive to achieve in highly degraded

ancient samples.

These somehow contradictory results between low retrieval

efficiency and low DNA damage can be due to a combination of

factors. On one hand, the temperate climatic conditions of the

Mediterranean islands are highly unfavourable to paleogenomic

preservation, although the cave where the bones were found has

maintained a rather constant temperature inside. On the other

hand, the Myotragus sample used is much more recent than those

from wolf, horse, cattle, cave bear, Neanderthal and mammoth, all

of them dated between 20,000 and 69,000 years ago [3,5,8,9,10].

However, the estimated thermal age [38] for this bone at the

excavation is 26,206 years at 10uC (David Harker, personal

communication). This age is older than that estimated for the

100,000 years-old Scladina Neanderthal [38], which is in agreement

with the low efficiency of DNA retrieval found in the present study.

Our findings imply that we are working at the very limits of the

current paleogenomic approaches, but still they are more efficient

than PCR-based strategies, which are problematic for genomic

studies on similarly preserved samples. In fact, under these

unfavourable environmental conditions, only paleogenomic ap-

proaches can provide the amount of sequence data generated

here. In the future, with greater genomic coverage, paleogenomic

approaches could provide further data to study other aspects of

this Balearic endemism, such as evidences for selective sweeps in

the Myotragus genome related to its particular adaptations. Also,

our results suggest that livestock domestication events that took

place in the Fertile Crescent could be approachable from

paleogenomics.

Materials and Methods

A left Myotragus radius bone (IMEDEA 43619) from Cova

Estreta (Pollença, Mallorca) was chosen for analysis because of its

excellent macroscopic preservation. Previous analyzed bones were

excavated in a different site, Cova des Gorgs (Escorca, Mallorca)

[20]. Cova Estreta is a deep and narrow cave discovered in 1996

that acted as a natural trap for Myotragus [31]. Radiocarbon dates

from bones obtained from the same stratigraphical unit [UtC-

5175, 6,357644 BP (5469–5225 calBC)] and [UtC-5171,

5,720660 (4716–4449 calBC)] allow us to establish a narrow

chronological age for the studied material of ,6,000 years.

A sample of 3 g of cortical tissue was powdered, digested with

proteinase K and extracted with phenol-chlorophorm, following a

protocol described elsewhere [5]. Previous metagenomic studies

have described an overwhelming fraction of environmental DNA

found in ancient bones. Following a previously published

procedure, the bone powder was incubated with bleach for five

minutes, prior to extraction [39]. It was assumed that this could

remove part of the pervasive exogenous DNA and thus increase

the efficiency of the endogenous DNA retrieval. The fact that so

much contamination is still seen afterwards is intriguing. Further

studies could help clarify the efficiency of the bleach treatment

prior to GS-FLX 454 sequencing.

One hundred microliters of extract were subjected to the GS-

FLX 454 sequencing platform. The nebulization and Ampur

purification steps were omited for the library building process,

following, except for this, the manufacturer’s guidelines (Roche

Diagnostics). The amount of DNA in the libraries was estimated

by Quantitative PCR (qPCR) [40] and found to be too low for

successful sequencing. Therefore, libraries were amplified with the

emulsion primers prior to the emulsion PCR (ePCR) to increase

the amount of DNA. This procedure generated redundant

sequences that were posteriorly identified and eliminated.

Subsequently half of a full sequencing run was performed on the

commercial Cogenics Genome Express FLX platform (Grenoble,

France). To confirm the authenticity and accuracy of the GS-FLX

generated data, a small number of mtDNA and nuclear DNA

sequences were targeted using conventional PCR protocols,

following a two-steps protocol [41] and 50 degrees of annealing

temperature. Amplification products were cloned using the TOPO

TA cloning kit (Invitrogen), and sequenced using an ABI3730

capillary sequencer (Applied Biosystems).

Obtained sequences were identified with BLAST searches [42]

(using the megaBLAST program with an e-value threshold of

0.001) using the cow and human genomes, the environmental

sample sequences database in the GenBank env, and the general

nucleotide sequences nt. Sequences of other bovids (Bos taurus, Ovis

aries and Capra hircus) as well as one cervid (Muntiacus reevesi) were

aligned to those of Myotragus with Multialin [43]. Discrepancies in

homopolymeric tracts were not considered, as 454 technology is

known to have problems dealing with these regions [33]. Best

match to target sequences in the blast didn’t include the edge

nucleotides, since these are known to accumulate postmortem

damages associated to the breakage DNA process.

Phylogenetic trees were constructed by maximum likelihood with

the Phyml program, version 2.4.4 [44]. A general time reversible

(GTR) model with four rate categories and a proportion of

invariable sites was used, with parameters estimated from the data.

A bootstrap analysis with 100 replicas was also performed. In

addition, a Bayesian tree was calculated with MrBayes 3.1 [45] using

a GTR model with invariable sites and rate heterogeneity. Two runs

of four chains of 5,000,000 trees were generated, sampling every 100

trees, with burning completed by the 20,000th tree.
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