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Abstract

Mycobacterium abscessus is an emerging rapidly growing mycobacterium (RGM) causing a pseudotuberculous lung disease
to which patients with cystic fibrosis (CF) are particularly susceptible. We report here its complete genome sequence. The
genome of M. abscessus (CIP 104536T) consists of a 5,067,172-bp circular chromosome including 4920 predicted coding
sequences (CDS), an 81-kb full-length prophage and 5 IS elements, and a 23-kb mercury resistance plasmid almost identical
to pMM23 from Mycobacterium marinum. The chromosome encodes many virulence proteins and virulence protein families
absent or present in only small numbers in the model RGM species Mycobacterium smegmatis. Many of these proteins are
encoded by genes belonging to a ‘‘mycobacterial’’ gene pool (e.g. PE and PPE proteins, MCE and YrbE proteins, lipoprotein
LpqH precursors). However, many others (e.g. phospholipase C, MgtC, MsrA, ABC Fe(3+) transporter) appear to have been
horizontally acquired from distantly related environmental bacteria with a high G+C content, mostly actinobacteria (e.g.
Rhodococcus sp., Streptomyces sp.) and pseudomonads. We also identified several metabolic regions acquired from
actinobacteria and pseudomonads (relating to phenazine biosynthesis, homogentisate catabolism, phenylacetic acid
degradation, DNA degradation) not present in the M. smegmatis genome. Many of the ‘‘non mycobacterial’’ factors detected
in M. abscessus are also present in two of the pathogens most frequently isolated from CF patients, Pseudomonas aeruginosa
and Burkholderia cepacia. This study elucidates the genetic basis of the unique pathogenicity of M. abscessus among RGM,
and raises the question of similar mechanisms of pathogenicity shared by unrelated organisms in CF patients.
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Introduction

Mycobacteria form a group of over one hundred species,

ranging from harmless saprophytic organisms to major human

pathogens. The well known pathogenic species, such as Mycobac-

terium tuberculosis, Mycobacterium leprae and Mycobacterium ulcerans,

belong to the subgroup of slowly growing mycobacteria (SGM). By

contrast, rapidly growing mycobacteria (RGM) —almost 60

species of which have been identified—usually live in the soil or

water and only rarely cause human infections [1]. Mycobacterium

abscessus is one of the few RGM able to infect humans and is

undoubtedly the most frequently isolated and the most difficult to

combat [2].

M. abscessus was first described by Moore and Frerichs in 1953

[3]. These authors reported the isolation of a previously unknown

mycobacterium from a human knee infection with subcutaneous

abscess-like lesions (type strain M. abscessus ATCC 19977T), hence

the name ‘‘abscessus’’. With the recognition of Mycobacterium chelonei

(now M. chelonae) in 1972, these two RGM organisms were

classified as two subspecies of the same species. Over two decades,

they were collectively designated ‘‘M. chelonae’’, or even grouped

with the RGM Mycobacterium fortuitum under the designation ‘‘M.

fortuitum complex’’ [4]. It was only in 1992 that M. abscessus was

separated from M. chelonae [5], and this separation soon resulted in

the recognition that M. abscessus has a particular pathogenicity in

humans [6]. Very recently, M. abscessus itself (now M. abscessus sensu

lato) was shown to consist of three species: M. abscessus sensu stricto,

M. massiliense and M. bolletii [7,8]. These species are very closely

related and cause a similar spectrum of human infections [9,10].

Thus, hereafter, unless otherwise stated, they will be collectively

referred to as ‘‘M. abscessus’’.

Following its recognition as a distinct entity, and the

development of molecular methods of identification for mycobac-

teria, M. abscessus has emerged as an important human pathogen

over the last 10 years, causing many more cases of infection than

M. chelonae and M. fortuitum—historically the most important

pathogenic RGM [2,11]. M. abscessus is responsible for more than

80% of all pulmonary infections due to RGM in the United States
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and is associated with a much higher fatality rate than any other

RGM [6]. M. abscessus lung infection usually, but not exclusively,

develops in subjects with underlying lung disorders (e.g. bronchi-

ectasis, cystic fibrosis [CF]) [6]. The infection of CF patients is

becoming a major issue: M. abscessus is being recovered with

increasing frequency from CF patients, including young children.

It causes a serious, life-threatening lung disease and is responsible

for disseminated, often fatal infections following lung transplan-

tation [12–18]. M. abscessus is also a leading cause of sporadic and

epidemic cases of skin and soft-tissue RGM infections, following

the use of contaminated syringes or needles, and after plastic or

cardiac surgery [19,20]. M. abscessus is not only pathogenic, it is

also one of the most antibiotic-resistant RGM species [1]. It is

resistant to most disinfectants and biocides and thrives in the most

hostile environments—a feature associated with its propensity to

cause outbreaks of healthcare-associated disease [1].

The pathogenicity of M. abscessus has been investigated in recent

studies in various cell and mouse models. M. abscessus is an

intracellular bacterium able to grow in macrophages and free-

living amebas [8,21]. M. abscessus infection in mice is associated

with granulomatous lesions spontaneously evolving toward caseous

lesions [22]. Interferon gamma (IFN-c) and tumor necrosis factor

(TNF) are the key cytokines of the murine host response, and are

absolutely required to control infection [22]. Studies have also

identified major differences in pathogenic profile between the two

forms in which M. abscessus is isolated from humans: the S (smooth)

form and the R (rough) form [21]. The R form lacks a surface

polyketide compound, glycopeptidolipid (GPL) [23,24], and causes

more severe infections in mice, strongly inducing TNF secretion

by macrophages [23].

Over the last decade, genomic studies have shown how the

ecological and pathogenic characteristics of certain SGM have

changed through evolution. For example, M. leprae, the causal

agent of leprosy, represents a model case of adaptation through

massive genome reduction [25]. Gene deletion and decay have

resulted in the elimination from M. leprae of many of the major

metabolic activities present in the closely related species, M.

tuberculosis, the tubercle bacillus. This process of gene deletion is

associated with the divergent evolution of M. leprae towards an

obligate intracellular lifestyle. Other mycobacteria have acquired

plasmid-borne virulence factors. The presence of a giant plasmid

involved in the synthesis of a potent macrolide toxin forms the

basis, for example, of the unique pathogenic properties of M.

ulcerans, the causal agent of Buruli ulcer [26]. Genomic studies

have also revealed how the deletion of large chromosomal regions

led to the attenuation of Mycobacterium bovis bacillus Calmette-

Guérin, the only vaccine against tuberculosis currently available

[27,28].

Very few genomic studies have been performed in the RGM

group, and none has dealt with a ‘‘pathogenic’’ RGM. The first

RGM to be sequenced—M. smegmatis—is a model mycobacterium

widely used in research laboratories as a surrogate host for the

expression of heterologous mycobacterial genes. The other RGM

organisms sequenced (e.g., M. vanbaalenii) have been studied

because they are able to degrade polycyclic aromatic hydrocar-

bons and are therefore of potential interest for use in environ-

mental bioremediation [29]. We report here the complete genome

sequence of M. abscessus (sensu stricto) and the insights it has

provided into the genetic basis of its the pathogenicity of this

bacterium, which is highly unusual among RGM. Whole-genome

analysis not only revealed the presence of many ‘‘mycobacterial’’

virulence genes, but also showed that M. abscessus had a large series

of specific genes in common with two pathogens most frequently

isolated from CF patients—Pseudomonas aeruginosa and Burkholderia

cepacia. These genes were presumably acquired from distantly

related environmental bacteria via horizontal gene transfer

(HGT).

Results

The M. abscessus genome
General features and comparison with other

Mycobacterium species. The M. abscessus (sensu stricto)

genome consists of a circular chromosome of 5,067,172 base

pairs (bp) including 4,920 predicted coding sequences (CDS) with

a coding capacity of 93%, and a G+C content of 64% other than

in the prophage region (59.5%) (Table 1 and Fig. 1A). A circular

23 kb mercury resistance plasmid (23,319 bp; G+C content, 68%)

was also detected (Fig. 1B) and shown to have a nucleotide

sequence 99.9% identical to that of the 23 kb pMM23 mercury

resistance plasmid from Mycobacterium marinum (strain ATCC BAA-

535) [30]. Like pMM23, the 23 kb M. abscessus plasmid carries a

mercury resistance operon flanked by two genes encoding site-

specific recombinases; it also encodes a relaxase/helicase that may

function in conjugation or mobilization (Fig. 1B).

The M. abscessus chromosome is about 1.92 Mb smaller than the

M. smegmatis genome; these two genomes are collinear, with no

evidence of extensive rearrangements (Fig. S1). The M. abscessus

chromosome includes 47 tRNA genes, but has a single ribosomal

RNA operon, a feature of SGM genomes [31]. It contains a full-

length prophage (81 kb) resembling the members of a recently

characterized group of dsDNA tailed mycobacteriophages [32].

This prophage is integrated into a Met tRNA and contains 112

CDS, 8 (7.1%) of which are similar to bacterial proteins with

identified functions (Fig. 2). There are also three prophage-like

elements (Table S1). Unlike other sequenced mycobacteria, M.

abscessus has very few insertion sequences (IS) in its genome: there

are only five IS, each present as a single copy (Table 1). These

elements include the composite element ISMab1 [33], which is

probably part of an integrated plasmid (gene encoding a putative

plasmid replication initiator protein in its vicinity [MAB_2100]).

Functional information. It was possible to assign a

biological function to 60.5% of the CDS on the M. abscessus

chromosome; 27.5% were found to be conserved hypothetical

proteins and 12% were unique. The distributions of M. abscessus

and M. smegmatis proteins, according to the Kegg classification,

were different, with a lower proportion of M. abscessus proteins

involved in xenobiotic biodegradation and metabolism (p,1024,

chi-squared test), and in biosynthesis of secondary metabolites

(p = 0.02) (Table S2). Consistent with the smaller size of the M.

abscessus genome, most paralogous families were found to be

underrepresented in M. abscessus with respect to M. smegmatis

(Table S3). This was particularly true for paralogs involved in the

adaptation of microorganisms to diverse environments (e.g. ABC

transporters, two-component sensor histidine kinases). Most of the

small number of protein families found to be overrepresented in

M. abscessus are known to be associated with mycobacterial

pathogenicity (e.g. PE and PPE proteins, MCE and YrbE proteins,

lipoprotein LpqH precursors, lipases/esterases/monooxygenases).

Others, such as the members of the ArsC family, salicylate

hydroxylases and cysteine desulfurases, are hallmarks of organisms

living in soil or water.

Transfers of blocks of genes from non mycobacterial

environmental organisms. We detected 17 gene clusters

syntenic with regions from non mycobacterial organisms, and

which are absent from other sequenced mycobacterial species

(Tables 2 and S4), suggesting multiple en bloc HGTs. The factors

encoded by these gene clusters are much more similar to proteins

M. abscessus Genome
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Figure 1. The M. abscessus CIP 104536T genome. (A) Circular representation of the chromosome. The initiation codon for the dnaA gene was
chosen as the starting point for numbering. The scale is in Mb. Moving inward, the first two circles show forward and reverse genes (blue lines); light-
green lines indicate phage genes. The third circle shows tRNA genes (red) and rRNA operon (dark-green). The fourth circle shows genes presumably
acquired ‘‘en bloc’’ from non mycobacterial organisms by HGT (purple) and IS elements (black). The inner black histogram represents the local G+C
content (scale: 50% to 69%). (B) Circular representation of the 23-kb mercury resistance plasmid. The scale is in kb. Forward and reverse genes and the
local G+C content are indicated with the same code as for the chromosome map. The plasmid carries a mercury resistance operon flanked by two
genes encoding site-specific recombinases (MAB_p04c and MAB_p10, orange); it also encodes a relaxase/helicase that may function in conjugation or
mobilization (MAB_p15c, yellow).
doi:10.1371/journal.pone.0005660.g001

Table 1. General features of the M. abscessus genome and comparison with other Mycobacterium species.

Features RGM SGM

Mabs Msmeg(a) M. gilvum(a) Mvanba(b) Mtb(c) M. avium(a) M. marinum(d) M. ulcerans(e)

Genome size, bp 5,067,172 6,988,209 5,619,607 6,491,865 4,411,532 5,475,491 6,636,827 5,631,606

G+C content, % 64,1 67 67 67 65,6 68 65 65

Protein coding, % 93 90 92 91 90,8 88 89 72

Proteins 4920 6716 5241 5979 3959 5120 5424 4160

tRNAs 47 47 47 50 45 45 46 45

rRNA operons 1 2 2 2 1 1 1 1

Prophage elements, no. 4(f) NR NR NR 2 NR 10 2

IS, total no. of copies 5 112 NR NR 54 NR 7 302

(a)http://www.ncbi.nlm.nih.gov.
(b)[29].
(c)[31].
(d)[30].
(e)[87].
(f)Including the 81-kb full-length prophage and three prophage-like elements detailed in Table S1.
Abbreviations: RGM, rapidly growing mycobacteria ; SGM, slowly growing mycobacteria ; Mabs, M. abscessus ; Msmeg, M. smegmatis; Mvanba, M. vanbaalenii; Mtb, M.
tuberculosis; nt, nucleotide; IS, insertion sequence; NR, not reported.
doi:10.1371/journal.pone.0005660.t001
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from syntenic organisms than to proteins from other mycobacteria,

or have no significant mycobacterial homologs (Table S4). The

hypothesis of multiple HGT of blocks of genes is also supported by

significant differences in codon usage for proline and arginine

between this subset of genes and other M. abscessus genes (p,1024,

chi-squared test). The organisms with the best conserved syntenies

are all environmental bacteria with a high G+C content, mostly

actinobacteria (Rhodococcus sp., Streptomyces sp., Nocardia sp.), but also

Pseudomonas sp. and Burkholderia sp. (Tables 2 and S4). There are

more horizontally acquired gene clusters in the 59 half of the

genome than in the 39 half (Fig. 1), with most concentrated into two

‘‘hot-spots’’ (MAB_0888c-1098, MAB_2027-2286). Examples of

such gene clusters are shown in Fig. 3.

Virulence factors involved in intracellular parasitism
Many factors known to be involved in M. tuberculosis virulence

have orthologs in the M. abscessus genome and best hits with

proteins from other mycobacteria (Table S5). In addition to these

‘‘mycobacterial’’ factors, the M. abscessus genome encodes a

number of ‘‘non mycobacterial’’ factors known to play a major

role in microbial pathogenesis.

‘‘Mycobacterial’’ factors
The PE- PPE and ESAT-6 families. The PE and PPE

proteins, with their characteristic proline-glutamate (PE), or

proline-proline-glutamate (PPE) N-terminal motifs, are often

found associated with ESX gene clusters, which encode ATP-

dependent specific secretion systems and are named after the

6 kDa early secretory antigenic target ESAT-6 [31,34,35]. There

are three PE and six PPE genes in M. abscessus, and three ESX loci,

all similar to the essential and highly immunogenic ESX-3 gene

cluster of M. tuberculosis.

MCE and yrbE proteins. MCE (mammalian cell entry)

proteins allow mycobacteria to invade host cells [36]. There are

seven mce operons in M. abscessus and only four in M. smegmatis, one

of which is interrupted by an IS element in M. smegmatis (not

shown). It has recently been suggested that the number of mce

operons may be related to pathogenicity in actinomycetes: there

are six mce operons in Nocardia farcinica, one of the agents causing

nocardiosis, whereas Streptomyces avermitilis and Streptomyces coelicolor,

both nonpathogenic soil bacteria, each have only one copy of the

mce operon [37].

LpqH-like proteins. LpqH, also known as the 19 kDa

protein, is an immunodominant antigen recognized by T cells

and sera from patients with tuberculosis [38]. M. abscessus possesses

four genes encoding LpqH-like proteins, scattered throughout the

genome, suggesting that these molecules may be involved in the

pathogenicity of M. abscessus, possibly through modification of the

host response.

Regulators of virulence factors. M. abscessus has homologs

of a large number of regulators known to control virulence factors

in M. tuberculosis. Most appear to have counterparts in M. smegmatis,

but there are a few exceptions, consistent with the specialization of

M. abscessus towards pathogenicity. For example, M. abscessus

possesses homologs of the five sigma factors shown to be involved

in M. tuberculosis virulence (SigA, SigC, SigD, SigE, SigH), whereas

M. smegmatis has homologs of only four of these factors (SigA, SigD,

SigE, SigH). M. abscessus also has a protein homologous to the VirS

virulence transcription factor of M. tuberculosis, whereas M.

smegmatis does not.

‘‘Non mycobacterial’’ factors
Phospholipase C. Bacterial phospholipases C are key

virulence factors allowing intracellular pathogens to escape

Figure 2. The M. abscessus full-length prophage. Each arrow represents a predicted protein-coding gene (length approximately to scale).
Orange, similar to other phage proteins; blue, similar to other bacterial proteins; green, hypothetical protein. The table shows homologs of bacterial
proteins with identified functions (Uniprot Blast search).
doi:10.1371/journal.pone.0005660.g002

M. abscessus Genome
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phagosomal vacuoles by disrupting eukaryotic membranes [39].

M. tuberculosis has four phospholipase C-encoding genes: plcABC

and plcD [31]. Triple (plcABC) and quadruple (plcABCD) mutants

have negligible enzyme activity and attenuated virulence in mouse

models, suggesting that phospholipase C activity is required for the

growth of mycobacteria in vivo [40]. Phospholipase C activity may

be particularly critical for mycobacteria infecting human hosts, as

suggested by the presence of the region encompassing plcABC in

clinical Mycobacterium microti isolates, but not in attenuated isolates

from voles [41]. The M. abscessus phospholipase C closely

resembles proteins from Streptomyces sp., Chromobacterium violaceum

and P. aeruginosa. The locus containing the corresponding gene

differs from those of the phospholipase C genes in M. tuberculosis

(Fig. 4), and phylogenetic analysis is also consistent with horizontal

acquisition from non mycobacterial organisms (Fig. 5).

MgtC. Intracellular pathogens make use of MgtC proteins to

increase intracellular Mg2+ concentration, facilitating their survival

within cells. As first demonstrated in Salmonella, these proteins are

essential for bacterial growth within professional phagocytes, such

as macrophages [42]. M. tuberculosis has an mgtC gene, the

Figure 3. Examples of gene blocks presumably inherited from non mycobacterial organisms. (A) MAB_0295-0298 (phenazine
biosynthesis). (B) MAB_0888c-0891c (homogentisate catabolism). (C) MAB_1093c-1098 (DNA degradation [dnd locus]). (D) MAB_1501-1504 (iron
uptake). Genes are drawn approximately to scale and are indicated according to their names in the Embl-Ebi database.
doi:10.1371/journal.pone.0005660.g003

M. abscessus Genome
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disruption of which strongly attenuates virulence in both

macrophages and mice [43]. The acquisition of mgtC genes by

HGT is common among microbes and has been associated with

pathogenicity [44]. There is an mgtC gene in M. abscessus, but not in

M. smegmatis, providing further evidence that this gene is important

for the intracellular lifestyle developed by M. abscessus. The M.

abscessus mgtC gene seems to have been acquired by HGT,

probably from actinobacteria (Fig. 4 and 5) [44].

MsrA. The peptide methionine sulfoxide reductase (MsrA) of

M. tuberculosis is thought to protect this organism against the

oxidative damage caused by the reactive nitrogen intermediates

produced by macrophages [45]. The M. abscessus msrA gene is

located at another genomic site, in the immediate vicinity of sodA

(Fig. 4). The MsrA protein of M. abscessus closely resembles a

protein from Rhodococcus sp. and does not cluster with

mycobacterial proteins in the phylogenetic tree for MsrA (Fig. 5),

providing further evidence for horizontal acquisition from a non

mycobacterial gene pool.

Iron uptake. Bacterial pathogens have developed a number

of systems for acquiring iron, which is present in limiting

concentrations in living hosts. M. abscessus has a four-gene cluster

very similar to a locus encoding an ABC Fe(3+) transporter in

Rhodococcus sp. This cluster also has closely related homologs in a

number of major bacterial pathogens, including Salmonella sp. and

Burkholderia sp. (Tables 2 and S4; Fig. 3D).

‘‘Non mycobacterial’’ factors relevant to the infection of
CF patients (Tables 2 and S4; Fig. 3)

Phenazine biosynthesis. Phenazines are secondary

metabolites with broad-spectrum antibiotic activity against

bacteria, fungi and parasites, produced by Pseudomonas sp. and

Streptomyces sp. Pyocyanin, the blue phenazine synthesized by P.

aeruginosa, is a key virulence determinant in vivo, and is thought to

be involved in the persistence of this pathogen in CF patients

[46].

Homogentisate catabolism. The homogentisate catabolic

pathway results in homogentisate being broken down into two

compounds of central metabolism: fumarate and acetoacetate

[47]. However, homogentisate is also a precursor for the

biosynthesis of pyomelanin, a brown pigment generated through

the extracellular accumulation and polymerization of

homogentisate. Pyomelanin production appears to be a key step

in the process by which P. aeruginosa adapts to the respiratory tract

of CF patients, possibly facilitating iron acquisition [48].

Table 2. Gene clusters syntenic with non mycobacterial organisms and not observed in other mycobacteria(a).

Cluster no. Mabs CDS. Main synteny(b) Putative function

1 MAB_0295-0298(c) Streptomyces sp. MG1 (B4V5P4_9ACTO)(d) Phenazine biosynthesis

2 MAB_0300c-0303 Nocardia farcinica (Q5YP17_NOCFA) Resistance to salicylic acid-mediated defense mechanisms

3 MAB_0888c-0891c Rhodococcus sp. (Q0SEC1_RHOSR)(e) Homogentisate catabolic pathway

4 MAB_0899c-0911(f) Nocardia farcinica (Q5YXU1_NOCFA)(g,h) Phenylacetic acid degradation

5 MAB_1014c-1019c Rhodococcus sp. (Q0S4M6_RHOSR) Unknown

6 MAB_1093c-1098 Streptomyces lividans (Q460H9_STRLI)(i) DNA degradation (dnd locus)

7 MAB_1501-1504 Rhodococcus sp. (strain RHA1) (Q0S261_RHOSR)(j) Iron uptake

8 MAB_1720-1722 Rhodococcus sp. (Q0S6K3_RHOSR) Two-component system

9 MAB_2027-2032 Pseudomonas putida F1 (A5W4P6_PSEP1) Biosynthesis of phytotoxic peptides and antibiotics

10 MAB_2251-2253 Burkholderia cepacia complex (Q0B890_BURCM) Unknown

11 MAB_2255-2257(k). Myxococcus xanthus (Q1D6A2_MYXXD) Polyketide biosynthesis

12 MAB_2257-2258(l,m) Streptomyces ambofaciens (A3KI34_STRAM) Polyketide biosynthesis

13 MAB_2278-2286(n). Streptomyces coelicolor (Q9K3F5_STRCO) Unknown

14 MAB_2610-2613 Bacillus pumilus (B4AMJ6_BACPU) Carbohydrate transport

15 MAB_3112-3115 Nocardia farcinica (Q5YN04_NOCFA) Unknown

16 MAB_3569c-3574c(o,p) Streptomyces antibioticus (Q0R4L5_STRAT) Biosynthesis of secondary metabolites

17 MAB_3621c-3623 Rhodococcus sp. (Q0SA51_RHOSR)(q) Taurine metabolism

(a)Clusters comprising $3 syntenic genes.
(b)The organism and the homolog of the 59 M. abscessus gene product (in brackets, entry name in Swiss-Prot/TrEMBL database) are indicated.
(c)Upstream, MAB_0292c is homologous to an ISX08 transposase from Saccharopolyspora erythraea.
(d)Also A6UZN8_PSEA7-A6UZN6_PSEA7 from Pseudomonas aeruginosa (strain PA7) (see also Fig. 3).
(e)Partial synteny (MAB_0888c-0890c) in B. cepacia.
(f)Downstream, MAB_0920 is homologous to a phenylacetic acid-responsive trancriptional repressor gene from Kineococcus radiotolerans.
(g)Also Q0SCR6_RHOSR–Q0SCS7_RHOSR from Rhodococcus sp. (strain RHA1).
(h)Partial synteny (MAB_0906-0910) in B. cepacia.
(i)Also A5G4D2_GEOUR- A5G4D6_GEOUR from Geobacter uraniireducens (strain Rf4) (see also Fig. 3)
(j)Also syntenic regions in B. cepacia and in the pathogens Salmonella Paratyphi A, Salmonella Typhimurium, Salmonella Typhi, and Burkholderia mallei.
(k)Just upstream, MAB_2254c is homologous to a PPE protein from Mycobacterium vanbaalenii.
(l)This cluster has only two genes but is part of a composite region encoding various polyketide synthases (see upstream, MAB_2255-MAB_2257).
(m)Just downstream, MAB_2259 is homologous to a putative O-methyltransferase gene from Myxococcus xanthus.
(n)MAB_2284 (homologous to Q9K3G5) is also homologous to the protein PrnC gene from Burkholderia cepacia.
(o)Except MAB_3570c, which is homologous to a 49-phosphopantetheinyl transferase gene from the Actinomycetales (A3R4S1_9ACTO).
(p)MAB_3574c is also homologous to a 3-oxoacyl-[acyl-carrier-protein] synthase III from Frankia alni.
(q)Partial synteny (MAB_3621c-MAB_3622c) in B. cepacia.
Abbreviations: Mabs, M. abscessus; CDS, coding sequence.
doi:10.1371/journal.pone.0005660.t002

M. abscessus Genome
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Phenylacetic acid degradation. The region involved in

phenylacetic acid degradation—the largest region of the M.

abscessus genome acquired by HGT—is located downstream from

the ‘‘homogentisate catabolism’’ region. The proteins encoded by

this region constitute a complex functional unit, the phenylacetyl-

CoA catabolon, which transforms various aromatic compounds

(e.g., styrene, 2-phenylethylamine) into phenylacetyl-CoA, which

is subsequently catabolized into TCA intermediates [49]. The five-

gene cluster putatively encoding the enzymes of the ring-

hydroxylating complex (MAB_0906-0910) is also present in B.

cepacia and the homolog of MAB_0910 is essential for B. cepacia

survival in a rat model of chronic lung infection [50].

Figure 4. plc, mgtC and msrA loci in M. abscessus: comparison with other mycobacteria. a. plc: note that MAB_0557 (transcriptional
regulatory protein AraC) has no homolog at the counterpart of the M. abscessus plc locus in the other mycobacterial species, suggesting an insertion;
also note the substitution for a PE-PGRS gene in the corresponding M. tuberculosis region. b. mgtC: note that the gene encoding MgtC is located at
other genomic sites in M. tuberculosis and M. avium; also note that MAB_3592c (probable chain fatty acid-CoA ligase, blue) has no homolog at the
counterpart of the M. abscessus mgtC locus in the other mycobacterial species, also suggesting an insertion. c. msrA: note that MsrA-encoding genes
are located at other genomic sites in other mycobacteria; and the presence of sodA (light blue) upstream of M. abscessus msrA; there is a substitution
for a transposase gene (Rv3844) in the corresponding M. tuberculosis region. Out of scale.
doi:10.1371/journal.pone.0005660.g004
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Cysteine desulfurases and the ‘‘Dnd phenotype’’. The

M. abscessus genome encodes a large number of cysteine

desulfurases (Table S3). One is part of a locus closely resembling

the S. lividans dndA-E locus (Tables 2 and S4; Fig. 3), which is

involved in the Dnd (DNA degradation) phenotype observed in

vitro during DNA extraction [51]. A recent pulsed-field gel

electrophoresis study showed that M. abscessus strains with a Dnd

phenotype belonged to a small number of closely related clones

playing a major role in human disease [52]. The sputum of CF

patients is extremely rich in DNA, which may constitute an

important source of nutrients for dnd-positive strains.

Resistance to antimicrobial compounds
M. abscessus has achieved notoriety as one of the most drug-

resistant mycobacterial species [1]. Much of this multidrug

resistance may result from weak permeability of the cell wall,

Figure 5. Phylogenetic trees (maximum likelihood) of PlC (a), MgtC (b) and MsrA (c) proteins. Branch supports values are indicated at the
nodes. Branch colors indicate proteins from M. abscessus (red), Actinobacteria (purple), Proteobacteria (blue) and Firmicutes (green). Labels at the
leaves show the Uniprot identifier of the proteins and the species they belong to.
doi:10.1371/journal.pone.0005660.g005
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but analysis of the M. abscessus genome has also revealed the

presence of many potential drug resistance determinants. The

hydrolytic or drug-modifying enzymes present in this species

include an Ambler class A beta-lactamase, a rifampin ADP-ribosyl

transferase, an aminoglycoside 29-N-acetyltransferase and at least

12 homologs of aminoglycoside phosphotransferases. We also

found four homologs of monooxygenases potentially involved in

resistance to rifampin and tetracyclines, two FolP homologs

conferring resistance to cotrimoxazole, one homolog of UDP-N-

acetylglucosamine 1-carboxyvinyltransferase MurA conferring

resistance to fosfomycin, and two homologs of 23S rRNA

methylases conferring resistance to macrolides, including the erm

gene product (MAB_2297) recently shown to be involved in

inducible macrolide resistance in M. abscessus [53]. Most of these

drug resistance determinants are mycobacterial, with the notable

exception of the Ambler class A beta-lactamase (MAB_2875),

which closely resembles beta-lactamases from the gram-negative

bacteria Pseudomonas luteola and Serratia fonticola (not shown). The

genome of M. abscessus also encodes many proteins potentially

involved in drug-efflux systems, including members of the major

facilitator family, ABC transporters and MmpL proteins. Finally,

the presence of a single rRNA operon favors the occurrence of

dominant mutations conferring resistance to aminoglycosides and

macrolides [54].

We identified three putative ars operons scattered over the

chromosome of M. abscessus [55]. M. abscessus is therefore likely to

be resistant to high concentrations of arsenic [56]. Finally, due to

the presence of merB within the mer operon, the 23 kb plasmid

probably confers resistance to a wide range of organomercury

compounds [57].

Discussion

Deciphering the ecology and biology of M. abscessus
The genetic information contained in the genome of M. abscessus

tells us a great deal about the lifestyle of this microorganism in

natural conditions. The presence of a large number of genes and

operons involved in resistance to arsenic or encoding cysteine

desulferases is clearly a hallmark of an environmental organism

living in soil or aquatic environments. However, M. abscessus also

contains a whole series of genes known to be involved in

intracellular survival (e.g., mgtC, msrA, plc), and is well-equipped

to obtain energy from the degradation of eukaryotic host-derived

lipids (numerous lipase-encoding genes), as observed for myco-

bacteria adapted to an intracellular lifestyle [58]. The low level of

metabolic versatility (e.g., far fewer ABC transporters or two-

component sensor histidine kinases than M. smegmatis) suggests that

this bacterium tends to specialize in intracellular parasitism.

The most plausible hypothesis is that M. abscessus has evolved to

escape predators, such as free-living amebas [8] sharing the same

ecosystem. Soil-dwelling amebas are known to be most abundant

at plant-soil interfaces, because these interfaces support the growth

of various plant parasites, including bacteria, on which amebas

feed [59]. Consistent with this hypothesis, the genome of M.

abscessus encodes a particularly large number of salicylate

hydroxylases, enabling this bacterium to resist the salicylic acid-

mediated defense mechanisms of plants [60]. This suggests that M.

abscsessus lives in close contact with plants and therefore has to deal

with amebas. This hypothesis may explain an extraordinary

paradox in the epidemiology of M. abscessus: despite all the

evidence to suggest that M. abscessus lives in soil and water—our

own genomic data and the large number of epidemics linked to the

direct or indirect use of non sterile water—this bacterium is

detected much less frequently in such environments than other

closely related RGM, such as M. chelonae [61].

We analyzed an S phenotype strain. A major challenge for the

future will be to determine the role of S«R switches in the natural

lifecycle of M. abscessus (controlling whether this bacterium grows

in the form of a biofilm) and its interaction with its hosts, including

humans (modulation of the host response). GPL may be required

for biofilm establishment or for escape from amebas in aquatic

environments [62], but seems to hinder the development of

infection, probably by acting as a target of the specific immune

response of the host [22]. We recently reported the in vivo isolation

of an R variant from the type strain CIP 104536T [22].

Transcriptomic studies are currently underway to determine the

mechanisms responsible for the loss of GPL production in this R

variant and the associated events potentially accounting for its

‘‘hypervirulence’’ in mice. The data obtained should make it

possible to identify the external signals involving in triggering the

switching process.

Evolutionary mechanisms
This study highlights the major role of horizontal gene transfers

in the evolution of RGM. It is hardly surprising that this

evolutionary mechanism, which has also been described in SGM

[63,64], is particularly important in RGM, and that it involves a

reservoir of genes from different bacteria with a high G+C content

widely present in soil or water, such as Streptomyces sp., Rhodococcus

sp. and pseudomonads. RGM come into contact with many other

bacteria in the environment—often as part of a biofilm [65] —and

they may exchange genetic material with these other bacteria [66].

Mycobacteriophages—or other bacteriophages with a wide host

spectrum—may play a key role in such transfers, as they display

extensive mosaicism, combining viral and bacterial genes in a vast

gene pool [32]. Such a role in gene transfer is consistent with the

presence of a full-length prophage sequence containing non

mycobacterial genes in the M. abscessus genome. However, the

presence of this prophage sequence does not exclude a role for

other genetic vectors, such as plasmids, which are frequently found

free or integrated into the genome within RGM [67].

The demonstration that pathogenicity genes of non mycobac-

terial origin are present in M. abscessus raises questions about the

timing of their acquisition. The fact that the closely related species

M. chelonae is also pathogenic in humans—an exceptional feature

among RGM—strongly suggests that many of these genes were

acquired before the separation of these two species. We are

currently carrying out a comparative genomics study of M.

abscessus and M. chelonae (http://www.genoscope.cns.fr/spip/My-

cobacterium-chelonae-and.html), which should make it possible to

confirm or to infirm this hypothesis. We have also recently made

use of the genome sequence of M. abscessus to develop a multilocus

sequence typing (MLST) approach. Our preliminary analyses on

more than a hundred M. abscessus (sensu lato) strains suggest that

there are three highly homogeneous groups, corresponding to the

three previously described species (M. abscessus sensu stricto, M.

massiliense, M. bolletii), with less than 1% divergence within groups

and around 2% divergence between groups. The species of M.

abscessus sensu lato therefore seem to have emerged relatively

recently. However, it should be stressed that most of the strains of

M. abscessus available from collections were isolated recently and

mostly in a clinical context. Indeed, as stated above, M. abscessus is

only very rarely isolated from the environment. There may

therefore be a bias in the results, because we cannot rule out the

possibility that strains capable of infecting humans constitute an

unusual subpopulation.
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One of the findings of this study was entirely unexpected: the

presence of a mercury resistance plasmid almost identical to the

pMM23 from the M. marinum strain recently sequenced by the

team of Stinear (strain ATCC BAA-535) [30]. The pMM23

plasmid discovered in this strain, isolated from a patient in 1992

(Moffett Hospital, San Francisco), is exceptional in M. marinum, as

none of the more than 40 other isolates of this species studied by

the team of Stinear has been found to carry this plasmid [30]. The

presence of this plasmid in M. abscessus is, thus, particularly

interesting, as it demonstrates that exchanges may occur between

M. marinum, a SGM, and M. abscessus, a RGM, either directly or

via another organism, probably a mycobacterium. It also suggests

that M. abscessus and M. marinum may live in the same ecosystems

and may be transmitted to humans by similar mechanisms. Future

work should determine the prevalence of this plasmid in M.

abscessus and should assess whether this plasmid constitutes a useful

marker (e.g., for epidemicity).

We were also surprised by the very low frequency of IS in the

genome of the strain of M. abscessus that we sequenced, much lower

than usually found in mycobacteria. Confirmation of this result is

required, with a representative panel of isolates. If confirmed, this

characteristic would have a major impact on the plasticity of the

genome of M. abscessus. As elegantly demonstrated in Escherichia

coli, reducing the number of IS elements renders bacterial genomes

more stable, with a greater capacity for acquiring foreign DNA

[68].

Key factors shared with other major CF pathogens
This study provides new insight into the emergence of M.

abscessus as a pathogen in CF patients. We were surprised to

discover that the largest tranferred regions detected in M. abscessus

contained genes involved in the metabolism of aromatic

compounds. Such systems are characteristic of pseudomonads in

general, and of two major CF pathogens, P. aeruginosa and B.

cepacia, in particular [49]. This implies that M. abscessus is able to

live in the same ecosystems as P. aeruginosa and B. cepacia, with

patients becoming infected from the same microbial reservoir.

Another, not necessarily exclusive possibility is that these

metabolic characteristics provide a selective advantage in CF

patients, due either to their illness or the treatments increasingly

used over recent years, such as aerosolized drug administration

[69]. According to this hypothesis, M. abscessus may benefit from

factors promoting its extracellular development and its implanta-

tion in the bronchial tract, before going on to cause deeper

infection of the pulmonary parenchyma and ganglions.

Conversely, several M. abscessus factors typical of intracellular

parasites are also present in P. aeruginosa and B. cepacia, the most

notable examples being phospholipase C and the MgtC protein

[70,71]. Both P. aeruginosa and B. cepacia produce two phospholi-

pases C and two MgtC proteins [70,71]. An MgtC-like protein is

also found in Aspergillus fumigatus—the main pathogenic fungus in

CF patients—but not in closely related nonpathogenic species such

as Aspergillus nidulans. Pseudomonads and other related organisms

infecting CF patients have previously been considered to be

exclusively ‘‘extracellular’’ pathogens. Our data raise questions

about the interaction of these organisms with macrophages or

other monocyte-derived cells in CF patients. This is consistent with

the finding that the production of MgtC is required for the survival

of Burkholderia cenocepacia–the main B. cepacia complex pathogen

infecting CF patients–within macrophages [72,73].

A recent analysis of the genomes of various CF and non-CF P.

aeruginosa isolates revealed mosaic structures, consisting of a

conserved core component interrupted by strain-specific genomic

islands acquired by HGT, which seem to provide CF isolates with

specific metabolic pathways involved in infection [74]. The

identification of multiple episodes of HGT in M. abscessus strongly

suggests that a similar evolutionary trend occurs within RGM.

Along the same lines as the studies carried out in P. aeruginosa by

the team of Lowry [74], comparative genomic studies of CF and

non-CF M. abscessus isolates could prove particularly fruitful for

elucidating the tropism of certain organisms for the respiratory

tract of CF patients, opening up promising new possibilities for the

control of microbial infections in CF patients.

Materials and Methods

We sequenced M. abscessus (sensu stricto) CIP 104536T ( = ATCC

19977T), using a whole-genome shotgun strategy (EMBL

accession numbers: CU458896, chromosome; CU458745, plas-

mid). This strain is of the S phenotype, and can switch in vivo to an

R phenotype [22]. Mycobacteria were grown in Middlebrook 7H9

broth supplemented with Tween 80. M. abscessus DNA, prepared

using standard methods, was manipulated in the presence of

50 mM thiourea (DNA in solution) or by replacing Tris buffer by

HEPES at the same molarity (DNA in plugs), to prevent Tris-

dependent DNA degradation [39]. We constructed three genomic

libraries (inserts of 3–4, 8–10 and ,20 kb, respectively) and

generated ,80,000 sequences (50,000, 20,000 and 10,000

sequences, respectively, giving 11-fold coverage). Putative pro-

tein-coding sequences were predicted by SHOW (http://migale.

jouy.inra.fr/outils/select_mig_outils_zpt), tRNA genes by tRNAs-

can, and rRNA genes by RNAmmer [75,76]. Sequences were

analyzed with the BIOFACET package and the BLAST software

suite [77,78]. General features, such as G+C content (%), were

assessed with ARTEMIS software [79]. The origin of replication

was identified with ORILOC [80]. The circular representations of

chromosome and plasmid were generated with DNAPlotter

(http://www.sanger.ac.uk/Software/Artemis/circular). The M.

abscessus full-length prophage was drawn with BugView (http://

www.gla.ac.uk/,dpl1n/BugView/index.html). Whole genome

dotplot comparison of M. abscessus versus M. smegmatis was drawn

with Gepard (http://mips.gsf.de/services/analysis/gepard).

CLUSTER-C was used to cluster genes into paralogous families

[81]. Alien Hunter was used to screen the genome for regions with

‘‘atypical’’ sequence content [82]. Transfers of blocks of genes

from non mycobacterial organisms were identified as follows. We

first identified CDS more similar to proteins from non mycobac-

terial organisms than to mycobacterial proteins (no mycobacterial

protein among the 50 best hits). We then used GeneTeam, with a

delta value of 3 and visual inspection to search for areas of synteny

with relevant non mycobacterial organisms [83]. Only clusters

with at least 3 syntenic genes not found in other sequenced

mycobacteria were retained. Phylogenetic analyses were carried

out with the ‘‘Phylogeny.fr’’ web server (http://www.phylogeny.

fr), using Muscle for multiple alignment and GBlocks for

alignment curation, and constructing the phylogenetic trees with

PhyML [84,85]. Branch supports were calculated with the

approximate likelihood ratio test [86]. Distributions of M. abscessus

and M. smegmatis proteins, according to the Kegg classification,

were compared using chi-squared tests with continuity correction.

To account for multiple testing, p-values were corrected according

to Hochberg’s method. Differences were considered as statistically

significant if corrected p-values were ,0.05.

Supporting Information

Figure S1 Whole genome dotplot comparison of M. abscessus

(horizontal axis) versus M. smegmatis.

Found at: doi:10.1371/journal.pone.0005660.s001 (0.08 MB TIF)
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Table S1 M. abscessus prophage-like elements

Found at: doi:10.1371/journal.pone.0005660.s002 (0.03 MB

DOC)

Table S2 M. abscessus and M. smegmatis proteins involved in

metabolism, according to the Kegg classification

Found at: doi:10.1371/journal.pone.0005660.s003 (0.04 MB

DOC)

Table S3 A selection of paralogous families

Found at: doi:10.1371/journal.pone.0005660.s004 (0.06 MB

DOC)

Table S4 Proteins encoded in the 17 horizontally acquired gene

clusters, and their syntenic non mycobacterial homologs

Found at: doi:10.1371/journal.pone.0005660.s005 (0.06 MB

DOC)

Table S5

Found at: doi:10.1371/journal.pone.0005660.s006 (0.06 MB

DOC)
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