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Abstract

Background: Eukaryote cells are suggested to arise somewhere between 0.85,2.7 billion years ago. However, in the
present world of unicellular organisms, cells that derive their food and metabolic energy from larger cells engulfing smaller
cells (phagocytosis) are almost exclusively eukaryotic. Combining these propositions, that eukaryotes were the first
phagocytotic predators and that they arose only 0.85,2.7 billion years ago, leads to an unexpected prediction of a long
period (,1–3 billion years) with no phagocytotes – a veritable Garden of Eden.

Methodology: We test whether such a long period is reasonable by simulating a population of very simple unicellular
organisms - given only basic physical, biological and ecological principles. Under a wide range of initial conditions, cellular
specialization occurs early in evolution; we find a range of cell types from small specialized primary producers to larger
opportunistic or specialized predators.

Conclusions: Both strategies, specialized smaller cells and phagocytotic larger cells are apparently fundamental biological
strategies that are expected to arise early in cellular evolution. Such early predators could have been ‘prokaryotes’, but if the
earliest cells on the eukaryote lineage were predators then this explains most of their characteristic features.
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Introduction

The origin of the eukaryote cell is often suggested to occur

anywhere from 850 to 2700 Mya [1,2]. However, in the present

world of unicellular organisms, cells that derive their food and

energy from engulfing smaller cells (phagocytotic predation, or

simply predation in our sense) are almost exclusively eukaryotic. It

is of course well-known that there are bacteria, for example, that

attack and consume others [3] but our interest here is in

phagocytotic predators – larger cells that engulf small cells.

Combining the propositions that, eukaryotes were the first

predators that engulfed smaller cells, and that they arose only

0.85,2.7 billion years ago, leads to an unexpected prediction of a

long period (,1–3 billion years) without predators. Such a lack of

predators for somewhere between 1–3 billion years is a Garden of

Eden (or Shangri-La, [4]), and is reminiscent of ‘‘The wolf and the

lamb shall feed together, and the lion shall eat straw like the

bullock’’ (Isa 65:25).

There are many theories for eukaryote origins (reviewed in [5])

but some earlier ones ignored basic life history and ecological

principles to the extent that they had intracellular parasites (such

as Microsporidia) being ancient lineages that existed long before

their multicellular hosts! Recent reviews do stress the need for

considering ecological and life history traits [5,6] and there are

many reasons to be suspicious [see discussion in 7] of overly

simplistic hypotheses for the origin of features such as the

eukaryote nucleus, with its associated complex splicing machinery

[8], large numbers of introns and exons [9,10], and many protein

families unique to eukaryotes [11,12]. Rather than revisit those

issues, we simply examine the prediction that there was a long

period, early in life, with no predators. Is such a period expected

from first principles?

Although the above scenario is the starting point for the present

investigation, it is much better to put this eukaryote origin example

aside, and concentrate on the underlying biological principles. To

a biologist it is suspicious that there would be any period of time,

however remote, that normal biological and ecological principles

did not apply. This conclusion is reinforced by the knowledge that

many ecological principles are fundamental and can, in principle,

be derived directly from thermodynamics [13]. Simulation is a

standard approach in evolution to understand the fundamental

principles behind empirical observations, and has the advantage

that a very wide range of parameters can be studied [14].

Important examples include properties of quasi-species and

hypercycles [15], increased fidelity of replication [16], optimal

numbers of nucleotides [17], scaling laws [18], origin of

cooperation [19,20], properties of genetic distances [21], public

goods [22], reciprocal altruism [23], promotion of biodiversity

[24], and the emergence of species with similar sizes [25]. Thus the

simulation approach is powerful in studying the emergence of
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biological features from basic principles, and here we study what

properties might emerge under a wide range of starting conditions.

In order to test whether fundamental principles are expected to

lead to specialization, we created a simulation of simple basic cells

that adhere to physical and biological principles. The properties

upon which we have based our model are all standard within

biology, and include the following:

(conservation of energy and matter); energy and food is introduced

to the system only through food assimilated by the unicells,

after which it can flow through the food chain. At every level

of the food chain some energy is lost as waste products from

assimilation inefficiency, metabolism, growth and cell death.

(surface to volume ratio); smaller primary producers are more

efficient in terms of nutrient and gas exchange because of

their larger surface area to volume ratio [4].

(power law of metabolism); metabolism scales with weight to the

power of L [26].

(inheritance); except for the initial population, all unicells are

progeny of other unicells with inherited properties; the

property of cell size allows mutations.

(predation advantage); predation provides a larger energy gain

per unit feeding time than does primary production; this is

balanced against fewer feeding opportunities.

(size asymmetry); if there is engulfment the ‘predator’ needs to

be larger than the ‘prey’ [27]. We require that the ratio of

predator/prey size exceeds a threshold for predation to

occur. Conversely, this means that larger size also provides

protection against predation [28].

(positional information); the simulation preserves positional

information because opportunities for predators or parasites

depend on their geographical location with respect to their

prey [15].

Additional details are in Materials and Methods. Because we are

focusing on the principles the simulations do not explicitly include

pathogens (such as viruses) or saprophytes (that break down dead

material). However, these are covered implicitly in that, for

example, cells may die at random from such things as viral

infection (random death, see Materials and Methods) and waste

products (including dead unicells) are removed from the

simulation. We test whether the above principles are sufficient to

give rise to cellular specialization, including phagocytosis. Our

unicells (which we call weebeasties) are kept as simple as possible

while adhering to the above principles.

Results

The first conclusion is that, virtually independently of the

starting conditions of the simulation, there is specialization into

smaller primary producers and larger predators that engulf smaller

cells; that is, the simulations converge to the same state from a

wide range of initial conditions (Figure 1). These four panels show

a range of starting sizes of unicells, varying from all cells being of

the same size but either larger (1a) or smaller (1b) than the final

average size. Similarly, the sizes of the initial unicells can be

selected from a distribution, either uniform (1c) or bimodal (1d).

After an initial period we find that there is no net change in the

size distribution of unicells; the results fluctuate around a dynamic

equilibrium (from a statistical viewpoint, the distribution is

ergodic). This distribution is one of two main stable states

observed in the simulation: the other being extinction when the

food supply is very low.

Figure 1 shows the total distribution and thus averages out any

local population dynamics. However, because of the limited spatial

size in the experiments, predator-prey cycles in subpopulations can

be observed in the banding pattern of lighter or darker striations.

There are phases with an increased maximum size and abundance

of the top predators. However, the largest predators can run out of

food and die, allowing the small unicells to increase in number

again. Thus the banding patterns (striations) in Figure 1 are highly

informative about the underlying processes.

We next consider a single population in more detail. Figure 2 is

a snapshot of a simulation at one point in time, and shows that size

is the major factor with regard to the ecological niche of a unicell.

The dashed line shows the relative proportion of unicells in each

size class. In this simulation, around 96% of unicells have derived

all their energy/food from primary production and these are not

shown individually on the graph. However, each unicell that has

obtained some food by predation is plotted by its volume (x-axis)

and the fraction of its energy derived from carnivory (y-axis).The

results emphasize both that most unicells are small, and that these

small cells are almost exclusively primary producers. In contrast,

the solid line shows the proportion of unicells in each size class that

have derived the majority of their energy and food from predation.

The vast majority of unicells are small; being small means a

faster replication time (food uptake-rate scales with surface area

whereas the amount of growth required prior to division scales

with volume). In this simulation, primary producers of diameter 11

replicate on average every 287 iterations, while those of size 18

replicate every 530 and those of size 24 replicate every 666

iterations, providing a clear advantage to smaller unicells in

replication rate. The increase in generation time varies with

simulation conditions but is not generally linear with cell diameter.

Under the settings illustrated, replication time tends to increase

exponentially for the smaller (primary producer) cells and then to

level off around size 20. In the present simulation (Figure 2), most

unicells greater than size 24 are carnivores. Generation time again

rises steeply for the largest unicells. However, by that point the

results become somewhat noisy because of the small number of

very large cells in the simulation.

Again, in this simulation (Figure 2), only 4% of all unicells have

consumed another unicell and only half of these (2% overall)

derive the majority of their energy from predation. The

distribution of predation versus size shows subpopulations. A

cluster of opportunistic predators resides between roughly size 20

and 25, while a cluster of specialist predators resides between size

25 and 28. Given that in this particular simulation, a cell had to be

twice the diameter of a smaller cell in order to consume it, the size

range 25–28 is the smallest that gives a fair chance of encountering

prey sufficiently small for them to engulf. There are virtually no

unicells smaller than size 11 but an abundance of potential prey

with size 12–14. As demonstrated by the green line, and although

they are a very small proportion of total cells, virtually all unicells

beyond size 33 derive the majority of their food from predation. At

this size their surface area/volume ratio is small and their rate of

food uptake across their surface is not sufficient to offset normal

loss through metabolism or ‘random death’ (at these large size the

reproduction rate of the unicells is very slow, leading to more

opportunities for an infection and/or death).

Figures 1 and 2 include the major results and lead to the

conclusion that, in principle, there is a viable niche for predators in

our simulations and consequently in any biological system that

adheres to the same basic physical and ecological principles. In

order to ensure that our results are general, and do not occur just

in a very small subset of the parameter space, we tested a wide

range of values for the parameters. Over this wide range of values,

Predators in Early Life
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Figure 1. A stable size distribution is reached from different starting points. The vertical-axis shows unicell diameter, the x-axis is time
expressed in simulation turns. The intensity of the color, ranging from dark to light red on a logarithmic scale, shows the frequencies of unicells in
each size class. Although the beginning situations (1a–1d) are very different, all 4 simulations converge to similar population dynamics. In 1a and 1b
all cells start at the same size but are larger (1a) or smaller (1b) than the final average size. In 1c and 1d the sizes of the initial unicells are selected from
either a uniform (1c) or bimodal (1d) distribution. Additional information on conditions and parameter values are described in Supplementary
Information.
doi:10.1371/journal.pone.0005507.g001

Predators in Early Life
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and after an initial phase, only three stable situations are observed:

extinction, a limited range with only primary producers, and a

population that includes both primary producers and phagocytotic

predators. In addition, a few populations continue to evolve

towards larger sizes.

The simplest conditions leading to extinction have a severe

restriction of the energy/food supply (compared to their

expenditure on metabolism) and results in starvation (see

Supplementary Figure S1). Close to the extinction/ survival

boundary, survival is reduced if the chance of dying at random

(such as from viral infection, [29]) exceeds a threshold - the

average lifespan becomes less than the average generation time.

These results are again as expected and are an important test that

the simulation leads to expected biological behavior. Similarly,

without carnivory, numbers may keep increasing in the presence

of a large food supply(see Supplementary Figure S2), or overshoot

and then stabilize when there is little food supplied (Supplemen-

tary Figure S3).

With borderline settings of the parameters that led to extinction,

only primary producers occur; the resulting population is too sparse

to support predators. Similarly, predation does not occur if it is an

unattractive strategy compared to primary production. For

example, the energy gain from a single predation event has to be

significantly larger per iteration than from primary production;

primary producers are able to spend a greater percentage of their

time feeding compared with those searching for prey. Lowering

either the sensory range of unicells, or the amount of energy they are

able to be store, also makes predation unviable. All these results are

expected and again show realistic outputs from the simulations.

Under some conditions the predator-prey cycles in Figure 1 lead

to extinction of small unicells (prey), either because they are all

eaten [29] or because of predation become susceptible to

catastrophic events [30] before the large unicells (phagocytotes)

die from starvation. We call this an arms race [31] and it occurs

when parameter settings allow predators to sustain themselves by

primary production after their prey has run out, thus preventing

regeneration of small primary producers. In figure 1b an arms race

occurs at the start of the simulation, but terminates as soon as the

predators reach a size where they cannot sustain themselves by

primary production. This arms race is not however a fundamental

issue because it can be avoided by increasing the size of the

simulation space, while keeping food density constant. However,

in practice, the computational costs become excessive. The prime

parameter that holds arms races in check is the random death

factor (which could, for example, result from viruses that are not

modeled separately). Because large unicells have a long generation

time, they are more likely to die before replication (from random

causes, such as infection) than small unicells. This suppresses large

unicell populations, allowing small unicells to re-establish.

Finally, we see evidence for frequency dependent selection/

game theory; the optimal parameter values depend on other

members of the population. For example, there is a niche available

for slightly larger primary producers around sizes 20–23 (Figure 2).

These are larger than the optimal size for primary producers, but

they have the advantage of not being engulfed by the main group

of larger cells (sizes 24–27). Although they can be eaten by the very

largest unicells, such unicells are extremely rare under the settings

of Figure 2. The very largest unicells are virtually ‘pure’ predators,

giving a three layer system of; primary producers, omnivores

(opportunistic predators that are both primary producers and

predators), and finally the specialist predators. Overall, all aspects

of the results are realistic biologically, and mean that fundamental

aspects of life history evolution are derivable from a small number

of basic principles.

Figure 2. Proportion of energy derived from predation. The dashed red line shows the relative proportion of unicells in each size class; the
large majority of unicells are in the 10–20 range. Black dots are the proportion of energy derived from predation for the ,4% of individual unicells
that have obtained some food from predation. (Not shown separately are the vast majority of unicells, ,96%, that have derived all their energy from
primary production.) The green solid line is the fraction of unicells in each size class that have derived the majority of their energy from predation.
Only the rare cells larger than about 24 units obtain most of their energy from predation. Parameters and conditions are described in Supplementary
Information, table 2.
doi:10.1371/journal.pone.0005507.g002
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Discussion

Our primary conclusion is that specialization into predators and

primary producers (whatever their energy source) is expected to

arise in simple biological systems. Given the wide range of initial

conditions and parameter settings that lead to predation, our

results are consistent with the expectation that the ability to gain

energy via engulfment of other unicells evolved early during

evolution. Thus from first principles, it is unlikely that there ever

was an extended period (,1–3 billion years) when there were no

predators that lived by engulfing smaller cells; that is, there was no

‘Garden of Eden’. This is of course not ‘proof’ that predation

existed very early in evolution; rather we see the results as

supporting the expectation that ecological specialization would

occur, given these fundamental principles. From our results here

we cannot even exclude that phagocytotic predators existed even

before DNA was the primary coding macromolecules[37].

Our simulations were kept simple in that there was little

opportunity for evolving specializations that would either enhance

defenses against predators, and/or increase the ability of predators

to improve their detection and capture of prey. Such adaptations

would arise secondarily and would reinforce that the early niche of

a lineage (the evolutionary-stable niche-discontinuity concept

[ESND] from Poole et al. [32]). Such potential reinforcement of

lineages only strengthens the conclusion that differentiation of

ecological roles is likely to be easier at early stages of evolution,

before there are high levels of cell specialization. From

evolutionary principles, we would not expect small primary

producers to develop complex defenses against predation - until

predation actually existed.

Although this study was designed specifically for the question of

the origin of phagocytotic predators, it is interesting that the results

have implication for other questions, including a simple version of

Cope’s Rule [33,34]. This describes a tendency for some groups to

become larger through time, which we see several times on Figure 1

with runaway natural selection for large size. The very large cells

eventually go extinct, to be replaced by a new series of cells that

follow the similar increase in size; again eventually going extinct.

The interesting feature here is that the very large members of a

biota do not appear to be the progenitors for successor groups of

large plants or animals. Throughout evolution, large trees have

occurred in Bennettitales, Selaginellales, conifers, various dicoty-

ledonous families, etc. But new large-bodied plants arise from

smaller ones, not from the giant species of the past. Similarly, with

various dinosaur groups and then large mammals, each has arisen

from smaller-sized groups. Again, examining Figure 1 shows a

similar pattern for small size; there appear to be a succession of

groups of sizes leading to very small cells. However, additional

work is required to see whether there is any reversal back to larger

sizes. The important point in the present context is that relevant

biological phenomena are observed additional to those for which

the study was designed. Many basic biological principles appear to

arise from simple basic physical principles.

Returning to the predators, we do not specify here whether such

early predators were prokaryotes, or an early lineage of

eukaryotes/protoeukaryotes (which we call karyotes, [35]) because

we wish to focus on the general principles, not details of cellular

organization. (We use ‘prokaryote’ for any non-eukaryotic cell,

without phylogenetic implication). Bacteria and archaea have

successfully adapted to a very wide range of energy sources [36]

but are not known to have a role as predators in the sense of

engulfing smaller cells by phagocytosis, that is the sense in which

we use predation here. If there was an early predatory prokaryote

group they must have gone extinct with the rise of eukaryotes.

However, it is not the place here to decide between these two

alternatives. Although we favor the early predators being karyotes,

and call it the ABC theory (Archaea, Bacteria and Carnivores), it is

sufficient at present to establish that basic ecological principles

would have been as relevant in early evolution as in the present.

Our results are certainly consistent with some recent models that

put eukaryotes very early [37,38]. If the early predators (Figs 1 and

2) did eventually become the eukaryote lineage then it would mean

that some features of the eukaryote cell, such as the cascade of

RNA molecules processing other RNA molecules [35,39,40],

would be very old and would help illustrate the later stages of

evolution from the RNA-world to modern biochemistry. But from

the present results we certainly cannot exclude a long-lost group of

bacteria or archaea that were eventually supplanted by eukaryotes.

Conclusions
Our primary conclusion, given the wide range of initial

conditions and parameter settings that lead to predation, is that

differentiation into predators and primary producers is likely to

arise early in evolution. From first principles, it is unlikely that

there ever was an extended period (,1–3 billion years) when there

were no phagocytotic predators that lived by engulfing smaller

cells; that is, there was no ‘Garden of Eden’. Our results are a

sharp reminder not to ignore fundamental physical and ecological

principles in evolution. We know that, on an evolutionary

timescale in the modern world, there are transitions between

carnivory and herbivory (giant pandas, for example) and the

reverse, there are transitions from photosynthetic organisms to

heterotrophic parasites (apicomplexans, such as Plasmodium), and

so on. For prokaryotes the ability to use all known classes of

available chemical energy sources can be called the ‘law of

prokaryote infallibility’ [36]. Certainly, the more specialized a

lineage becomes, the harder it may be to change its basic life

history parameters, but this only reinforces the conclusion that

changes were likely easier earlier in evolution. That a very early

population could differentiate into primary producers and

predators will not be a surprise to ecologists; though it may be

to molecular biologists. It is important in molecular evolution that

our theories are consistent with basic physical, thermodynamic

and ecological knowledge. We do not expect that there was any

extended period where normal biological principles did not apply;

a time with no predators that engulfed smaller cells.

Materials and Methods

We simulate the ecology of simple unicells at an undefined

evolutionary stage who are able to interact only with their local

environment. All unicells use the same algorithms for all their

functions, and inherit the property of size from their parents. The

simulation is turn-based, allowing each unicell to perform one of

the following actions each iteration: feeding, division, or

movement (figure 3). The simulation space, which is a two-

dimensional continuous grid upon which three-dimensional cells

live, contains food from which unicells can derive both energy and

the basic chemicals required for growth. The food is introduced

into the simulation at a constant rate and a portion of the food

decays every turn. Unicells can feed on this food but also on other

unicells (provided these other unicells are small enough to be

engulfed).

Feeding results in energy gain. Unicells select the best energy

source within the space they occupy. If this energy source is food,

the amount that can be eaten is dependent on the surface area of

the unicell, which is assumed to be the second power of the

unicell’s size. If this energy source is another (smaller) unicell then

Predators in Early Life
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it is entirely engulfed. If no suitable energy source is available

unicells will perceive whether an energy source is available within

their sensory radius and move towards it, which costs energy. If no

suitable energy source is perceived then unicells (weebeasties) will

move in a random direction.

A limited amount of the energy obtained by feeding can be

stored by the unicell. If more energy is obtained than can be stored

the excess is converted into biomass. In each turn energy is lost

from the store due to metabolism. When a unicell has grown

enough, which on average means that it has grown to twice its

original size (although variation occurs), it divides, producing two

offspring of half the parent’s weight (with a chance of producing an

unequal division). The offspring therefore have approximately the

same size as their parent started with; meaning size is an inherited

property.

There are three causes of death: being eaten, starving due to

their energy store reaching zero, and dying from natural causes (a

random chance every turn, which includes viral infection). The

corpse of the unicell is removed from the simulation in case of the

latter two causes of death, but could be modeled by saprophytes.

The program is written in C++, and is available from the first

author (Silvester.deNooijer@wur.nl). Table 1 reports some effects

of changing single parameters while keeping the others standard.

In the following section a description of the parameters is given.

Food density
In general, scaling the dimensions of the simulation space up or

down does not affect the ecology as long as food density is not

changed. The numbers of unicells sustained then scales linearly

with the surface size of the space. Large simulations are able to

Figure 3. In each turn of the simulation all unicells are treated in a fixed order. If the unicell starves or dies due to the chance of random
death it is removed from the simulation (though this could be modeled by saprophytes). If its energy store is sufficient then the unicell divides,
creating two new unicells. These child unicells are usually half the size of their parent but there is a small chance of uneven division. New unicells
cannot take any action in the first turn they are created and a unicell that divides can take no further action that turn. If a unicell doesn’t have
sufficient energy to divide it looks for food. First it considers what the best source of food is within its physical radius, if there is no suitable source
then it will move towards the best source in its sensory radius.
doi:10.1371/journal.pone.0005507.g003
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sustain larger carnivores than smaller simulations and in very small

simulations with low food density there may not be enough space

to support a viable population of unicells.

Lowering food density benefits primary producers and inhibits

carnivores because primary producers will be more spread out

spatially, and therefore carnivores have more trouble finding their

prey. As a result, smaller unicells will be able to survive whereas

large carnivores are unable to find sufficient prey, lowering the

average size and the prey/predator ratio. Increasing food density

has inverse effects, but if the food density is further increased in the

standard situation, the number of primary producers increases

only slightly. In this situation the number of primary producers is

limited by predation and the excess food will decay instead of

being eaten.

The amount of food available to unicells at any given moment

can be adjusted in two ways: by increasing the amount of food

introduced per turn or by decreasing the amount of food decay.

The effect of these is in general the same; however, increasing the

decay rate has less effect because unicells will always be able to eat

some food before it decays, whereas they never can eat food that

has not been introduced.

Detection range
Even with no perception range unicells will still be able to

interact with anything they touch. Randomly moving around until

reaching a new food source is a viable strategy for primary

producers due to the relative abundance of food in the standard

situation. Carnivores need to be able to sense their prey from a

distance, their chance of stumbling into prey is too low. Therefore

in simulations with low or no detection range, a stable primary

producer population will be observed. In the standard situation the

detection range of a unicell is five times its radius, but changing the

detection range to only 2 times the unicell radius has no effect on

the global ecology. However, in simulations where food and

therefore primary producer density is lower, a larger detection

range is required for carnivore viability.

Carnivorism efficiency
The actual value of carnivorism efficiency does not seem to be a

major factor in the overall behavior of the unicell ecology. Rather,

it is the ratio between primary production efficiency and

carnivorism activity that matters. A high ratio means carnivorism

leads to a higher energy gain per turn, and vice versa. If the ratio

becomes low only primary producers and opportunistic carnivores

will be found. If carnivorism results in less gain than primary

production, no carnivorism will occur anymore.

Engulfment ratio
If the diameter ratio difference required for successful

carnivorism is too high, no carnivorism will occur anymore

because the gains from carnivorism will become too low. However,

slight changes to the engulfment ratio within the range that allows

carnivorism will have a huge effect on the ecology, because

carnivore energy gain scales with the third power of the prey/

predator size ratio. Lower engulfment ratios will allow smaller

carnivores to exist. Engulfment ratios of less than 1 will cause the

carnivores to be the smallest unicells, but these values are not

biologically realistic (the unicells become parasites, not predators).

In general any engulfment ratio between 1.5 and 2.5 will result in

omnivores and specialist carnivores.

Carnivorism success threshold
This parameter influences the decision algorithms of the unicells

by defining when a unicell is successful at carnivorism. A unicell

which has derived a bigger proportion of its energy by carnivorism

than the ‘carnivorism success threshold’ will not feed through

primary production if there is no prey near it. Instead, it will move

around randomly until it finds prey, or until it runs low on energy.

The actual setting of this parameter has little effect on the ecology

in the standard situation: only values above 0.8 or below 0.1 lead

to reduced carnivore numbers.

Movement cost
The metabolic cost of movement does not seem to have much

effect at all on the system. Only when it becomes very high (in the

order of magnitude of the size of the unicell’s energy store) will it

affect the viability of carnivores. Primary producers are not

affected unless the value is bigger than their energy store size, in

which case all unicells that move, die.

Storage size
Storage size is defined as a certain number of metabolism turns

for each unicell. In the standard situation, primary producers do

not need any storage space at all. They can live and reproduce

Table 1. Some standard values for parameters, and their effects.

Parameter description
Standard
parameter value Extinction

Only primary
producers

Primary producers &
specialized carnivores

Arms race out
of control

Food increase per surface unit per turn 0.125 0–0.02 0.02–0.05 .0.05 —

Fraction of food decayed per turn 0.0005 .0.06 ,0.06, .0.03 ,0.03 —

Prey assembly efficiency 1.0 — 0–0.1 0.1–1.0 —

Food assembly efficiency 0.02 0–0.012 0.012–0.015 0.015–0.025 .0.03

Diameter ratio required for carnivorism 2.0 — .3.5 ,3.5 —

Multiplier to metabolism in case of movement 2.0 — .20.0 ,20.0 —

Food store size 50.0 0 .0–5 .5 —

Weight dependent metabolism factor 0.0001 .0.0085 — ,0.0085 —

Random death chance (per turn) 0.001 .0.002 ,0.002, .0.0016 ,0.0016, .0.0007 ,0.0007

Note: The standard values give rise to a stable cohabitation of primary producers and carnivores. The last four columns show what value ranges for each parameter lead
to the four distinctive behaviors (given that the other parameters are kept at standard values). The last column only shows those cases in which arms races lead to a
unicell population too small in numbers to support carnivores.
doi:10.1371/journal.pone.0005507.t001
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from the energy they obtain every turn. They will die as soon as all

the food in their vicinity has been eaten, but by then they will have

divided multiple times and because division moves the offspring

unicells away from their division site, some offspring will have

ended up in new food-rich areas. Nevertheless, primary producer

viability increases strongly if they have a food store which is able to

store just a couple of iterations worth of energy. In simulations in

which food is much sparser and primary producers need to move,

a food store is necessary to prevent extinction.

Carnivores cannot survive without a minimal storage space of 5,

and their efficiency increases with larger storage sizes. In order to

have a maximum amount of carnivores, the storage space has to

be able to contain the energy for at least 50 turns of metabolism.

Higher values had no detectable effect.

Size mutation
This parameter determines what proportion of divisions will be

unequal. This introduces unicells into the simulation with a wider

size range than possible through equal division, and therefore

allows a population which has evolved to very large sizes to

recover. The value of this parameter has been kept low because

high values result in many unviable unicells.

Base metabolism
This factor is necessary to prevent unicells from evolving

towards infinitely small sizes. Without it, smaller unicell sizes lead

to higher surface to volume ratios and therefore to extremely fast

replication, reaching the maximum replication rate of once every

turn and thereby escaping predation. Whether the escape is

permanent or whether predators will catch up eventually is an

open question, but the exponential growth of small primary

producers presents computational problems. However, regardless

of this theoretical question, evolution towards infinitely small cell

sizes is not realistic. Rather than posing a minimum size, we have

included a metabolism cost necessary for vital functions such as

maintenance of the genetic material, which all unicells have to

meet irrespective of size. To compensate this fixed cost a unicell

needs a certain energy influx, which can only be achieved by

unicells with a certain size. Thus base metabolism functions as a

lower limit on size. For unicells beyond this size, base metabolism

plays only a minor role. Any base metabolism that is larger than

the metabolism factor has the desired effect because arms races

will dominate as soon as infinitely small size is prevented by any

significant base metabolism value. Nevertheless, in the standard

situation a larger base metabolism of 0.05 is used to speed up

computations by preventing large numbers of small unicells.

Metabolism factor
The metabolism factor is related to the above Base metabolism

factor, and is weight-dependent. If set too high, extinction occurs

because the unicells cannot consume enough food to compensate

their metabolism. On the low end this factor has little effect on the

system. Even if set to 0 the global ecology doesn’t change because

random death will eventually kill all unicells. Related are the ‘food

assembly efficiency’ and ‘prey assembly efficiency’ (Tables 1 and

2). The former is the proportion of biomass consumed that is

actually converted into energy for primary production and the

latter the equivalent for and predation (where it it determines how

much energy is lost in predator/prey interactions).

‘‘Random death’’
There are several biological interpretations of ‘random death’.

Death could be accidental, but as mentioned in the main text the

simplest interpretation is succumbing to infection from viral-like

particles that are, for example, known to be present at high

concentrations in the marine environment. Random death is the

Table 2. The parameter values for figures 1 and 2.

Parameter values Standard situation Figure 1 Figure 2

Dimensions 100061000 10000610000 200062000

Initial food per surface unit per turn 0.0125 0.005 0.0125

Food increase per surface unit per turn 0.000625 0.000025 0.000625

Fraction of food decayed per turn 0.0005 0.00025 0.0005

Initial unicell number 1000 1000 1000

Initial unicell size 15 15 Various distributions (see figure and
figure caption)

Food store size 50 50 50

Initial food store contents 5 5 20

Food assembly efficiency 0.02 0.02 0.02

Prey assembly efficiency 1.0 1.0 1.0

Diameter ratio required for carnivorism 2.0 2.0 1.9

Base metabolism 0.05 0.05 0.05

Weight dependent metabolism factor 0.0001 0.0001 0.0001

Carnivorism success factor 0.5 0.5 0.5

Random death chance (per turn) 0.001 0.001 0.001

Sensory range factor 5 5 5

Multiplier to metabolism in case of movement 2 2 2

Unequal division chance 0.05 0.05 0.05

Degree of inequality parameter 2 2 2

doi:10.1371/journal.pone.0005507.t002
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prime cause of death for large unicells, which escape predation

because of their large size. While they get enough energy to

prevent starvation, they grow extremely slowly if relying solely on

primary production, reaching division size only after thousands of

simulation steps. Without other factors, unicells of this size will

accumulate in the simulation and will eventually drive all the other

unicells to extinction through predation. To simulate natural death

causes for unicells, a random death cause is introduced which

effectively kills these accumulated unicells while having lesser

effects on the smaller, faster replicating unicells much (because

these smaller cells replicate multiple times before succumbing to

random death). Some other combinations of factors are shown in

Supplementary Information File ‘Text S1’.

Supporting Information

Figure S1 Development of total number of unicells in time in

case of no food being added (standard conditions as in Table S1,

but with food addition set to 0). After 40 simulation turns, the

initial food provided starts to run out and the population declines

following an S-shaped curve, reaching extinction after 142 turns.

Found at: doi:10.1371/journal.pone.0005507.s001 (0.66 MB TIF)

Figure S2 Development of total number of unicells without

predatory carnivory. There is an exponential growth curve after

an initial lag phase during which the initial unicell population

evolves to smaller size (at which replication is much faster).

Parameters are as in standard situation, except for unicell

assimilation efficiency, which is set to 0. This ensures carnivorism

is never an attractive strategy compared to primary production,

and is thus never pursued. The initial amount of food and the

amount of food added per generation are set 10 times higher than

in the standard situation, while only 100 initial unicells are

provided.

Found at: doi:10.1371/journal.pone.0005507.s002 (0.66 MB TIF)

Figure S3 Development of total number of unicells with limited

food supply and no carnivory. This shows that exponential growth

stops after a while, ending with an overshoot and then reaching a

stationary distribution with stochastic variations. Conditions are

the same as in Figure 2, but the amount of food added is according

to the standard situation of table S2 (it is therefore only 10% of

that in figure S2).

Found at: doi:10.1371/journal.pone.0005507.s003 (0.66 MB TIF)

Text S1

Found at: doi:10.1371/journal.pone.0005507.s004 (0.03 MB

DOC)
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