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Abstract

Background: Physiological studies of perfectly still observers have shown interesting correlations between increasing
effortfulness of observed actions and increases in heart and respiration rates. Not much is known about the cortical
response induced by observing effortful actions. The aim of this study was to investigate the time course and neural
correlates of perception of implied motion, by presenting 260 pictures of human actions differing in degrees of dynamism
and muscular exertion. ERPs were recorded from 128 sites in young male and female adults engaged in a secondary
perceptual task.

Principal Findings: Our results indicate that even when the stimulus shows no explicit motion, observation of static
photographs of human actions with implied motion produces a clear increase in cortical activation, manifest in a long-
lasting positivity (LP) between 350–600 ms that is much greater to dynamic than less dynamic actions, especially in men. A
swLORETA linear inverse solution computed on the dynamic-minus-static difference wave in the time window 380–430 ms
showed that a series of regions was activated, including the right V5/MT, left EBA, left STS (BA38), left premotor (BA6) and
motor (BA4) areas, cingulate and IF cortex.

Conclusions and Significance: Overall, the data suggest that corresponding mirror neurons respond more strongly to
implied dynamic than to less dynamic actions. The sex difference might be partially cultural and reflect a preference of
young adult males for highly dynamic actions depicting intense muscular activity, or a sporty context.
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Introduction

It is known that when actions by other individuals are observed,

the somatosensory, motor and premotor cortices of the viewer

resonate by activating a neural population mirroring the perceived

actions [1–3]. In particular, metabolic activity is enhanced in

response to human motion, reflecting somatotopic organization, in

the premotor and parietal areas [4], the superior temporal cortex

[5], the extra-striate (BA19/37), inferior parietal and cingulate

cortex [6]. Recently, Gazzola and Keysers [7] provided indisput-

able evidence that observation of action activates not only the

ventral premotor (BA6/44) and inferior parietal cortices, where

mirror neurons have been found in monkeys, but also the dorsal

premotor, supplementary motor, middle cingulate, somatosensory

superior parietal, middle temporal cortices and the cerebellum.

Many theories have suggested a possible role for mirror neurons in

understanding the meaning and intentions of observed actions,

learning by imitation [8], feeling empathy [9], formation of a

‘theory of mind’, and even the development of language [10].

Notwithstanding they have been widely documented in macaque

monkey, mirror neurons research in humans is more problematic

since assessing neural selectivity using non-invasive techniques is

rather difficult [11]. The protocols used usually involve passive

osservation vs. rest or execution vs. observation of movements,

which sometimes is problematic since there are many other

neurons (in addition to mirror neurons) in diverse cortical areas

that increase their responses in a non selective manner during

these tasks. The development of new experimental protocols will

help increase our understanding of the role of the mirror system in

the human mind.

In an electrophysiological study [12], EEGs were recorded

while the participants observed human or non-biological move-

ments. The results showed significantly higher activation in the

primary motor and premotor cortex and supplementary motor

area as well as the posterior parietal cortices during observation of

biological movements, consistent with the mirror properties of

cortical motor neurons.

Other studies have demonstrated that motor and premotor

mirror neurons fire in response not only to viewing actual dynamic

human actions [4] but also to dynamic information from static

pictures of individuals captured in the midst of motion, i.e. so-

called implicit motion [13].

So far, investigations have involved comparisons of the

perception of dynamic actions vs. static bodies, or biological vs.
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non-biological movements. In the light of the available literature we

wished to investigate the neural processing of implicit human motion

further by recording brain potentials evoked by observing more or

less effortful actions (e.g., jumping vs. washing hands), which are

correlated with different degrees of muscular tension in the agents.

In this regard, a physiological study of perfectly still observers

[14] has shown an interesting correlation between greater

effortfulness of observed actions (which included weight-lifting,

running, walking at increasing weight or speed) and increased

respiration rate. In another study [15], mental simulation of the

motor action of running on a treadmill at increasing speed

provoked an increase in heart rate as well as changes in respiratory

parameters. These changes were proportional to the degree of

simulated effort. This result was replicated in a further experiment

[16] that involved pedalling against a load at an increasing rate:

the heart and respiratory rates increased with the pedalling rate.

This facilitation may represent the neural basis for important

functions such as imitation or learning by observation.

Overall, these data suggest that the perceived effortfulness of

visually presented actions affects the autonomic response by

increasing the heart and respiratory rates as a function of the

perceived muscular effort. While little is known about the

concomitant response of the central nervous system and related

brain structures, it may be relevant that mental simulation of

actions in perfectly still persons has been reported to activate

central motor structures, including the lateral cerebellum, basal

ganglia, premotor cortex and posterior parietal cortex [17–19].

The overall aim of this study was to investigate the time course

and neural correlates of implicit motion perception, by presenting

human actions differing in degree of dynamism and muscular

exertion. We hypothesized that the contrast between static and

dynamic actions and their neural processing might shed some light

on the neural processing of implicit motion perception and action

representation. For this purpose, 260 static pictures of women and

men engaged in simple dynamic and almost static actions (see

some examples in Fig. 1) were presented to right-handed university

students, who did not practise sporting disciplines at competitive

levels, while they were engaged in a secondary perceptual task.

Results

Fig. 2 shows the grand average ERP waveforms recorded at

anterior and posterior scalp sites as a function of the motor content

of the pictures.

Figure 1. Some example of stimuli belonging to the two classes of actions balanced for body part depicted and sex of agent.
doi:10.1371/journal.pone.0005389.g001

Observing Effortful Actions
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A long-lasting centro/parietal deflection or late positivity (LP) is

observable, which is much larger to dynamic than static actions

(implied motion). The effect of the action’s content was also very

conspicuous at frontal sites, where the LP was smaller. ANOVA

showed that the motor content factor was significant (F1,21 = 29.6;

p,0.000025), with a larger LP to dynamic (20.003 mV,

SD = 0.94) than static (20.93 mV, SD = 0.92) actions. The LP

was larger at centro/parietal (2.09 mV) than inferior frontal

(23.02 mV) sites, but the motor content effect was similar across

sites, as indicated by the lack of interaction of electrode6motor

content. Interestingly, the action’s content was more significant in

men (eff: 0.17; not eff.: 21.12 mV) than women (Eff.: 20.18; not

eff: 20.73 mV), as shown by the interaction of the latter

factor6sex, and by relative post-hoc comparisons. This effect is

displayed in waveforms in Fig. 3.

In order to locate the possible neural source of the motor

content and effortfulness effect for implied motion perception,

two separate swLORETA source reconstructions were per-

formed on the difference waves obtained by subtracting the

ERPs to static from those elicited by dynamic pictures in two

adjacent time windows, 380–430 and 430–480 ms. The resulting

neural activity, visible in Fig. 4, might reflect the activation of

neural circuits subserving both implicit motion perception and

action representation. Fig. 5 shows the scalp voltage topography

of the LP difference on which the source analysis was based. The

neural generators relevant to this contrast (listed in Table 1) in

the first window are the left and right MT/V5 areas (BA19), the

left inferior temporal gyrus (IT, BA37), the left premotor

(BA6) and motor (BA4) areas, the left superior temporal gyrus

(STG, BA38), the right anterior cingulate, and the left and right

middle frontal gyrus (BA47/10). The second time window

showed persistence of the greater activation of the left IT gyrus

and right STG (BA38) for processing dynamic vs. static actions,

and also of the right cingulate, left superior and right inferior

frontal gyri.

Discussion

Our results indicate that even in the absence of explicit stimulus

motion, observation of static photographs of human actions with

implied motion produces a clearly greater cortical activation than

observation of static images of less dynamic actions. ERP analysis

showed that the motor content of the photographs exerted a strong

effect, with a much larger positivity at all scalp sites (ranging from

350 to 600 ms in latency) in response to dynamic/effortful than to

less effortful (static) actions. Since the pictures were balanced for

other types of perceptual parameters except the degree of implicit

biological motion represented, and the observers were engaged in

a secondary target detection task, the data suggest a strong effect of

implied motion on the amplitude of the ERPs.

Figure 2. Grand-average ERP waveforms (N = 23) recorded over all scalp sites as a function of action type.
doi:10.1371/journal.pone.0005389.g002
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The swLORETA linear inverse solution computed on the

dynamic-minus-static difference wave in the time window

corresponding to the ascending phase of late positivity (380–

430 ms) showed activation of a series of regions belonging to the

action and motion representation systems, namely: V5/MT, EBA,

STS, premotor and motor areas, and cingulate IF cortex. In the

next temporal window (430–480) V5/MT, motor and premotor

areas were no longer activated (more to dynamic than static

pictures), while cingulate activation was increased along with the

inferior frontal and orbitofrontal cortices, possibly suggesting a

switch from a sensory-motor code for action representation to a

more abstract cognitive/affective code for representing visual

information.

The activation of motor areas when viewing implicit biological

motion is fully consistent with previous literature [13] on implied

body actions, providing evidence of the brain’s ability to extract

motion information from static images. In particular, Urgesi and

coworkers, using single-pulse transcranial magnetic stimulation,

found that the mere observation of static snapshots of hands

suggesting a pincer grip action induced greater corticospinal

excitability than observation of resting, relaxed hands, or hands

suggesting a completed action.

Figure 3. ERP waveforms recorded over left and right inferior/frontal and centro-parietal sites as a function of viewer’s sex and
action type. Motor content evidently has a greater effect in the male brain, which appeared more responsive to the representation of vibrant and
intense muscular activity.
doi:10.1371/journal.pone.0005389.g003

Observing Effortful Actions
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In our study, the greater activation of BA19 for dynamic than

for static actions indicates involvement of area V5/MT, which has

been shown to respond not only to real motion [20] but also to

implicit [21,22] and illusory [23,24] motion. Similarly, the greater

activation of the STG, cingulate and extrastriate body area (EBA)

regions for processing more dynamic actions suggests that they

have a role in biological motion and action representation, as

indicated by many studies on the mirror neuron system (MNS) in

humans [25–28].

The EBA, located in the lateral occipitotemporal cortex (BA37),

was first reported to respond selectively to visual images of human

bodies or body parts [29]. Later it was shown that the EBA

Figure 4. LORETA inverse solution displaying the neural generators of the LP effect related to action dynamism. LORETA was
computed on the difference wave obtained by subtracting ERPs to static actions from ERP to dynamic actions in the time window 380–430 ms,
corresponding to the ascending phase of the LP.
doi:10.1371/journal.pone.0005389.g004
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responds not only during the perception of other people’s body

parts, but also during goal-directed movements of the observer’s

body parts [26]. fMRI studies using point-light animations of

biological motion showed that viewing biological motion selec-

tively activates the posterior superior temporal sulcus (STSp)

[27,28]. The role of the EBA in the perception of body motion is

not really clear, since for example in one of these studies [28] it

was found that BOLD responses to whole bodies in motion and to

images of stationary, headless bodies were equivalent in the EBA

but not STS regions, which were selectively driven by the

dynamics of the human form.

In our study, the finding of brain regions devoted to motion and

action processing supports the hypothesis that implied motion was

the crucial factor in determining a difference in brain activation

between the two conditions. However, it cannot be excluded that

other possible confounding factors such as attraction, emotional

valence, preference and interest might have contributed to

determine a greater amplitude of LP to dynamic vs. static pictures,

or to induce specific sex differences. At this regard, two additional

LORETAs performed separately in women and men relative

Tailarach coordinates of significant activations are reported as

Supplementary material in Fig. S1 and Table S1. Overall, the

results suggest that men exert a higher degree of neuronal mirror

activity to movement related pictures (either for evolutionary and/

or cultural reasons), whereas women showed a strong visual

interest for all human figures [30].

Overall, the present electrophysiological and swLORETA

source reconstruction findings provide evidence of greater

activation of the EBA, V5/MT, STG (BA38), motor (BA4) and

premotor (BA 6) areas in response to effortful (dynamic) than static

Figure 5. Top view of isocontour topographic voltage map relative to the difference wave dynamic – static in the 380–430 ms time
window.
doi:10.1371/journal.pone.0005389.g005
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actions, thus suggesting a stronger response of the corresponding

mirror neurons to implicit motion [13]. This pattern of results may

provide the cortical counterpart to the autonomic response

described in previous physiological literature [14–16,19], suggest-

ing an interesting correlation in perfectly still observers between

greater effortfulness of observed actions and increased respiration

and heart rates.

The sex difference in cortical sensitivity to dynamic actions,

consisting in a finer discriminative response of the LP in males

than females, might possibly be ascribed to a difference of cultural

origin (but probably not entirely). In any case, it might reflect a

men preference for highly dynamic actions depicting intense

muscular activity, or a sporty context.

Materials and Methods

Participants
Twenty-three healthy right-handed Italian University students

(12 males and 11 females) were recruited for this experiment.

Their ages ranged from 20 to 35 years (mean = 24.79; DS = 3.15).

All had normal or corrected-to-normal vision and reported no

history of neurological illness or drug abuse. None of the

participants practised a sporting discipline at competitive level

(except for one girl who had practised agonistic swimming at an

earlier age). Many of the subjects (with no notable sex difference)

practised sporting activities (volleyball, soccer, swimming, dancing)

once or twice a week to keep fit. Experiments were conducted in

accordance with the Declaration of Helsinki and with the

understanding and the written consent of each participant.

Stimuli
Two hundred and sixty ecological colour pictures representing

persons differing in number, age and gender, engaged in relatively

static (not effortful) or dynamic (effortful) actions (see some

examples in Fig. 1), were presented in the central visual field of

a PC screen, randomly mixed with 44 neutral scenarios lacking

visible people.

The pictures were balanced across classes for gender (males,

females), age (children, adults), number of persons (one, more than

one), body parts depicted (full-length, half-length, close-up),

picture size (11u279530 in length and 8u359550 in height) and

average luminance (143.66 Footlambert). Stimuli were presented

randomly mixed for 1500 ms with an ISI of 1800–1900 ms on a

grey background.

Effortful actions included pictures of persons engaged in rather

dynamic actions such as running, jumping, exercising, shovelling

snow, pulling, pushing or carrying something heavy. Less

effortful actions portrayed persons engaged in relatively less

muscularly fatiguing activities such as reading, painting, having a

bath, eating, doing manual work while seated, speaking on the

phone, etc.

Pictures were selected according to the criterion that they

belonged to the typical human repertoire, and categorized by

three independent judges on the basis of the dynamicity of implied

motion as: 1) Static if the body was basically still except of some

not effortful arm movement, and 2) Dynamic if the body

(including legs) was in motion, and the action was effortful

showing muscular tension. Slides characterized by an intermediate

level of action dynamicity were discarded.

Procedure
The participants, seated comfortably in a dimly lit, electrically

and acoustically shielded room, faced a window behind which a

high resolution VGA computer screen was positioned 80 cm from

their eyes. A small bright dot (1 mm in size) located at the centre of

the screen served as a fixation point to minimize eye movements.

The subjects were instructed to fixate the centre of the screen and

to avoid any eye or body movements during the recording session.

Table 1. Tailarach coordinates corresponding to the intracranial generators explaining the difference voltages related to effortful/
dynamic minus less effortful actions in the 380–430 and 430–480 ms time windows, according to swLORETA (ASA) [31]; grid
spacing = 5 mm, estimated SNR = 3.

380–430 ms

Magnit T-x [mm] T-y [mm] T-z [mm] H Lobe Area BA

5.19 248.5 276.2 211.7 LH Temp Fusiform gyrus 19

6.53 50.8 267.1 23.5 RH Temp Inferior Temporal gyrus 19

5.05 258.5 255.9 210.2 LH Temp Inferior Temporal gyrus 37

2.54 228.5 214.4 45.5 LH Front Precentral gyrus 6

2.18 238.5 2.4 29.4 LH Front Precentral gyrus 4

2.84 248.5 17.2 211.9 LH Temp Superior Temporal gyrus 38

2.42 11.3 35.3 5.3 RH Limbic Anterior Cingulate 24

2.80 248.5 36.3 23 LH Front Middle Frontal gyrus 47

3.38 40.9 46.3 22.3 RH Front Middle Frontal gyrus 10

430–480 ms

7.67 50.8 257.9 5.6 RH Temp Middle Temporal gyrus 21

7.61 258.5 255.9 210.2 LH Temp Inferior Temporal gyrus 37

5.84 11.3 240.6 34 RH Limbic Cingulate gyrus 31

3.80 238.5 46.3 22.3 LH Front Inferior Frontal gyrus 10

3.65 21.2 56.3 21.6 RH Front Superior Frontal gyrus 10

2.61 50.8 17.2 211.9 RH Temp Superior Temporal gyrus 37

doi:10.1371/journal.pone.0005389.t001
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The task consisted in signalling the rare presentation of a natural

landscape without visible humans (44 in all) by pressing a button as

accurately and rapidly as possible with the index finger of the left

or right hand. The two hands were used alternately during the

recording session, and the hand and sequence order were

counterbalanced across subjects.

EEG recording and analysis
The EEG was continuously recorded from 128 scalp sites at a

sampling rate of 512 Hz. Horizontal and vertical eye movements

were also recorded. Linked ears served as the reference lead. The

EEG and electro-oculogram (EOG) were amplified with a half-

amplitude band pass of 0.016–100 Hz. Electrode impedance was

kept below 5 kV. The artefact rejection criterion was peak-to-peak

amplitude exceeding 50 mV, and the rejection rate was ,5%.

ERPs were averaged off-line from 2100 ms before to 1000 ms

after stimulus onset.

The mean amplitude of late positivity was measured at

centroparietal sites (CP3 e CP4) and frontal sites (F7, F8) in the

time window 380–480 ms.

ERP data were subjected to multifactorial repeated-measures

ANOVA with one between-groups and three within-group factors

of variability. These latter factors were the motor content of the

action (dynamic, static), electrode (frontal, centro/parietal) and

hemisphere (left, right). Multiple comparisons of means were

performed by post-hoc Tukey tests. The between-groups factor

was the sex of the participants (men, women).

Supporting Information

Table S1

Found at: doi:10.1371/journal.pone.0005389.s001 (0.05 MB

DOC)

Figure S1 Sex differences: LORETA inverse solution displaying

the neural generators of the LP effect related to action dynamism.

LORETA was computed on the difference wave obtained by

subtracting ERPs to static actions from ERP to dynamic actions in

the time window 380–430 ms, separately for women (left) and men

(right).

Found at: doi:10.1371/journal.pone.0005389.s002 (3.53 MB TIF)
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