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Abstract

Background: Hemoglobin (Hb) is the iron-containing oxygen transport protein present in the red blood cells of vertebrates.
Ancient DNA and forensic scientists are particularly interested in Hb reactions in the dry state because both regularly
encounter aged, dried bloodstains. The DNA in such stains may be oxidatively damaged and, in theory, may be deteriorated
by the presence of Hb. To understand the nature of the oxidative systems potentially available to degrade DNA in the
presence of dried Hb, we need to determine what molecular species Hb forms over time. These species will determine what
type of iron (i.e. Fe2+/Fe3+/Fe4+) is available to participate in further chemical reactions. The availability of ‘‘free’’ iron will
affect the ability of the system to undergo Fenton-type reactions which generate the highly reactive hydroxyl radical (OHN).
The OHN can directly damage DNA.

Methodology/Principal Findings: Oxygenated Hb (oxyHb) converts over time to oxidized Hb (metHb), but this happens
more quickly in the dry state than in the hydrated state, as shown by monitoring stabilized oxyHb. In addition, dry state
oxyHb converts into at least one other unknown species other than metHb. Although ‘‘free’’ iron was detectable as both
Fe2+ and Fe3+ in dry and hydrated oxyHb and metHb, the amount of ions detected did not increase over time. There was no
evidence that Hb becomes more prone to generating OHN as it ages in either the hydrated or dry states.

Conclusions: The Hb molecule in the dried state undergoes oxidative changes and releases reactive Fe(II) cations. These
changes, however, do not appear to increase the ability of Hb to act as a more aggressive Fenton reagent over time.
Nevertheless, the presence of Hb in the vicinity of DNA in dried bloodstains creates the opportunity for OHN-induced
oxidative damage to the deoxyribose sugar and the DNA nucleobases.
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Introduction

Hemoglobin (Hb) is the iron-containing oxygen transport

protein present in the red blood cells of vertebrates (Hemoglobin

A for humans). Oxygenated Hb (oxyHb) is a low-spin ferrous

compound that gives blood its characteristic red color. OxyHb is

easily oxidized under the influence of external oxidants to

methemoglobin (metHb), which is a high-spin ferric protein that

can no longer bind elemental oxygen. Over time, the high-spin

ferric compound can convert to various low-spin ferric forms

called hemichromes (scheme 1). Hemichromes are formed through

changes of protein conformation so that atoms endogenous to the

protein become bonded to the iron as the sixth ligand. Because Hb

is a major component of blood (a body fluid often subjected to

forensic DNA analysis), it is important to understand molecular

transformations of the Hb molecule that could lead to possible

oxidative damage to the other components of a blood stain,

particularly DNA.

Scheme 1
In this notation, the superscript denotes the number of d

electrons in the iron atom and the subscript is the total spin of the

iron atom.

Hb d6
2

� �
zO2?oxy Hb d6

0

� �
O2?

metHb d5
5=2

� �
{O2?hemichrome d5

1=2

� �

For oxidative damage to occur, oxidizing agents must be

available that can interact with biomolecules such as DNA. One

of the most damaging of these agents is the hydroxyl radical (OHN),
which can be produced during a biological Fenton type reaction

catalyzed most likely by ‘free’ iron [1–4]. Native Hb contains four

heme groups, each of which contains an iron center. It is unlikely

that the iron complexed with Hb itself produces OHN capable of
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interacting with other biomolecules; such radicals produced at the

iron center would have to travel through the protein into free

solution to react. Thus, the formation of OHN in this manner would

most likely lead to oxidative damage of the parent Hb molecule.

To our knowledge, there have been no previous studies

conducted on how Hb in the dried state affects the oxidation of

other cellular components, specifically DNA. It can be hypothe-

sized, based on previous research on the destructive role of ionic

iron in vivo, that oxidative damage could be exacerbated by the

presence of Hb and its potential release of ‘free’ iron. The

handling of ‘free’ iron inside the living body is carefully regulated

via metabolic pathways which help keep the formation of cytotoxic

OHN under control [5,6]. An overload of ionic iron is correlated

with DNA oxidative damage.[7] These metabolic pathways would

not be functional in dried bloodstains. However, in the forensic

context some damage to DNA in bloodstains is expected and is

likely to be more pronounced in older samples.[8,9] Upon

recovery of a dried bloodstain from a crime scene, the potential

role that Hb can play in subsequent damage to the sample can be

inferred by the present study.

In this work, we have sought to characterize the molecular

species formed by Hb maintained in the dry state at ambient

temperatures and humidity over a period of time. First we

determined the presence and/or formation of Hb isoforms

because these species will determine what type of iron (i.e. Fe2+/

Fe3+/Fe4+) is available to participate in further chemical reactions.

We also determined whether, and to what extent, free iron is

released from Hb because this together with its oxidation status

will affect the ability of the system to undergo Fenton type

reactions. Finally, the ability of Hb to inflict oxidative damage on a

deoxyribose substrate, presumably through the formation of OHN,
was measured as a function of the age of the dried Hb.

Results

Oxidation of Human Hemoglobin
The dry state Hb samples used in the initial experiments were in

their oxidized form (oxyHb) according to their measured UV spectra.

Initially, ferrous-stabilized Hb was used to measure the relative rates

of oxyHb oxidation between hydrated and dry state Hb. Without the

stabilization process, the Hb would have been primarily in the metHb

oxidized ferric form upon receipt in the lab from the commercial

vendor due to the inherent proclivity of the metalloprotein to undergo

ferrous ion oxidation over time. OxyHb samples in the dried and

hydrated states were maintained at ambient temperature

(22.060.4uC) and relative humidity (5467%) in the dark for varying

periods up to 3 months (2200 hours). Oxidation product formation

was monitored by visible region absorption spectrophotometry. The

concentrations of oxyHb, metHb, and presumed hemichrome were

measured as a function of time.

The spectra of hydrated oxyHb over time (Figure 1A)

indicated the likely presence of only two major species because

two isosbestic points at 524 nm and 590 nm were identified. The

spectra shown are an average of three separate samples incubated

over the same time period and might account for the minor

variation of spectra around the 524 nm isosbestic point. However,

to further investigate the number of Hb species formed, we

compared the rates of formation of solely metHb or the formation

of metHb and hemichromes as a second product with the rate of

degradation of oxyHb. If only two species were present (viz.

oxyHb and metHb), then oxyHb appeared to degrade at a rate of

1.5360.0461027 s21 and metHb formed at a rate of

1.1360.0761027 s21. If there were a strict one to one relationship

between reactant and product, the two rates should be the same.

However, calculation of the t-statistic indicates that the rates are

significantly different (t = 33.3) at the 95% confidence level. In

Figure 2A, the rate of oxyHb loss over time was determined

under the assumption that hemichromes were also being formed.

In this scenario, oxyHb degraded at a rate of

1.6960.0661027 s21 in the hydrated state. MetHb formed at a

rate of 1.1160.0861027 s21 and hemichrome formed at a rate of

6.2960.4061028 s21. The combined rate for both metHb and

hemichrome formation was 1.7460.0861027 s21, which should

be the same as that of oxyHb degradation if both products were

being formed. Although the t-statistic indicated that the rates were

different, the value (t = 3.35) was ten times smaller than the one

calculated without assuming the presence of product species other

than metHb. The sums of the estimated concentrations of the

reactant (oxyHb) and proposed products (metHb and hemi-

chromes) appeared to be reasonably constant over time

(Figure 1B), although a slight decrease was discernible. It is

possible that the latter observation might indicate the presence of

another minor as-yet-unidentified product.

In contrast to the hydrated state, dry state oxyHb lacked the two

isosbestic points in the time evolved-spectra (Figure 1C). Thus,

more than two species were present with the initial hypothesis being

that, like hydrated Hb, hemichromes were being formed in addition

to metHb but in larger quantities than with the hydrated samples.

This hypothesis is supported by the approximately 2-fold increased

rate of oxidation measured for dry state oxyHb

(k = 3.5860.1761027 s21) compared to the hydrated state

(Figure 2B). Although a degradation rate could be determined

for dry state oxyHb, the formation of metHb and hemichrome over

time did not appear to be a first order reaction. The sum of the three

species (i.e. the reactant, oxyHb and the products, metHb and

hemichromes) did not remain constant over time (Figure 1D) and is

consistent with the presence of a fourth species. The putative fourth

species could be a denatured Hb derivative that is not detectable by

the methods employed here. Considering the nature of the Hb

metalloprotein, other potential species that might be formed include

ferrylHb and choleglobin. FerryHb is an Fe(IV) complex formed

from ferrous hemoglobin and H2O2 whereas choleglobin is

denatured hemoglobin in which the porphyrin ring has been

hydroxylated or broken open. The ferrylHb species was ruled out

because: (a) there was no exposure to H2O2, nor were there any

environmental conditions that would lead to such exposure; and, (b)

the spectra do not show evidence of its existence, primarily by the

lack of spectral broadening where the 577 nm shoulder drops off

steeply around 585 nm. There was also no spectral evidence of the

presence of choleglobin due to the lack of increased absorption at

700 nm as is characteristic of the species [10].

After oxyHb oxidation to metHb had taken place, there was no

evidence in either hydrated or dry state for further significant

structural transformations that would cause changes in the

absorption spectrum (data not shown). After reduction with

sodium dithionite, dry state metHb and dry state oxyHb

(Figure 3A and 3B); maintained at ambient temperature and

humidity for 1000 hours were converted to Hb primarily in the

oxyHb form. Hydrated-state oxyHb and metHb samples similarly

treated were also converted to oxyHb (data not shown). The

characteristic spectrum of hemochrome was not detected in any

sample after reduction. Thus, we concluded that the formation of

hemochromes was not responsible for the additional unknown

species in degraded oxyHb.

Release of Iron Cations from Hb
Human Hb that was primarily in the form of metHb was

incubated in the dry and hydrated states over a 1000 hour time

Dry Hb: Bloodstain DNA Damage
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period, and the free iron released from the Hb was measured at

various time intervals. Fe(II) was measured directly by interaction

with ferrozine whereas Fe(II) plus Fe(III) was determined after

reduction with ascorbic acid. The amount of Fe(III) is thus

indicated by the differences in the two response curves.

Free Fe(III) was detected in both the hydrated (Figure 4A) and

dry (Figure 4B) state oxyHb samples. This was expected because

it was known that the oxyHb had oxidized into primarily metHb

at the time the measurements were performed. Though Fe(III)

appeared to be the dominant form of free iron, some Fe(II) was

present. We hypothesize that Fe(II) was released while the protein

was still in its oxyHb form, but as the protein was oxidized to

metHb, the iron that continued to be released was in the +3

oxidation state. What was surprising was that over time the Hb

samples did not continue to release free iron in either state, as is

evidenced by the lack of an increase in free iron. The dry samples

did exhibit an insignificant increase in the release of free Fe(II),

perhaps due to some configuration that the protein takes in the dry

state that leads to more favorable release of the ion during the

dehydration process. Overall, these results imply that dried

bloodstains may provide reactive free Fe(II) that can engage in a

Fenton type reaction, but that the age of a bloodstain may not be a

significant factor in its ability to do so.

Hydroxyl Radical Detection
Hb primarily in the form of metHb was incubated over time at

ambient temperature (21.960.1uC) and relative humidity

(61.361.0%). The samples were reacted with deoxyribose and

then thiobarbituric acid to detect oxidative damage to the

deoxyribose. Oxidative damage due to OHN attack of deoxyribose

was considered to have occurred if the absorption of the pink

chromogen after incubation with metHb was greater than

incubation in the absence of metHb. The peak area obtained by

measuring the spectra at 532 nm was used to determine relative

amounts of damage to each sample after blank subtraction. The

hydrated state metHb caused the most hydroxyl radical damage at

the initial time point before being left to sit in ambient conditions

and the reactivity decreased over time (Figure 5). The dry state

metHb displayed much less oxidative ability and the reactivity did

not change noticeably during the time period (Figure 5).

Discussion

The data presented in this study indicate that dry state Hb

undergoes more rapid oxidation than that in a hydrated state. In

both states, however, the resulting product is Hb in which the Fe

center has been oxidized to Fe(III). At least one other species is

Figure 1. All data comprise an average of three samples. (A) Spectra of hydrated Hb at various time periods where it is evident that the oxyHb
is oxidizing to primarily metHb. (B) Concentration of oxyHb (&), metHb ($), and hemichromes (m) from hydrated Hb incubated over a 2200 hour
time period in ambient conditions. (C) Spectra of dry Hb at various time periods where it is evident that the oxyHb is oxidizing to not only metHb, but
what is suspected to be hemichromes. (D) Concentrations of oxyHb (&), metHb ($), and hemichromes (m) from dry Hb incubated over a 2200 hour
time period in ambient conditions.
doi:10.1371/journal.pone.0005110.g001
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believed to be present as the result of the oxidation of oxyHb in

both the hydrated and dry states (particularly the dry state), but its

identity has eluded the experimental schema employed here. In

the hydrated state at neutral pH, the oxidation of oxyHb to metHb

and the reduction of metHb to oxyHb have approximately the

same rate constant [11]. However, over extended periods such as

was experienced by the samples here, this equilibrium eventually

ceases to hold and the metHb species becomes more prevalent. It

is possible that dry state oxyHb forms metHb more rapidly than

does the hydrated form due to the lack of dynamic equilibrium

that the hydrated state offers.

Formation of OHN requires the presence of iron salts,

specifically Fe(II). Other transition metals or iron-protein com-

plexes including Hb are unable to catalyze the reaction [12]. It is

believed that the most likely route for oxidative damage to DNA

caused by a Fenton type reaction involving Fe(II) is for the ferrous

ion to bind to the deoxyribose molecule with a certain affinity and

then induce site-specific damage. This hypothesis is supported by

prior studies carried out by Gutteridge [13,14] where it was noted

in such systems that the reaction of the carbohydrate with OHN
was poorly inhibited by most OHN scavengers. In addition to

experimental evidence, a theoretical analysis of the thermody-

namics of a ‘‘Fenton type’’ reaction offers evidence for an inner-

shell or bridged reaction mechanism [1].

It has been previously reported that OHN can be generated in a

reaction that is independent of O2
N2 by the addition of Fe(II) salts

alone [12,15] (Reactions 1,2 and 3 below). This was determined by

Halliwell and Gutteridge by the inability of superoxide dismutase

to prevent deoxyribose degradation. However, catalase did

prevent damage indicating that H2O2 is involved in the reaction,

despite it not being added to the reaction mixture [15]. Ferric ion

was incapable of degrading the deoxyribose substrate without the

addition of a superoxide-generating system (xanthine/xanthine

oxidase). The O2N2 most likely reduces Fe(III) to Fe(II) (Reaction

4) which then allows for reaction 1 to occur [16,17]. The net

reaction of reactions 3 and 4 is Reaction 5 (Haber Weiss reaction).

Figure 3. Spectra of dry metHb (A) and dry oxyHb (B) prior to (----) and after (—) reduction with sodium dithionite. All spectra were
measured after ,1000 hours.
doi:10.1371/journal.pone.0005110.g003

Figure 2. All data are an average of three samples. (A) Rate determination for the formation of metHb (&) and hemichromes ($) from
hydrated samples. The rates are k = 1.1160.0761027 s21 (R = 0.91735) and k = 6.2960.461028 s21 (R = 0.92667) respectively. (B) Rate determination
for the oxidation of oxyHb by plotting 2ln([oxyHb]/[oxyHb]0) vs. time for both dry (&) and hydrated ($) samples. The rates are
k = 3.5860.1761027 s21 (R = 0.95618) and k = 1.6960.0661027 s21 (R = 0.97785) respectively.
doi:10.1371/journal.pone.0005110.g002
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The Haber Weiss reaction is the underlying phenomenon that is

believed to be the principal source of OHN in biochemical systems

[12]. Thus, there is protection offered to samples due to the

inherent nature of iron to oxidize to the ferric state.

Fe2zzO2'Fe3zzO2
{ ð1Þ

2O2
{z2Hz?H2O2zO2 ð2Þ

Fe2zzH2O2?Fe3zzOH{zOH. ð3Þ

Fe3zzO.{
2 ?Fe2zzO2 ð4Þ

O.{
2 zH2O2?

O2zOH.zOH{ Net reaction of 3½ � and 4½ �ð Þ
ð5Þ

OxyHb and metHb have been shown previously to form

hydroxyl radicals in the presence of hydrogen peroxide [18].

Although studies were not carried out here with H2O2, it was

noted by Halliwell and Gutteridge [19] that metHb does degrade

deoxyribose, and this degradation was increased when ascorbic

acid was added to the reaction mixture. The ascorbic acid would

reduce any free Fe(III) and allow for a better catalyst for the

formation of OHN.
Although it is believed that iron bound to Hb will not produce

free OHN in solution, ‘free’ iron can do so. It is possible to degrade

Hb using peroxides to release the metal center [20], allowing for

Fenton type chemistry. It was shown here that, in the absence of

H2O2 or any other organic hydroperoxides, small amounts of free

iron can be released from the Hb molecule. The small amounts of

unbound iron are sufficient to degrade deoxyribose to an extent

that exceeds that of deoxyribose heated in the absence of Hb. It

was also observed that dry state metHb did not degrade

deoxyribose as extensively as hydrated state metHb did. This

was unexpected as the amount of ‘free’ Fe(II) was measured to be

slightly greater in dry state metHb. Overall, the age of metHb

samples did not influence their ability to generate OHN and cause

oxidative damage. Though it is apparent that Fenton type

chemistry is likely to occur in a Hb-containing system such as a

dried bloodstain, the damaging capabilities of such a system do not

appear to increase as the age of the system increases - at least with

the relatively mild laboratory conditions studied here. Further

studies would have to be performed to determine whether the

same holds for samples maintained under conditions representa-

tive of more extreme climatic conditions. Additionally, due to the

presence of all cellular components in bloodstains (including pools

of non-Hb sources of ‘free’ iron), the dynamics of the oxidative

damage process may differ from the one studied here in isolation.

Based on the findings here, the oxidative damage that would be

incurred by a dried stain sample containing the Hb molecule

would most likely occur prior to the receipt of such a sample by the

analyst. Therefore, subsequent storage of such samples should not

result in further damage induced by Hb-derived hydroxyl radicals.

Figure 4. Free iron detected. (A) Free iron present in hydrated Hb, &= Fe2+, $= Fe2++Fe3+. (B) Free iron present in dry state Hb, &= Fe2+,
$= Fe2++Fe3+.
doi:10.1371/journal.pone.0005110.g004

Figure 5. MetHb incubated over time at 21.960.1uC and
61.361.0 relative humidity ((&) dry state, ($) hydrated state).
The samples were reacted with deoxyribose and then thiobarbituric
acid to detect oxidative damage to the deoxyribose. The absorption
measured at 528 nm is given after blank subtraction. Measurements are
the average of three different samples incubated at the same time
point.
doi:10.1371/journal.pone.0005110.g005
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Materials and Methods

Sample Preparation and Analysis
All dry state samples were created by vacuum centrifugation and

then maintained at room temperature in the dark at ambient

temperature and humidity conditions (22.060.4uC, 5467% relative

humidity) for varying periods up to approximately three months.

Samples were removed from the ambient environment at various

time points in triplicate and frozen. Dry state samples were prepared

for analysis by re-hydrating in a total volume of 50 ml of de-ionized

water (same volume as hydrated samples) unless otherwise stated.

All spectra were measured using a UV6000 diode array detector

(ThermoElectron, Waltham, MA, USA), equipped with a 5 cm

light-path flow cell. The detector was in line with a SpectraSystem

P200 pump and autosampler which supplied buffer (0.5 mM Tris

HCl, 0.1 mM EDTA) at a flow rate of 1 ml/min through the

system. Data were analyzed using the XCaliburH software package

provided by the manufacturer.

Human A0 stabilized Hb, human Hb mainly in the form of

metHb, and 2-deoxy-D-ribose (deoxyribose) were purchased from

Sigma Aldrich (St. Lois, MO, USA). Ammonium acetate,

ammonium Fe(II) sulfate hexahydrate, ascorbic acid, ferrozine,

neocuproin, thiobarbituric acid (TBA), trichloroacetic acid (TAA),

and sodium dithionite were purchased from Fisher Scientific

(Pittsburgh, PA, USA).

Oxidation of Human Haemoglobin
A stock solution of ferrous-stabilized human A0 Hb was made

by diluting 5.0 g of product in 10 ml of 0.5 mM Tris HCl and

0.1 mM EDTA. The stabilized Hb product had less than 15%

metHb and was primarily in the oxyHb form as verified by

spectral analysis. The means by which this product is stabilized is

proprietary to the supplier, although ficoll and sucrose are present.

Therefore, measuring the mass of the product does not allow for

determination of the amount of Hb. The determination of Hb

concentration in samples was determined using molar absorbtiv-

ities (Table 1) provided by Winterbourn [11]. Individual samples

were made with 50 ml aliquots of the stock solution. A 20 mg/ml

stock solution of human Hb which was primarily in the form of

metHb (both stated by the manufacturer and confirmed by

spectral analysis) was used to make individual 100 ml samples

containing 2 mg of Hb.

After incubation and re-hydration where necessary, oxyHb

samples were analyzed without further preparation. Three distinct

species were speculated to be prevalen:; oxyHb; metHb; and,

hemichromes. FerrylHb was also considered to be a possible

product. Using the millimolar extinction coefficients of the Hb

derivatives, equation sets 1 and 2 were used to determine the

amount (mM) of each species present considering the 5 cm path

length of the instrument.

oxyHb½ �~13:2A577{16A630

metHb½ �~{0:6A577z55:8A630
ð1Þ

oxyHb½ �~17:8A560z23:8A577{7:8A630

metHb½ �~{10A560z5:3A577z60:8A630

hemichrome½ �~46:6A560{26:5A577{22:6A630

ð2Þ

Dry metHb samples were re-hydrated with 1.1 ml of water. An

additional 1.0 ml of water was added to the hydrated samples to

bring their total volume to 1.1 ml as well. From each sample,

13.75 ml was taken and diluted to 100 ml forming 250 ppm solutions

for which absorption spectra were measured from 200–800 nm.

To detect the presence of hemichromes against the background

of oxyHb and metHb, samples were reduced and their spectra

were measured to look for characteristic peaks at 529 and 558 nm

as indicative of hemochromes [21]. Solid sodium dithionite was

added directly to the Hb solutions and allowed to react at room

temperature for 30 minutes. Samples were then injected into

dialysis cassettes (Fisher Scientific, USA) and dialyzed against a

0.1 M phosphate buffer (pH 7.0) overnight.

Release of Iron Cations from Hb
Free Fe(II) ions was determined using the ferrozine method of

Carter [22]. Ferrozine, a disodium salt of 3-(2-pyridyl)-5,6-bis-(4-

phenylsulfonic)acid)-1,2,4-triazine [23], forms a stable magenta-

colored compound with the ferrous ion in a 3:1 ratio and has an

absorption peak at 562 nm. Neocuproine forms a complex with

copper(I) and copper(II) that can be used in conjunction with

ferrozine to keep copper ions from interfering with the ferrozine

method [24,25], and thus was also incorporated into the reaction.

Human Hb that was primarily in the form of metHb was incubated

in dry and hydrated (20 mg/ml) states over a 42 day time period.

Samples were then diluted to a concentration of 1.82 mg/ml and two

aliquots each of 500 ml were taken from each sample. One of the

aliquots was then reduced by the addition of 500 ml reducing agent

(ascorbic acid) and allowed to sit at room temperature for five

minutes. This will result in the reduction of any Fe(III) present to

Fe(II). The other aliquot was not reduced and this sample represents

the amount of Fe(II) present. The Hb was then removed from both

aliquots by the addition of 500 ml protein precipitant and centrifuged

at 3000 rpm for five minutes. A volume of 1 ml was then removed

from the reduced samples and to this was added 400 ml buffer and

100 ml ferroin reagent. A volume of 500 ml was removed from the

non-reduced samples and to this was added 200 ml buffer and 100 ml

ferroin reagent. The magenta-colored chromophore formed within

five minutes and the stability of the complex was sufficient enough to

allow for spectrophotometric analysis at 562 nm up to at least one

day after formation. The difference in the response curves for the

non-reduced (Fe(II)) and reduced (Fe(II)+Fe(III)) samples represents

the amount of Fe(III) present.

Reagents
Reducing Agent. A 0.2% ascorbic acid in 0.2 N hydrochloric

acid solution was made by dissolving 20 mg ascorbic acid in a

100 ml volumetric flask with 1.67 ml of concentrated hydrochloric

acid and deoinized water. The solution was stored at 4uC for #3

days prior to use.

Table 1. Millimolar absorption coefficients of Haemoglobin
derivatives.{

Wavelength (nm)

Derivative 560 577 630

oxyHb [41] 8.6 15.0 0.17

methHb [42] 4.30 4.45 3.63

ferrylHb [43] 14.1 3.9 3.0

Hemichrome 8.6 6.8 0.92

{All values are expressed per heme group.
doi:10.1371/journal.pone.0005110.t001
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Protein Precipitant. An 11.3% trichloroacetic acid (TAA)

solution was made by dissolving 11.3 g of TAA in a 100 ml

volumetric flask with deionized water.
Buffer Solution. A 10% ammonium acetate buffer solution

was made by diluting 10 mg of ammonium acetate with deionized

water in a 100 ml volumetric flask.
Ferroin Color Reagent. The ferrion color reagent consists of

both ferrozine (0.3% w/v) and neocuproine (0.3% w/v) in

aqueous solution. 300 mg of ferrozine and 300 mg of

neocuproine were dissolved in deionized water using a few drops

of concentrated hydrochloric acid to aid is dissolution and diluted

to 100 ml in a volumetric flask.

Standard Iron Solutions. A standard iron solution was

made by dissolving 702 mg Fe(NH4)2SO4N6H2O with 0.5 ml

concentrated sulfuric acid into a 1 liter flask. Standards were then

made consisting of 0, 0.195, 0.476, 0.909, 1.15, and 1.45 mg/ml

Fe(II). These standards were used to construct a calibration curve

for Fe(II) determination in samples.

Hydroxyl Radical Detection
A thiobarbituric acid (TBA) assay for hydroxyl radical (OHN)

detection was used that is based upon the detection of hydroxyl

radical attack on, and degradation of, the sugar deoxyribose (2-deoxy-

D-ribose) [2,3,12,13,15–17,19,20,26–39]. When the resulting degra-

dation product is heated under acidic conditions, malondialdehyde

(MDA) is formed and that is detected by its ability to react with

thiobarbituric acid (TBA) to form a pink chromogen. This assay has a

high degree of specificity for OHN detection because other oxidizing

species such as peroxyl and alkoxyl radicals do not release TBA

reactive materials from deoxyribose [35].

Preliminary studies of the TBA reaction were conducted to

optimize deoxyribose concentration and incubation parameters.

Figure 6 shows the absorbance measurement at 532 nm using

60 mg Hb and varying the concentration of deoxyribose at 37uC.

The assay concept was to reach a point where the deoxyribose is

not continuing to absorb radiation regardless of the concentration.

It can be seen that the absorbtion increases linearly up until

approximately 60 mM, where the absorption becomes somewhat

constant until approximately 100 mM. Above 100 mM, the

absorption increases again linearly. This trend was not only noted

for samples containing 60 mg Hb, but for the blank samples

containing no Hb. The absorbance of the blank samples

containing only deoxyribose treated with TBA increases with

deoxyribose concentration, especially at concentration larger than

100 mM; therefore, the curve will always increase slightly as the

concentration of deoxyribose increases without degradation by

Hb. The same figure shows the absorbance curve holding the

concentration of deoxyribose steady at 100 mM and increasing the

amount of Hb. At 100 mM, the increase is linearly responsive to

Hb concentration. Based on these results we decided to use a

100 mM concentration of deoxyribose in the assay.

The incubation period for reaction with deoxyribose was

evaluated using an Fe(II) standard and oxyHb for up to 1 hour

and testing samples every 15 minutes (Figure 7). From this study

it was determined that there was not much difference in incubating

Figure 6. Thiobarbituric Acid (TBA) test for hydroxyl radical damaged deoxyribose. (A) 60 mg Hb incubated with various concentrations of
deoxyribose. (B) 100 mM deoxyribose incubated with various amounts of ferrous ($) and ferric (&) Hb. All samples were incubated with TBA at 95uC
for 15 minutes to create a pink chromagen and spectral analysis performed at 532 nm.
doi:10.1371/journal.pone.0005110.g006

Figure 7. Reaction of 20 mM deoxyribose with Fe(II) and
ferrous Haemoglobin (Hb) incubated at 37uC over time periods
of up to one hour. The sugar is degraded on exposure to hydroxyl
radicals. The reaction mixure is heated under acidic conditions using
TAA to form malondialdehyde (MDA) which reacts with TBA to form a
pink chromogen. The absorption was measured at 532 nm after
incubation of deoxyribose (&), with 1.66 mg Fe(II) ($), and with 35 mg
Hb (m).
doi:10.1371/journal.pone.0005110.g007
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with deoxyribose over a period of 15 minutes or for 1 hour. It was

decided to use the 15 minute period so as not to reach a point

where the maximum amount of decomposition occurs regardless

of the hydroxyl radical producing capability of the sample.

Human Hb that was primarily in the form of metHb was

incubated in dry and hydrated (20 mg/ml) states over a 42 day

period in ambient conditions. Samples were then diluted to a

concentration of 1.82 mg/ml, and 16.5 ml aliquots (30 mg) were

taken from each sample. Aliquots were added to 300 ml of

100 mM deoxyribose and allowed to incubate at 37uC for fifteen

minutes. To each sample was added 400 ml of each 1% w/v TBA

in 0.05 M NaOH and 2.8% w/v trichloroacetic acid (TAA).

Samples were incubated at 95uC for 15 minutes.

Due to a number of factors, a buffer was not used for the

reactions described above. First, some buffers such as Tris and

Hepes are scavengers of OHN. Second, though a phosphate buffer

mimics an in vivo situation, iron ions can bind to the buffer, to the

deoxyribose, or to other components of the reaction mixture. Iron-

phosphate complexes are weakly active in producing ‘free’ OHN

[40]. All reactions were carried out in quadruply filtered de-

ionized water.

To detect the MDA-TBA chromagen, 200 ml of the reaction

assay was added to 500 ml 10% ammonium acetate buffer. The

addition of the buffer allowed the pink chromagen to remain stable

over the period required to conduct spectrophotometric measure-

ments at 532 nm. The absorption was used to determine relative

amounts of deoxyribose degradation by aged samples.
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