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Abstract

microRNAs (miRNAs) are known to play an essential role in controlling a broad range of biological processes including
animal development. Accordingly, many miRNAs are expressed preferentially in one or a small number of cell types. Yet the
mechanisms responsible for this selectivity are not well understood. The aim of this study was to elucidate the molecular
basis of cell-specific expression of the pri-miR-375 gene, which is selectively expressed in pancreatic islets, and has been
implicated both in the development of islets, and the function of mature pancreatic beta cells. An evolutionarily conserved
768 bp region of DNA upstream of the pri-miR-375 gene was linked to GFP and luciferase reporter genes, and expression
monitored in transgenic mice and transfected cultured cells. Deletion and targeted mutagenesis analysis was used to
evaluate the functional significance of sequence blocks within the upstream fragment. 59-RACE analysis was used for
mapping the pri-miR-375 gene transcription start site. The conserved 768 bp region was able to direct preferential
expression of a GFP reporter gene to pancreatic islets in transgenic mice. Deletion analysis using a luciferase reporter gene
in transfected cultured cell lines confirmed the cell specificity of the putative promoter region, and identified several key cis-
elements essential for optimal activity, including E-boxes and a TATA sequence. Consistent with this, 59-RACE analysis
identified a transcription start site within this DNA region, 24 bp downstream of the TATA sequence. These studies define
the promoter of the pri-miR-375 gene, and show that islet-specific expression of the pri-miR-375 gene is controlled at the
transcriptional level. Detailed analysis of the transcriptional mechanisms controlling expression of miRNA genes will be
essential to permit a comprehensive understanding of the complex role of miRNAs such as miR-375 in developmental
processes.
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Introduction

microRNAs (miRNAs) are a class of small non-coding RNAs

that regulate gene expression through post-transcriptional mech-

anisms [1]. Accumulating evidence indicates that miRNAs play a

central role in controlling a broad range of biological activities

including embryonic development, cell proliferation, metabolic

homeostasis and apoptosis [2]. Mammalian genomes contain over

400 miRNA genes [3]. A significant percentage of these are nested

within introns or exons of protein coding genes: in these cases,

expression of the corresponding miRNAs appears to be under the

transcriptional control of the host gene [4]. On the other hand,

many miRNA genes are located in intergenic regions, and

constitute autonomous expression units that are transcribed by

RNA polymerase II [5] into capped and polyadenylated

precursors (pri-miRNAs). Sequential processing by the nuclear

RNase Drosha and the cytoplasmic RNase Dicer generates the

,22 nt mature miRNA. Upon incorporation to the RISC

complex, miRNAs can inhibit expression of genes by promoting

degradation of mRNA, or inhibition of translation [6].

Detailed analyses of expression patterns of miRNAs has

demonstrated that a significant number of miRNAs are expressed

in highly selective spatial and temporal patterns [7,8]. The

molecular basis for this selectivity is not well understood, in large

part because relatively little is known about the structure and

function of miRNA gene promoters. As a result, it has been

difficult to discriminate between transcriptional [9] and post-

transcriptional regulation [10]. miR-375 is selectively expressed in

pancreatic islets [8,11]. It appears to play an important role in

mature islet cell function, in part by inhibiting expression of

myotrophin, a protein implicated in exocytosis [11,12]. A role for

miR-375 has also been demonstrated in pancreatic islet develop-

ment, through use of morpholino oligonucleotides to reduce

expression of miR-375 in developing zebrafish embryos [13].

These results are consistent with recent experiments in mice

demonstrating that global inhibition of microRNA biogenesis by

deletion of Dicer in embryonic pancreas leads to defects in

pancreatic islet development [14].

The mechanisms controlling selective expression of protein

coding genes of the endocrine pancreas have been extensively

studied [15,16]. It is well established that regulation is exerted

primarily at the transcriptional level through multiple cis-elements

located in the promoter regions: these activities typically involve

lineage-restricted transcription factors such as Pdx-1, NeuroD1

(BETA2) and MafA [17–19] which interact in synergistic fashion

to generate specificity [20]. The aim of the current study was to
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determine the molecular basis for the selective expression of the

pri-miR-375 gene in pancreatic islets. Through generation of

reporter plasmids, we were able to functionally characterize the

pri-miR-375 promoter. The promoter shows selective activity in

islets of transgenic mice and in transfected beta cells, demonstrat-

ing that regulation of cell-specific expression is mediated at the

transcriptional level.

Materials and Methods

Ethics statement
All animal work was conducted according to relevant national

and international guidelines. The experiments were approved and

overseen by the Institutional Animal Care and Use Committee

(IACUC) of the Weizmann Institute of Science.

Bioinformatics
Sequence conservation was examined using the UCSC genome

browser (http://genome.ucsc.edu/). Sequence alignment of geno-

mic DNA sequences was performed using NCBI-BLAST (http://

www.ncbi.nlm.nih.gov/BLAST) and software from GCG. Identi-

fication of transcription factor binding sites was performed using

Genomatix suite programs MatInspector (http://www.genomatix.

de) and TESS (http://www.cbil.upenn.edu/cgi-bin/tess).

Plasmid constructions
Plasmids for promoter activity measurements were constructed

using pGL3-basic vector (Promega) or the TK-luc vector [21]. The

region upstream to the miR-375 gene (putative miR-375 promoter

region) was generated by PCR using primers 59 - GAAGATCTT-

GAGGTACATCGCAGAGGCCAG - 39 (top) and 59 - CATGC-

CATGGGGGCCGGAGCGGAAGACCC - 39 (bottom) with

template of genomic DNA. The PCR fragment was sub-cloned

into pGEMTeasy vector (Promega), and ligated to pGL3-basic

(SmaI site), creating construct 375a, or to TK-luc. Constructs

375d and 375g were generated by inserting blocks 1+2 and block 1

respectively, using PCR reaction with appropriate primers (Table

S1), and construct 375a as template. Constructs 375b and 375f

were generated by digesting construct 375a with BglII and

HindIII. Construct 375c was generated by digesting plasmid 375a

with StuI and HindIII. Construct 375e was generated by digesting

plasmid 375a with StuI and BglII. For specific mutagenesis of the

promoter, the insert from construct 375b was sub-cloned to pBS

(Stratagene) creating plasmid pBS-375b. Plasmids bearing specific

mutations were generated from construct pBS-375b using

QuickTMChange Site-Directed mutagenesis approach (Strata-

gene). All mutated inserts were fused to the firefly luciferase

reporter gene in vector pGL3 using the unique sites NheI and

XhoI.

Cell culture
The following established cell lines were used in this study: HIT

M2.2.2 (Hamster beta cells) [22,23], bTC1 [24], and CHO

(Chinese hamster ovary cells). Cells were grown in Dulbecco’s

modified Eagles medium (DMEM) supplemented with 10% fetal

calf serum (FCS), penicillin (200 I.U./ml) and streptomycin

(100 mg/ml).

Transient transfections
Transfection experiments with HIT and CHO cells were

carried out using the calcium phosphate co-precipitation tech-

nique [25]. Transfections were performed in either 10 cm or 6

well tissue culture plates (Falcon). The 10 cm plates contained

26106 cells (HIT cells) or 76105 cells (CHO) and the 6 well plates

contained 46105 cells (HIT) or 26105 cells (CHO). When

transfections were performed in 10 cm plates, the DNA mixture

consisted of 2 mg reporter construct and 250 ng internal control

plasmid. The total amount of DNA was equalized to 10 mg by

adding pUC18. When transfections were performed in 6 well

plates, the DNA mixture consisted of 0.5 mg reporter construct

and 62.5 ng internal control plasmid. When expression plasmids

were used, 1 mg of each was added. The total amount of DNA per

transfection was equalized to 3 mg by adding pUC18. The

precipitates were left on the cells for 4–7 h, and cells were then

exposed to 20% glycerol (HIT) or 10% glycerol (CHO) in DMEM

for 2 min. The glycerol was then diluted with PBS (Ca2+/Mg2+

free), removed, and fresh medium was added. Cells were harvested

48 h after transfection, and extracts were subjected to assays to

determine the activity of reporter enzymes. Under these

conditions, efficiency of transfection was typically 20–40% as

determined by use of GFP reporter plasmids.

Luciferase assays
Firefly luciferase and renilla luciferase assays were carried out as

follows: whole cell extracts containing 5–50 mg (1–5 ml) of protein

were added to 100 ml of either firefly luciferase assay buffer

(20 mM Tricine, 0.1 mM EDTA, 1.07 mM (MgCO3)4M-

g(OH)2*5H2O, 2.67 mM MgSO4, 3.3 mM DTT, 270 mM

Coenzyme A, 470 mM Luciferin (Promega #E1602) and

530 mM ATP, pH 7.8.) or renilla luciferase assay buffer (0.1 M

K2HPO4 and 0.1 M KH2PO4, pH 7.4, and 0.5 mM Coelenter-

azine (Calbiochem)). The samples were placed in a luminometer

(LUMAC Biocounter M2500 or Modulus microplate, Turner

Biosystems) and light output was determined over a 10 second

interval. Firefly luciferase activity was normalized according to the

activity of renilla luciferase.

Transgenic mice containing a miR-375-EGFP construct
A plasmid (miR-375-EGFP) containing the mouse miR-375

gene upstream region (768 bp) was generated by replacement of

the firefly luciferase open reading frame in pGL3-375a with the

EGFP open reading frame (ORF) from the plasmid pEGFP-N1

(using XbaI and BglII sites). A DNA fragment (MluI-SalI)

containing the miR-375 promoter and the EGFP ORF (devoid

of vector sequences) was purified and microinjected to fertilized

mouse oocytes. Microinjection was performed in the Weizmann

Institute veterinary facility following standard protocols. Microin-

jected mouse embryos were transferred into the oviduct of foster

females. Genotyping of tail tips was performed using the EGFP

primers; top 59 -AAGTTCATCTGCACCACCG- 39 and bottom

59- TCCTTGAAGAAGATGGTGCG -39. This procedure yield-

ed 4 independent transgenic mice expressing GFP.

Immunofluorescence analysis of pancreas from miR-375-
EGFP transgenic mice

Transgenic miR-375-EGFP mice were dissected and examined

under an Olympus binocular microscope (SZX12) for GFP

detection. The pancreas was then removed, washed in PBS and

fixed in 4% PFA for 4 h at 4uC. Tissue was then incubated over-

night in 70% ethanol and embedded in paraffin. Slides were de-

paraffinized and subjected to antigen retrieval (10 mM sodium

citrate, 0.5 mM citric acid, pH 6.0). Endogenous peroxidase

activity was inhibited by incubation with hydrogen peroxide (3%

H2O2 in 20% methanol). Slides were washed again with PBS and

PBST (0.2% Triton X-100), blocked with CASblock (Zymmed

laboratories), and then incubated overnight at 4uC with the

following primary antibodies diluted in CASblock: rabbit anti-

Promoter of pri-miR-375 Gene
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GFP 1:100 (Molecular Probes, A6455), guinea pig anti-insulin

1:200 (DAKO, A0564), mouse anti-somatostatin 1:200 (Beta Cell

Biology Consortium) and mouse anti-glucagon 1:300 (Beta Cell

Biology Consortium). Slides were then washed and secondary

antibodies diluted in CASblock were applied for 1 h at room-

temperature (Cy5 anti-rabbit, Cy3 anti-mouse and Cy2 anti-

guinea pig). Slides were then washed again and stained with DAPI

for nuclear staining. Finally, slides were mounted with aqueous

mounting medium (IMMCO). For immunohistochemistry, slides

were incubated with DAB substrate kit for peroxidase (Zymmed

laboratories). Selective expression of GFP in pancreatic tissue was

observed in all 4 transgenic mice examined. Quantitative co-

expression data was obtained from a representative animal.

Expression of GFP in insulin-positive cells was evaluated in 12

different fields ( 165 cells); expression of GFP in glucagon-positive

cells was evaluated in 8 different fields (165 cells); expression of

GFP in somatostatin-positive cells was evaluated in 7 different

fields (90 cells).

59 Rapid amplification of cDNA ends (59-RACE)
First strand cDNA was synthesized from 5 mg of DNase-treated

RNA prepared from HIT cells transfected with pGL3-375a

construct, using reverse transcriptase (Affinity Script; Stratagene)

according to the manufacturer’s instructions. The primer used

(bot. 375 NcoI, Table S1) was complementary to a sequence in the

middle of block 4, located upstream to the firefly luciferase gene.

The cDNA was purified using an PCR purification kit (RBC), and

eluted in 40 ml DDW. A poly-G tail was added to the cDNA 39

end using terminal deoxynucleotidyl transferase (TDT) (Promega)

by incubating the purified cDNA with 16TDT buffer (Promega),

0.83 mM dGTP and 20 U of enzyme at 37uC for 1 h. The

reaction was stopped by heating to 65uC for 15 min. Following a

second purification, cDNA was eluted in 50 ml of DDW. PCR was

performed using the Expand high fidelity PCR system (Roche),

with 5 ml of cDNA and 30 pmol of a reverse primer located nested

to the primer used for reverse transcription, and a forward primer:

GAATTC(C)24. PCR conditions were: 94uC 2 min; 30 cycles (of

94uC 30 sec, 60uC 30 sec, 72uC 3 min); followed by an additional

incubation at 72uC for 5 min. The primer used for the PCR

reaction was a bottom primer complementary to block 3 (Bot.

block 3 BglII, Table S1). An aliquot of the PCR product was

resolved on a 1% agarose gel. The resulting band was excised from

the gel, purified, sub-cloned into pGEMT-Easy vector (Promega)

and then sequenced. The transcription start site was identified as

the sequence immediately adjacent to the poly C sequence.

Statistical analysis
Analysis was performed using two way ANOVA. After

establishing overall significance of the F-test, pairs of means were

compared by the Tukey test (p = 0.05). InStat software (version

2.01) was used to evaluate standard error of the mean (SEM).

Results

Identification of conserved regions upstream of miR-375
Important control elements can often be discovered by a careful

inspection of the genomic sequence conservation among different

species [26]. Therefore, we compared the region upstream of the

pre-miR-375 sequence (miRBase accession # MI0000792) among

several vertebrate orthologs. We identified four highly conserved

sequences, which we named blocks 1–4 (Fig. 1). Block 1 is 156 bp

long, is 59% identical between mouse and human, and is located

585 bp upstream from the pre-miR. Block 2 is 190 bp long, and is

66% identical between mouse and human. Block 3 is 71 bp long,

and is 75% identical between mouse and human, and block 4 is

149 bp long, with 75% identity between mouse and human.

Function of pri-miR-375 promoter in vivo
In order to test the ability of these sequences to control gene

expression in vivo, we fused a 768 bp DNA fragment containing the

four conserved blocks (Fig. 1) to the GFP gene. The construct was

microinjected into mouse oocytes and expression of GFP was

monitored in developing embryos and adult transgenic mice.

Strong GFP expression was seen in the pancreas of adult mice

(Fig. 2A) and immunofluorescence microscopy revealed GFP

expression within the islets (Fig. 2B). GFP was expressed in beta

cells (97% of beta cells co-express GFP), in alpha cells (89% co-

expression) and in delta cells (91% co-expression) (Fig. 2B).

Immunohistochemical analysis confirmed that GFP is expressed at

high levels in pancreatic islet cells, and at much lower levels in

pancreatic exocrine cells (Fig. 2C). A small number of GFP

positive cells were found scattered fairly evenly throughout the

exocrine pancreas (Fig. 2B,C). We examined the expression of

GFP in 4 mice, each derived from an independent microinjected

Figure 1. miR-375 gene regulatory region. Genomic locus of the mouse miR-375 gene and upstream conserved regions from UCSC browser
(upper figure) with a graphic representation of the conserved regions upstream of the pre-miR-375 sequence (lower figure). The location of
conserved blocks 1–4, and pre-miR-375 is indicated.
doi:10.1371/journal.pone.0005033.g001
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Figure 2. Expression of GFP in pancreas and islets of miR-375-EGFP transgenic mice. A. Abdominal organs of a 6 week old transgenic
mouse (bright field - upper left, GFP - upper middle, merged -upper right. I, intestine. C, colon. P, pancreas. Sp, spleen. St, stomach). The pancreas was
dissected and photographed (bright field - lower left, GFP – lower right). B. Immunofluorescence analysis of pancreas sections showing GFP (green),
and insulin, somatostatin or glucagon (red). C. Immunohistochemical analysis using anti-GFP antibodies, counter-stained with hematoxylin. Scale bar
indicated in B and C represents 10 mm.
doi:10.1371/journal.pone.0005033.g002
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oocyte. The selectivity of expression for pancreatic tissue was

observed in all 4 mice (data not shown). Since this pattern of

expression in different animals presumably results from indepen-

dent insertions into random genomic loci, we conclude that the

region upstream of miR-375 contains the pri-miR-375 gene

promoter, and is capable of directing GFP expression selectively to

pancreatic islets in vivo.

Characterization of the pri-miR-375 transcription start site
In order to confirm that the 768 bp upstream of miR-375

contains a functional promoter, we wished to identify the

transcription start site of the endogenous pri-miR-375 transcript.

Using the 59-RACE procedure with mRNA derived from the beta

cell line bTC1 [24], we were unable to identify a discrete band

corresponding to the start site of the endogenous pri-miR-375,

presumably because of rapid processing of the precursor molecule

[27]. As an alternative approach, we performed 59-RACE using

RNA derived from the beta cell line bTC1 transfected with a

plasmid containing the 768 bp upstream region linked to the

luciferase reporter gene. For the PCR reaction, we used a primer

corresponding to a sequence located in the middle of block 4. A

discrete band was obtained from this reaction (Fig. 3A, lane 1),

whereas this band was not seen in control reactions (Fig. 3A, lanes

2–3). The resulting band was analyzed by DNA sequencing. The

sequence indicated a transcription start site 259 bases upstream of

the pre-miR-375 start (marked with large arrowhead in Fig. 3B,

and an arrow in Fig. 3C). Strikingly, this putative start site is 24

bases downstream of an evolutionarily conserved TATA box

located at the 39 end of conserved block 2. Additional 59-RACE

experiments performed using primers distributed in the miR-375

regulatory region identified the same start site (not shown).

Although in some sporadic cases, additional bands were obtained

(marked with small arrowheads in Fig. 3B), sequence analysis

showed that they were either non-relevant (sequences unrelated to

miR-375) or shorter species, most likely resulting from premature

polymerase termination caused by high GC content, or stable

secondary structure of the pri-miR-375. These data suggest that

transcription of the pri-miR-375 indeed initiates 24 bases

downstream of the conserved TATA box, and that the conserved

blocks 1 and 2 contain the promoter of the miR-375 gene.

Characterization of the pri-miR-375 promoter
To functionally characterize the miR-375 promoter, the

fragment consisting of blocks 1 and 2 was fused to a firefly

luciferase reporter gene and transfected into pancreatic beta and

non-beta cell lines (Fig. 4, fragment 375b). For comparison, we

used the promoter of the herpes simplex virus thymidine kinase

(TK) gene, which shows low constitutive activity in many cells

types [23]. The fragment 375b directed 32-fold higher luciferase

gene expression than the TK promoter in beta (HIT) cells (Fig. 4).

On the other hand, activity of the fragment was weaker than the

TK promoter in CHO cells. Preferential activity of the pri-miR-

375 promoter was also seen on comparison with an additional

non-beta cell line NIH-3T3 (data not shown). Thus the fragment

indeed possesses promoter activity that is manifested preferentially

in beta cells. Indeed, the promoter activity of construct 375b was

remarkably high, since it showed approximately 45% of the

activity of the insulin promoter (Fig. 4), which is considered to be a

very strong beta cell promoter [15]. Consistent with the activity

observed in mouse pancreatic alpha cells (Fig 2B), construct 375b

also showed high activity (approximately 20-fold higher than the

TK promoter) in the alpha cell line aTC1 (data not shown).

Figure 3. Mapping of transcription start site of miR-375 gene by 59-RACE. A. DNase-treated total RNA from HIT cells transfected with the
pGL3-375a construct was reverse transcribed, using a primer complementary to the luciferase sequence. The cDNA was poly-(dG) tailed and amplified
by PCR using a poly-C primer and a nested primer complementary to block 4 (lane 1). Lane 2, no RT control; lane 3, no template control. Marker sizes
are indicated. The location of the band in lane 1 is indicated by an arrow. B. Alignment of miR-375 upstream sequences (from 296 to +244, relative to
transcription start site) of mouse, rat and human. The primer used for PCR amplification is located at the middle of block 4. The TATA sequence is
marked by a box. The large arrow-head indicates the major transcription start site. Small arrow-heads indicate the start site of shorter species
detected by 59-RACE. C. Representation of the pGL3-375a construct. Conserved regions 1–4 are indicated. The luciferase gene is indicated as an
unmarked open box. The arrow indicates the transcription start site revealed by 59-RACE analysis. Numbers above the bar indicate location relative to
the transcription start site.
doi:10.1371/journal.pone.0005033.g003
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To determine the contribution of the conserved sequence blocks

to the activity of the 375b fragment, deletion analysis was

performed (Fig. 5A). Removal of block 1 (construct 375c) led to

3-fold reduction in activity, while beta cell specificity was

maintained in this construct (data not shown). Deletion of the

,100 bp at the 39 end of block 2, containing the conserved TATA

box, led to a dramatic (75-fold) reduction in activity (construct

375d). Unexpectedly, the presence of conserved blocks 3 and 4 in

the context of blocks 1+2 or block 2, reduced activity substantially,

suggesting that blocks 3 and 4 may contain a negatively-acting

element. Taken together, these data show that blocks 1 and 2

contain the promoter of the pri-miR-375 gene, and that the

TATA box area is critical for promoter activity.

Since mammalian transcriptional control regions often contain

transcriptional enhancers, we tested the ability of the upstream

miR-375 sequences to activate transcription from the heterologous

promoter TK. Indeed fragment 375a (corresponding to blocks 1–4)

was able to activate the TK promoter 6-fold in HIT cells (Fig. 5B)

but showed essentially no effect on the TK promoter in non-beta

cells (CHO) (data not shown). Substantial activation was still

maintained upon inversion of the fragment relative to the promoter

(Fig. 5B). Similar results were obtained with block 1 (Fig. 5B). We

conclude that sequences in the conserved region within block 1

possess features characteristic of a transcriptional enhancer.

Mutational analysis of block 1 and block 2
It has previously been shown that E-boxes (consensus sequence

CAxxTG) play an important role in directing selective expression

Figure 4. Activity of the miR-375 promoter in cultured cells. The
putative promoter region of the miR-375 gene (construct 375b) was
ligated upstream to the firefly luciferase reporter gene in the promoter-
less pGL3-basic vector. As a positive control, the insulin promoter was
fused upstream to the firefly luciferase reporter gene. The herpes
simplex virus thymidine kinase (TK) promoter fused upstream to the
firefly luciferase reporter gene served as non cell-specific control
promoter. Promoter activity of each construct was determined
following transfection to the beta cell line HIT or the non-beta cell
line CHO. Values were normalized for transfection efficiency according
to the activity of a co-transfected renilla luciferase plasmid and
expressed relative to the activity of pGL3-basic vector. Each data point
represents the mean6SEM of at least three independent transfection
experiments.
doi:10.1371/journal.pone.0005033.g004

Figure 5. Mapping of transcriptional regulation regions by deletion analysis. A. Portions of the miR-375 upstream region were deleted
according to the location of the conserved blocks (Fig. 1) and ability to drive expression of firefly luciferase reporter gene was determined in the
context of the promoter-less pGL3-basic vector. Values shown are mean6SEM of at least 3 independent transfection experiments. B. Construct 375a
or 375g were tested for enhancer activity. The different regions were ligated (in both orientations) upstream to the TK promoter driving expression of
the firefly luciferase reporter gene. Normalised luciferase activity was expressed relative to the activity of pGL3-basic vector (A) or TK-LUC (B). Values
shown are mean6SEM of at least 3 independent transfection experiments.
doi:10.1371/journal.pone.0005033.g005
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of beta cell specific promoters [20]. Indeed three conserved E-box

elements are present in the promoter sequence (Fig. 6A,B). We

mutated each of these E-boxes and measured luciferase activity

following transfection to HIT cells. Mutation of E-boxes 1, 2 and 3

led to reductions of 47%, 71% and 47% of activity, respectively, as

compared to the wild type construct (Fig. 6C). Likewise, mutation

of the TATA box caused a 56% reduction in activity (Fig. 6C).

Bioinformatics analysis using the MatInspector program (Geno-

matix) revealed potential binding sites for several beta-cell

transcription factors: HNF1, HNF6, AP1, INSM1, XFD3 and

PTF1, within the most conserved region of block 2 (Fig. 6B).

Mutation 1 (perturbing the consensus binding site for AP1, XFD3,

and HNF6) led to a small loss of activity (reduction of 20%),

whereas mutation 2 (perturbing the consensus binding site for

INSM1, and HNF1) led to a much larger loss in activity (reduction

of 84%). This experiment therefore identifies multiple cis-elements

required for full activity of the miR-375 promoter.

To further examine the idea that the conserved E-boxes of the

miR-375 promoter act as binding sites for transcription factors of

the bHLH family, we tested the effects of the dominant negative

HLH proteins Id2 and Id3 [28]. As a control, we first verified that

both Id2 and Id3 expression vectors were able to inhibit insulin

promoter activity, showing that the constructs were functional

under the experimental conditions (Fig. 6D). Both Id2 and Id3

significantly repressed the activity of the miR-375 promoter (38%

and 33% respectively, Fig 6D) as compared to transfections

performed in the absence of Id-encoding plasmids. Consistent with

this, the effect of the Id proteins on the promoter fragment

mutated in one of the E-boxes (E-box 2), was less pronounced.

These results suggest that the E-boxes within the promoter are

functioning at least in part by interaction with transcription factors

of the bHLH family.

Discussion

miRNAs are emerging as critical regulators of a broad range of

developmental processes [1]. In order to understand how miRNAs

function, major efforts have focused on the identification of bona

fide target genes. For example, miRNAs have recently been shown

to regulate expression of the pancreatic developmental factors

Ngn3 and Foxa2 [29–31]. On the other hand, the appreciation

that many miRNAs show highly selective patterns of expression

underscores the importance of elucidating the mechanisms that

regulate miRNA biogenesis, which is currently poorly understood.

For protein coding genes, the central role of transcription initiation

in regulating expression levels is well established. However, in

recent years, it has become clear that a wide variety of post-

transcriptional mechanisms can also significantly affect expression.

The aim of this study was to determine whether transcriptional

control plays a significant role in directing cell-specific expression

of the pri-miR-375 gene which is expressed selectively in

pancreatic islets. Using functional assays, we have been able to

show that an evolutionarily conserved region upstream of the gene

can confer selective expression of a reporter gene, both in

transgenic mice and in transfected tissue culture cells. Deletion

analysis identified a number of conserved cis-elements required for

Figure 6. Mutagenesis of putative transcription factor-binding sites. A and B. Nucleotide sequence of conserved regions of mouse miR-375
promoter. Stars indicate nucleotides conserved among mouse, rat, and human miR-375 genes. Location relative to the transcription start site is
marked by numbers at the beginning and end of the sequence. A. Alignment of Block 1. E boxes are indicated. B. Alignment of block 2. Sites of
binding sites for putative transcription factors, E boxes, and mutations are marked on sequence. C. Specific sites were mutated and reporter plasmids
containing the mutations were tested for luciferase activity as before. Values shown are mean6SEM of at least 4 independent transfection
experiments. *, p,0.05, as compared with wild-type. D. The indicated constructs were transfected to HIT cells in the presence or absence of Id2 or Id3
expression vectors. Normalised luciferase activity was expressed relative to the activity of pGL3-basic vector. Values shown are mean6SEM of at least
4 independent transfection experiments. *, p,0.05, as compared with transfections performed in the absence of Id expression vector.
doi:10.1371/journal.pone.0005033.g006
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optimal activity, including a TATA sequence. Consistent with this,

we have identified the major transcription start site 24 bp

downstream of the TATA sequence. These data represent the

first characterization of a pancreas-specific miRNA gene promot-

er, and demonstrate that cell-specific expression is regulated at

least in part, at the level of transcription. This does not exclude

possible involvement of post-transcriptional control mechanisms,

and indeed a recent study raises the possibility that expression of

miR-375 in the developing endocrine pancreas may be controlled

in part by selective processing [32].

Our study provides some indications of transcription factors that

may be involved in regulating the activity of the pri-miR-375

promoter. One region within block 2 that was particularly sensitive

to mutation contains consensus binding sequences for the factors

HNF1 and INSM1, which have been previously implicated in

development and function of pancreatic islets [33]. Our

mutational analysis also showed that E boxes are required for

full transcriptional activity. This raises the possibility that the miR-

375 gene may be regulated by bHLH transcription factors such as

Ngn3 and NeuroD1, which are known to play a central role in

pancreas endocrine development and in mature beta cell function

respectively [33]. Indeed, recent chromatin immunoprecipitation

experiments have shown that NeuroD1 interacts with conserved

sequences both upstream and downstream of the miR-375 gene

[34]. In the same study, the key pancreatic transcription factor

Pdx-1 was also shown to interact with the upstream region, raising

the possibility that these factors cooperate in activating transcrip-

tion, as has been found with other beta cell-specific promoters e.g.

the insulin gene promoter. Interestingly, this region contains no

Pdx-1 consensus target sites, suggesting that the action of Pdx-1

may be indirect. Taken together, these results suggest that selective

expression of miR-375 is controlled by a number of transcription

factors that participate in the transcriptional cascade that shapes

pancreatic development, and is therefore consistent with the

possibility that miR-375 itself is a component of this cascade

Thus far, relatively few potential targets of miR-375 have been

experimentally validated [11]. Recently, PDK1, a mediator of the

PI3K/PKB signaling cascade, was identified as a potential target

of miR-375; in the same study, glucose was shown to inhibit

production of miR-375 [35]. Since activation of the PI3K cascade

can lead to increased beta cell proliferation, these finding may

represent a mechanistic link between glucose and beta cell

proliferation. This may be of considerable physiological impor-

tance, since glucose has been proposed as a potential mediator of

beta cell hyperplasia in insulin resistant states such as obesity and

pregnancy [36]. The possibility that glucose modulates miR-375

expression through regulation of promoter activity needs to be

further explored.

The large number of miRNA genes combined with the potential

of each miRNA to regulate multiple target mRNAs, implies a

regulatory network of great complexity. This is consistent with the

pleiotropic effects observed in numerous studies, such as those

involving global inhibition of miRNA production by ablation of

the Dicer gene [14,37]. On the other hand, experiments involving

loss of function of miRNAs often show surprisingly mild

phenotypes [38,39]. To resolve this apparent paradox, it has been

proposed that miRNAs may act to confer robustness on genetic

programs [40]. Thus, miRNAs may repress ‘‘leaky’’ expression of

genes that are not required in a particular biological setting [41].

Alternatively, miRNAs may be required to buffer stochastic

variations in expression of genes An important feature of these

models is the hypothesis that key transcription factors may regulate

target genes both directly and indirectly, through modulation of

expression of miRNAs [42].

It is becoming apparent that miRNAs are integral components

of transcriptional regulatory networks underlying the development

and maintenance of differentiated cell types. The identification of

miR-375 as a likely target for key pancreatic transcription factors

further strengthens the emerging notion that miRNAs are involved

in regulatory networks controlling pancreatic development. More

detailed analyses of the transcriptional control mechanisms

controlling miR-375 and other selectively expressed miRNA genes

will help to shed light on these networks, and permit a more

detailed understanding of many aspects of cell function in both

physiological and pathological states.
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