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Abstract

The von Hippel-Lindau (VHL) syndrome is a pleomorphic familial disease characterized by the development of highly
vascularized tumors, such as hemangioblastomas of the central nervous system, pheochromocytomas, renal cell
carcinomas, cysts and neuroendocrine tumors of the pancreas. Up to 75% of VHL patients are affected by VHL-associated
pancreatic lesions; however, very few reports in the published literature have described the cellular origins and biological
roles of VHL in the pancreas. Since homozygous loss of Vhl in mice resulted in embryonic lethality, this study aimed to
characterize the functional significance of VHL in the pancreas by conditionally inactivating Vhl utilizing the Cre/LoxP
system. Specifically, Vhl was inactivated in different pancreatic cell populations distinguished by their roles during
embryonic organ development and their endocrine lineage commitment. With Cre recombinase expression directed by a
glucagon promoter in a-cells or an insulin promoter in b-cells, we showed that deletion of Vhl is dispensable for normal
functions of the endocrine pancreas. In addition, deficiency of VHL protein (pVHL) in terminally differentiated a-cells or b-
cells is insufficient to induce pancreatic neuroendocrine tumorigenesis. Most significantly, we presented the first mouse
model of VHL-associated pancreatic disease in mice lacking pVHL utilizing Pdx1-Cre transgenic mice to inactivate Vhl in
pancreatic progenitor cells. The highly vascularized microcystic adenomas and hyperplastic islets that developed in Pdx1-
Cre;Vhl f/f homozygous mice exhibited clinical features similar to VHL patients. Establishment of three different, cell-specific
Vhl knockouts in the pancreas have allowed us to provide evidence suggesting that VHL is functionally important for
postnatal ductal and exocrine pancreas, and that VHL-associated pancreatic lesions are likely to originate from progenitor
cells, not mature endocrine cells. The novel model systems reported here will provide the basis for further functional and
genetic studies to define molecular mechanisms involved in VHL-associated pancreatic diseases.
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Introduction

The von Hippel-Lindau (VHL) syndrome is an autosomal,

dominant inherited disorder caused by mutations in the VHL

tumor suppressor gene. VHL patients are predisposed to develop

highly vascular tumors in multiple organs, including hemangio-

blastomas of the retina and central nervous system (CNS), clear

cell renal carcinomas, pheochromocytomas, cyst and neuroendo-

crine tumors in the pancreas [1]. This familial cancer syndrome is

caused by germ-line mutations in the VHL gene, which was

mapped to chromosome 3p25 by positional cloning [2]. Following

Knudson’s two-hit hypothesis, loss or inactivation of the remaining

wildtype allele is associated with VHL tumorigenesis [3,4]. The

spectrum of VHL tumors in affected families varies [5] and

biochemical analysis of the VHL gene product has provided the

molecular basis that explains the phenotype-genotype correlations

evident in VHL disease [6,7,8,9].

At the molecular level, the von Hippel-Lindau protein (pVHL)

is a critical factor in the oxygen sensing pathway. Under normoxic

conditions, pVHL forms a multiprotein complex with E3 ubiquitin

ligase that targets the a-subunits of hypoxia-inducible factor

(HIFa) for degradation by the proteosome [10,11]. Under hypoxic

conditions, HIFa subunits escape ubiquitin-mediated proteolysis,

allowing HIFa to accumulate, translocate to the nucleus, and

activate downstream targets. In subsets of VHL mutations, the

lack of functional pVHL leads to accumulation of HIF, and results

in the activation of HIFa target genes even in the presence of
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oxygen [12]. Enhanced transcription of a wide variety of HIFa
target genes, such as vascular endothelial growth factor (VEGF), is

thought to contribute to the highly vascular tumors that develop in

VHL patients [13]. Independent of its function in regulating the

HIFa pathway, pVHL also binds other cellular proteins [14,15,16]

and promotes extracellular matrix assembly [16,17]. For example,

pVHL has been shown to bind and stabilize microtubule

structures [18], and regulate fibronectin deposition to maintain

vascular integrity [19,20].

Expression of VHL has been reported in most tissues and cell

types, but little is known about its role in normal development

[2,21,22]. Homozygous inactivation of Vhl in mice resulted in

embryonic lethality at embryonic stage (E) E10.5–E12.5 due to

defects in placental vasculogenesis [23]. Thus, tissue-specific

knockout of Vhl has been utilized to investigate the biological

functions of pVHL. Inactivation of Vhl utilizing an albumin-cre in

liver or a mosaic b-actin-cre resulted in hepatic vascular tumors

[24,25], similar to the ones observed in Vhl heterozygous knockout

animals. Unexpected roles of Vhl in spermatogenesis, thymus cell

survival, and bone development have also been reported with

conditional loss of pVHL [25,26,27]. Notably, inactivation of Vhl

in renal epithelial cells led to development of tubular cysts that

share morphologic and molecular characteristics with renal cysts

found in VHL patients [28]. While genetic analysis of Vhl in mice

have uncovered novel functions of pVHL in various tissues, much

is yet to be learned about pVHL’s role in organs normally affected

in VHL patients, such as CNS, adrenals and pancreas.

In VHL patients, the most common manifestations affecting the

pancreas are benign cysts and microcystic adenomas (MCA),

which occur in 35–75% of VHL patients [29,30]. In addition, 12–

17% of VHL patients develop pancreatic neuroendocrine (islet

cell) tumors, which possess the malignant potential to develop

metastasis [31,32]. However, the cellular origins and molecular

mechanisms leading to these pancreatic lesions found in VHL

patients are not known. Here we present three mouse models of

VHL in the pancreas generated by conditionally inactivating Vhl

in specific pancreatic cell populations. Not previously reported in

the literature, we showed that pVHL is dispensable for the normal

functions of terminally differentiated islet a-cells and b-cells in the

endocrine pancreas. Whereas mice with Vhl deletion in endocrine

pancreas showed normal survival, mice lacking pVHL in

pancreatic progenitor cells that give arise to both exocrine and

endocrine pancreas (Pdx1-Cre;Vhl f/f), exhibited significant

postnatal death. Most significantly, the few surviving Pdx1-

Cre;Vhl f/f mice developed MCA and islet hyperplasia, similar

to those found in VHL patients. Taken together, these results

provided evidence suggesting that pVHL is functionally important

for postnatal exocrine pancreas, and that VHL-associated

pancreatic lesions originate from progenitor cell lineages. The

novel model systems reported here will provide the basis for

further genetic studies to define molecular events involved in

VHL-associated pancreatic diseases.

Results

Loss of pVHL in a-cells is Dispensable and Insufficient to
Induce Tumorigenesis

VHL-associated pancreatic neuroendocrine tumors (PNET)

afflict 12–17% of VHL patients, and these tumors have been

demonstrated to exhibit focal positivity for glucagon [33]. Thus,

we speculated that these PNET might originate from glucagon-

positive a-cells deficient of pVHL in the endocrine pancreas. To

inactivate Vhl specifically in a-cells, we first generated an a-cell

specific Cre transgenic line (Glu-Cre) utilizing a rat glucagon

promoter sequence to direct Cre recombinase expression. By

crossing a Glu-Cre transgenic line with the Z/AP reporter mice

[34], we confirmed a-cell specific expression of Cre recombinase

in Glu-Cre;Z/AP pancreas at 5 and 12 months of age. As

expected, expression of Cre-recombinase localized in a-cells at the

outer ring of endocrine islets, as indicated by purple alkaline

phosphatase (AP) staining (Figure 1A, right panels). No positive AP

expression in pancreas was observed in age-matched control

genotypes of Glu-Cre and Z/AP mice (data not shown).

To determine the functional significance of Vhl in a-cells, the

Glu-Cre transgenic mice were next bred with mice in which exons

2 and 3 of the Vhl alleles are flanked by loxP sites (flox or f) [25].

Since variability in phenotype was documented in other tissue-

specific knockouts of Vhl [24,25], we generated Vhl-deficient a-cells

in A/J and C57BL/6 backgrounds. At the time of weaning (3–4

weeks after birth), we obtained the expected Mendelian frequen-

cies for all genotypes in both background strains (Table 1). Mouse

pancreases with Vhl deletion in a-cells (Glu-Cre;Vhl f/f, n = 12)

appeared histological normal when compared to age-matched

control genotypes (Glu-Cre, n = 8 and Vhl f/f, n = 6) from 10

months to 23 months of age (data not shown). No obvious

physiological and behavioral phenotypes were observed for Glu-

Cre;Vhl f/f mice. To confirm that Vhl alleles were indeed deleted

in Glu-Cre;Vhl f/f mice, we isolated a-cells, b-cells and

endothelial cells from pancreatic islets via flow cytometry, and

obtained genomic DNA for each cell population. Genotyping

PCR analysis showed the expected deletion of Vhl alleles only in

glucagon-positive a-cells, but not in insulin-positive b-cells and

lectin-positive endothelial cells in Glu-Cre;Vhl f/f animals at 27

months of age (Figure 1B). Together, these results demonstrated

that Vhl is not essential for mature a-cells, and that deficiency of

Vhl in a-cells is insufficient to cause tumorigenesis in the endocrine

pancreas.

Vhl is not essential for Normal Function of Differentiated
Islet b-cell

Since b-cells are the major cell type in the endocrine pancreas

and some VHL PNETs are positive for insulin staining [33], we

next hypothesized that Vhl deficiency in insulin-positive b-cells

might lead to PNET development. To conditionally inactivate Vhl

in b-cells, we crossed Rip-Cre transgenic mice [35] with mice in

which exons 2 and 3 of the Vhl alleles are flanked by loxP sites (flox

or f). Similar to our findings in the Glu-Cre;Vhl colony, mice from

the Rip-Cre;Vhl colony were generated at the expected Mendelian

frequencies for all genotypes regardless of the strain backgrounds

(Table 2). Histological analysis of Rip-Cre;Vhl f/f mouse

pancreases (n = 4) did not show any abnormality or islet tumor

formation when compared to age-matched control genotypes

(Rip-Cre and Vhl f/f) at 15 months of age (Figure S1A). Immuno-

staining of endocrine markers, such as insulin and glucagon, did

not reveal distinct features unique to mice deficient for pVHL in b-

cells (data not shown). Determination of Vhl allele status in the

Rip-Cre;Vhl f/f pancreas utilizing DNA isolated from microdis-

section further confirmed that Vhl deletion only occurred in the

expected endocrine islets, but not in the surrounding exocrine

pancreas (Figure S1B).

Notably, the physical appearance of the Rip-Cre;Vhl f/f mice

were proportionally smaller than their littermates at time of

weaning. Indeed, data confirmed that Rip-Cre;Vhl f/f mice

weighed significantly less than age-matched littermates at all time

points analyzed (Figure 2A). Since Vhl has been shown to regulate

glucose metabolism [36], we next measured fasting glucose levels

in a cohort of Rip-Cre;Vhl mice to determine if an elevated basal

glucose level was responsible for the small size seen in these mice.

Pancreatic Mouse Model of VHL
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However, our data demonstrated no significant differences in basal

glucose levels between control genotypes and Rip-Cre;Vhl f/f

mice at all time points measured (Figure 2B). We then speculated

that low expression of Cre-recombinase in the hypothalamus

reported for Rip-Cre transgenic mice [35] affects hormone

feedback loops regulated by the hypothalamus due to inactivation

of Vhl. Among various hormones regulated by the hypothalamus,

we chose to measure growth hormone since its deficiency is

associated with lean body mass. Again, our data did not show

significant differences in serum growth hormone levels between

control genotypes and Rip-Cre;Vhl f/f mice at all time points

tested (Figure 2C). Therefore, it is unclear if the small size of Rip-

Cre;Vhl f/f mice is due to the loss of Vhl in pancreatic islet b-cells

or in the hypothalamus.

Vhl is Functionally Important for Postnatal Exocrine
Pancreas

The most common manifestations of pancreatic VHL disease

are benign cysts and microcystic adenoma, which occur in 35–

75% of VHL patients [29,30]; however, it remains unclear

whether these lesions arise from the endocrine or exocrine

pancreas. To investigate whether loss of Vhl in the exocrine

pancreas can lead to cyst development, we utilized pancreatic and

duodenal homeobox 1 (Pdx1) transgenic mice in which cre

recombinase expression was driven by the Pdx1 promoter [37]. By

breeding Pdx1-Cre transgenic mice with Vhl floxed mice, we

generated mice with Vhl deletion in pancreatic endocrine and

exocrine cells as a result of Pdx1-Cre expression in pancreatic

progenitor cells during embryogenesis [37]. In contrast to mice

deficient in Vhl in a-cells or b-cells, we observed some lethality in

Pdx1-Cre;Vhl f/f mice. At the time of weaning, the distribution of

genotypes was significantly different from the expected values with

fewer than expected Pdx1-Cre;Vhl f/f mice in all three different

genetic backgrounds (Table 3). Statistically, observed lethality is

more severe in the A/J and Balb/C genetic backgrounds than in

the C57BL/6 background.

To determine if the lethality in Pdx1-Cre;Vhl f/f mice occurs

embryonically or postnatally, Mendelian ratios of the six possible

genotypes were observed immediately after birth and during

different postnatal time intervals (Table 4). The Pdx1-Cre;Vhl f/f

mice were born at the anticipated Mendelian ratio; however, these

mice could not survive more than 5 days postnatally (P5). We

further analyzed whole-mount histology of mouse pups (P1–P5) in

an attempt to uncover the cause of death. However, pathologists

blinded for genotypes could not distinguish Pdx1-Cre;Vhl f/f pups

from pups of control genotypes (Figure 3A). To confirm that the

Vhl alleles were indeed deleted in the pancreas of Pdx1-Cre;Vhl f/f

newborn pups, whole pup body DNA and pancreatic DNA were

isolated by laser capture microdissection. Genotyping analysis

demonstrated the expected Vhl deleted allele in the Pdx1-Cre;Vhl

f/f pup pancreas, as well as the floxed Vhl allele in cells of non-

pancreatic lineage, such as epithelial and endothelial cells

(Figure 3B, animal #3). Thus, whereas mice with homozygous

inactivation of Vhl in a-cells or b- cells (Glu-Cre;Vhl f/f and Rip-

Cre;Vhl f/f, respectively) showed normal survival rates, Pdx1-

Cre;Vhl f/f mice exhibited reduced postnatal survival that is likely

to be associated with exocrine dysfunction due to the loss of Vhl in

the exocrine pancreas.

Loss of Vhl in Exocrine Pancreas Recapitulates Cysts and
Microcystic Adenoma (MCA) That Develop in VHL
Patients

Since the postnatal lethality observed for Pdx1-Cre;Vhl f/f did

not exhibit 100% penetrance, we were able to perform histological

analysis of the pancreases of the few surviving Pdx1-Cre;Vhl f/f at

adulthood in the C57BL/6 background. At 6–7 months of age,

Pdx1-Cre;Vhl f/f mouse pancreases (n = 2) were indistinguishable

Figure 1. Analysis of Glu-Cre;Vhl colony. A. Validation of the Glu-
Cre transgenic line with Z/AP reporter mice. H&E (panels a, c, e) and
alkaline phosphatase (AP; panels b, d, f) staining of a representative Glu-
Cre;Z/AP pancreas at 5 months of age. Expression of Glu-Cre localized in
a-cells at the outer ring of endocrine islets, as indicated by purple AP
stain. Pancreatic islets (Is) are as indicated in panel a, and images are
shown at 1006 (a, b) and 4006 (c, d, e, f) magnification. B. Genotyping
PCR using genomic DNA isolated from different cell populations of the
endocrine pancreas in Glu-Cre;Vhl f/f and Vhl f/f mice at 27 months of
age. Insulin-positive b-cells (I), glucagon-positive a-cells (G), and lectin-
positive endothelial cells (L) were collected via flow cytometry. Negative
(neg.) and positive (pos.) controls are shown next to the ladder (far left
lane). Top panel shows the PCR for b-globin alleles to demonstrate the
presence of genomic DNA for each cell population. Bottom panel
indicates the presence of deleted Vhl alleles only in a-cells of Glu-
Cre;Vhl f/f pancreas.
doi:10.1371/journal.pone.0004897.g001

Pancreatic Mouse Model of VHL
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from control genotypes (data not shown). However, at 16–18

months of age, an obvious loss of exocrine pancreas and fat

replacement were observed in Pdx1-Cre;Vhl f/f mice (n = 3,

Figure 4A). Pathologists blinded for mouse genotypes further

identified the presence of cysts and MCA in all Pdx1-Cre;Vhl f/f

mice lacking pVHL in the pancreas (Figure 4A, panel c and f).

In VHL patients, the pancreatic cysts and MCA are highly

vascularized and characterized by a layer of epithelial lining

intermixed with endothelial cells forming capillaries around the

cysts [38]. To investigate the similarity between the MCA

developed in Pdx1-Cre;Vhl f/f pancreas and that found in VHL

patients, we used a CD31 antibody to identify endothelial cells,

and a cocktail of cytokeratin antibodies (MAK6) to identify the

epithelial cell lining of MCA. Immuno-histochemical staining

revealed that epithelial lining of the MCA was positive for MAK6

but not CD31, and that CD31 positive endothelial cells were

intermixed within MCA (Figure 4B). The extensive vasculature

network of MCA was more evident in Pdx1-Cre;Vhl f/f mice

injected with FITC-lectin prior to euthanizing (Figure 4C, panels a

and b). Utilizing immuno-fluorescent staining, we further

demonstrated that cytokeratin-positive epithelial lining and

lectin-positive vasculature did not co-localize, but instead were

distinctive cellular structures displayed by MCA in Pdx1-Cre;Vhl

f/f animals (Figure 4C, panels c and d).

Within the pancreas tissue largely replaced by fat deposition,

some islets in Pdx1-Cre;Vhl f/f animals appeared small and

abnormally shaped without much exocrine acinar cells surround-

ing them (Figure 4A, panel f), whereas some appeared hyperplastic

(Figure 5A). Regardless of the size, islets of Pdx1-Cre;Vhl f/f were

characterized by disorganized, dilated and tortuous vascular

networks within, as well as outside the islets (Figure 5B). Since

VHL neuroendocrine tumors are highly vascularized, it is possible

that these islets lacking pVHL might be progressing toward

developing pancreatic neuroendocrine tumors.

Modest Upregulation of Hif1a is Associated with
Pancreatic Phenotypes Developed in Pdx1-Cre;Vhl f/f
Mice

pVHL deficiency is known to result in constitutive HIF a-

subunits stabilization and increased expression of HIF target genes

[11]. To examine if the pancreatic phenotypes observed in Pdx1-

Cre;Vhl f/f mice were associated with activation of Hif1a or Hif2a
pathways, quantitative real-time PCR analysis was performed to

detect Hif1a and Hif2a mRNA expression. As shown in Figure 6A,

Table 1. Expected Mendelian distribution in Glu-Cre;Vhl colony.

Glu-Cre positive offspring

strain Cre;Vhl +/+ Cre;Vhl f/+ Cre;Vhl f/f N x2 p-value

A/J 30.6% 46.9% 22.4% 49 0.837 0.658

C57BL/6 29.1% 40.5% 30.4% 79 2.873 0.238

Mendelian % 25.0% 50.0% 25.0%

Glu-Cre negative offspring

strain Vhl +/+ Vhl f/+ Vhl f/f N x2 p-value

A/J 23.1% 30.8% 46.2% 13 3.308 0.191

C57BL/6 28.6% 53.6% 17.9% 28 0.786 0.675

Mendelian % 25.0% 50.0% 25.0%

Glu-Cre;Vhl f/+ mice were intercrossed and the genotypes of their offspring determined for each background strain at time of weaning.
doi:10.1371/journal.pone.0004897.t001

Table 2. Expected Mendelian distribution in Rip-Cre;Vhl colony.

Rip-Cre positive offspring

strain Cre;Vhl +/+ Cre;Vhl f/+ Cre;Vhl f/f N x2 p-value

A/J 29.3% 56.0% 14.7% 75 4.307 0.116

C57BL/6 28.9% 53.9% 17.1% 76 2.605 0.272

Balb/C 30.4% 53.6% 16.1% 56 2.571 0.276

Mendelian % 25.0% 50.0% 25.0%

Rip-Cre negative offspring

strain Vhl +/+ Vhl f/+ Vhl f/f N x2 p-value

A/J 34.2% 50.0% 15.8% 38 2.579 0.275

C57BL/6 29.4% 41.2% 29.4% 17 0.529 0.767

Balb/C 30.3% 57.6% 12.1% 33 2.939 0.230

Mendelian % 25.0% 50.0% 25.0%

Rip-Cre;Vhl f/+ mice were intercrossed and the genotypes of their offspring determined for each background strain at time of weaning.
doi:10.1371/journal.pone.0004897.t002

Pancreatic Mouse Model of VHL
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expression of Hif1a was upregulated in Pdx1-Cre;Vhl f/f pancreas

(n = 3) when compared with control mice (n = 3). Expression of

Hif2a and a Hif2a-preferred target gene (Vegf) [39] appeared

similar between control and Pdx1-Cre;Vhl f/f mice (Figure 6A,

data not shown). While the upregulation of Hif1a mRNA in Pdx1-

Cre;Vhl f/f pancreas was not statistically significant, we speculated

that this might be the reason why a few of the Pdx1-Cre;Vhl f/f

mice survived postnatal lethality. Consistent with the mRNA data,

we further confirmed the trend that protein expression of Hif1a
was upregulated in the pancreas of pVHL deficient mice utilizing a

Hif1a ELISA assay (Figure 6B).

Discussion

The major significance of this study is that generation of three

new pancreatic mouse models of VHL has allowed us to address

the cellular origins and biological roles of VHL during pancreatic

development and tumorigenesis. In terms of VHL’s role during

pancreatic development, we demonstrated that deletion of Vhl in

endocrine a-cells and b-cells which terminally differentiated

around E12.5 [40], does not appear to affect normal functions

of endocrine pancreas during embryogenesis, postnatal develop-

ment, and in adulthood (Glu-Cre;Vhl f/f and Rip-Cre;Vhl f/f

Figure 2. Physiological analyses of control and Rip-Cre;Vhl f/f mice. A. Body weight, B. Fasted glucose levels, and C. Serum growth
hormone levels of mice in the Rip-Cre;Vhl colony. Genotypes are as indicated and numbers of animals analyzed at each time point are shown in
tables. Data from three different strain backgrounds are combined and shown graphically.
doi:10.1371/journal.pone.0004897.g002

Pancreatic Mouse Model of VHL
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animals). In contrast, deletion of Vhl in pancreatic progenitor cells

that give arise to ductal, exocrine and endocrine pancreas resulted

in significant postnatal death in mice (Pdx1-Cre;Vhl f/f animals),

even though pancreatic organogenesis was not affected during

embryonic development. Together, this data suggest that VHL is

functionally important in postnatal ductal and exocrine pancreas,

and that pVHL is not essential for mature endocrine pancreatic

cells. While this finding uncovers the novel aspect of VHL in

postnatal ductal and exocrine pancreas, it remains to be

determined whether HIF-dependent or HIF-independent path-

ways are involved.

In terms of VHL’s role during pancreatic tumorigenesis, little is

known about the cellular origins and molecular mechanisms

related to VHL-associated pancreatic diseases, even though a large

portion of VHL patients are affected by pancreatic manifestations,

such as cysts, MCA and neuroendocrine tumors. By specifically

inactivating Vhl in distinct pancreatic cell populations, we reported

the first mouse model of VHL that recapitulates some of the

clinical features found in the pancreas of VHL patients, and

demonstrated that inactivation of Vhl in the endocrine pancreas is

insufficient to initiate tumorigenesis. VHL-associated pancreatic

lesions were only found in mice where Vhl was inactivated in

pancreatic progenitor cells (Pdx1-Cre;Vhl f/f mice), but not in

mice in which Vhl was inactivated in mature endocrine cells (Glu-

Cre;Vhl f/f and Rip-Cre;Vhl f/f mice). Thus, our data supports

the notion of a progenitor cell origin for these VHL-associated

pancreatic lesions. In addition, it has been previously suggested by

histopathological studies that MCA originated from pancreatic

exocrine cells, such as the centroacinar cells [41,42] or ductal cells

[43,44]. Moreover, none of the VHL patients (n.108) with PNET

disease evaluated at our center had a functional neoplasm by

hormone levels or symptoms [45]. Together, these data suggest

that VHL-associated MCA and PNET originate from pancreatic

ductal or exocrine progenitor cells, not differentiated endocrine

cells. Analogous to our hypothesis, VHL-associated hemangio-

blastomas have been demonstrated to derive from embryologic

multipotent cells [46]. However, further studies will be required to

definitively determine if these VHL-associated pancreatic mani-

festations can be recapitulated when Vhl is specifically deleted in

progenitor cells of ductal, exocrine or endocrine lineage.

Similar to pervious reports on Vhl knockout mice [24,25], we

also observed variability in phenotypic penetrance of the Vhl

deletion due to differences in mouse genetic backgrounds. The

postnatal lethality in Pdx1-Cre;Vhl f/f mice was most severe in A/

J and Balb/C background strains, but not as severe in the C57BL/

6 background strain. This finding suggests that strain-specific

genetic modifiers may provide protection for the survival of these

mice with pVHL deficiency in the pancreas. Notably, we showed

that pancreatic phenotypes observed in Pdx1-Cre;Vhl f/f mice

correlate with a modest upregulation of Hif1a, but not HIf2a. It is

thus possible that these strain-specific genetic modifiers may

function to interfere with VHL downstream signaling, and

compensate for the loss of pVHL. This does not exclude the

possibility that the pancreatic phenotypes observed in Pdx1-

Cre;Vhl f/f mice resulted from mechanisms completely indepen-

dent of HIF signaling pathways, such as VHL’s role in regulating

extracellular matrix assembly [47]. Identification of these modifier

genes and further comparative functional analysis utilizing mice

deficient in Hif1a and Hif2a will provide insight into the precise

molecular mechanisms leading to the development of VHL-

associated pancreatic disease.

An unexpected observation during our studies was the small size

seen in mice deficient in pVHL in the islet b-cells. While our

analyses excluded the idea that alterations in growth hormone and

basal glucose levels led to this phenotype in Rip-Cre;Vhl f/f mice, it

is described in the literature that pVHL regulates glucose

metabolism in liver and kidney cells [10,36]. Establishment of our

Rip-Cre;Vhl f/f homozygous mice now allows us to begin

investigating whether or not pVHL also plays an important role

in glucose sensing in pancreatic islet b-cells, such as via glucose

transporter 1 (Glut1). However, phenotypes seen in Rip-Cre;Vhl f/f

mice are confounded by the fact that Rip-Cre is expressed at a low

level in the hypothalamus [35]. Thus, it would be critical to confirm

and determine that deletion of Vhl indeed occurred in particular

nuclei within the hypothalamus in Rip-Cre;Vhl f/f homozygous

mice. Only when that information is available, will we be able to

conclusively interpret the physiological data resulting from the loss

of pVHL in pancreatic islet b-cells or in the hypothalamus.

In summary, to decipher the functional significance of pVHL in

the pancreas during development and tumorigenesis, we condi-

tionally inactivated Vhl in distinct pancreatic cell populations and

reported the first mouse model of VHL that recapitulates clinical

features found in the pancreas of VHL patients. Importantly, our

data demonstrated that pVHL is functionally important for

Table 3. Lethality in generating Pdx1-Cre;Vhl f/f in A/J and Balb/C backgrounds.

Pdx1-Cre positive offspring

strain Cre;Vhl +/+ Cre;Vhl f/+ Cre;Vhl f/f N x2 p-value

A/J 18.6% 76.7% 4.7% 43 13.977 0.001

C57BL/6 37.3% 47.5% 15.3% 59 5.881 0.053

Balb/C 31.5% 64.8% 3.7% 54 13.074 0.001

Mendelian % 25.0% 50.0% 25.0%

Pdx1-Cre negative offspring

strain Vhl +/+ Vhl f/+ Vhl f/f N x2 p-value

A/J 33.3% 45.8% 20.8% 24 0.917 0.632

C57BL/6 22.2% 55.6% 22.2% 18 0.222 0.895

Balb/C 22.7% 50.0% 27.3% 22 0.091 0.956

Mendelian % 25.0% 50.0% 25.0%

Pdx1-Cre;Vhl f/+ mice were intercrossed and the genotypes of their offspring determined for each background strain at time of weaning.
doi:10.1371/journal.pone.0004897.t003
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postnatal ductal and exocrine pancreas, and suggested that

pancreatic progenitor cells, not mature endocrine cells, as the cell

of origin for VHL-associated pancreatic lesions. The novel mouse

model systems reported in this study will provide the foundation

for further functional and genetic analysis to advance our

understanding of VHL-associated pancreatic manifestations.

Materials and Methods

Ethics Statement
National Cancer Institute (NCI) and NCI-Frederick are

accredited by AAALAC International and follows the Public

Health Service Policy for the Care and Use of Laboratory

Animals. Animal care was provided in accordance with the

procedures outlined in the ‘‘Guide for Care and Use of Laboratory

Animals (National Research Council; 1996; National Academy

Press; Washington DC). All animal experiments were conducted in

accordance with NIH-approved protocols and guidelines.

Animals and Genotyping
Mice carrying the Vhl alleles flanked by loxP sites [25] were re-

derived in C57BL/6, A/J and Balb/C backgrounds before

crossing with different Cre transgenic mice. The Pdx1-Cre

Figure 3. Histological and molecular analyses of control and Pdx1-Cre;Vhl f/f pup pancreas. A. H&E staining of representative Pdx1-Cre,
Vhl f/f (panels a and c) and control Pdx1-Cre (panels b and d) mouse pups at postnatal day 3 (P3). Magnified (506) pup pancreas are shown (panels c
and d), and islets are indicated by arrows. B. PCR analysis of Vhl allele status. DNA isolated from whole pup section (whole body DNA) and from
pancreas via laser capture microdissection (LCM pancreas DNA) was used to detect Vhl allele status (floxed, wildtype-wt, deleted). Genotyping PCR
was performed in duplicate for each pup (#1–#4). PCR results for Pdx1-Cre;Vhl f/f (#3)and Pdx1-Cre (#4) are the same mouse pups shown in A.
doi:10.1371/journal.pone.0004897.g003
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transgenic mice were a kind gift from Dr. D. Melton [37], and the

Rip-Cre (B6.Cg-Tg (Ins2-cre)25Mgn/J) transgenic mice were

purchased from The Jackson Laboratory (stock number:

003573). The Glu-Cre transgenic mice were generated utilizing

the pBKCMV/Glu-CreGH plasmid kindly provided by Dr. M.

Magnuson. Briefly, the plasmid fragment containing 2.3 kb of rat

glucagon promoter upstream of the Cre-recombinase was isolated

by SalI and NotI digestion prior to injection to generate transgenic

founder lines. Tissue expression of Glu-Cre was evaluated in

offspring from crosses of the Glu-Cre transgenic mice with Z/AP

reporter mice [34]. Detailed analysis of the Glu-Cre transgenic

mice will be described elsewhere. Cre recombinase expression in

tissues of Z/AP mice will delete the floxed LacZ expression cassette

upstream of the hPLAP gene, allowing hPLAP expression and

detection by standard staining techniques. Tissue sections were

counterstained with nuclear fast red (Sigma, St. Louis, MO).

All mice were genotyped by PCR using DNA isolated from tail

snips. Tails were digested overnight in 150 ml of DirectPCR Lysis

buffer (Viagen Biotech, Los Angeles, CA) following manufacturer’s

protocol, and used directly for PCR. Cells collected from laser

capture microdissection (LCM) and flow cytometry were digested

overnight in buffer (100 mM Tris-Cl pH8.0, 50 mM EDTA, 0.2%

SDS, 200 mM NaCl) containing fresh proteinase K (1 mg/ml).

Genomic DNA was isolated following a standard salt and ethanol

precipitation protocol. DNA concentration was determined using

NanoDrop ND-1000 (NanoDrop, Wilmington, DE), and equal

amounts of DNA were used for PCR analysis. The annealing

temperature for Pdx1-Cre, Glu-Cre, and b-globin was 55uC.

Primers for Pdx1-Cre (forward: 59-TTGAAACAAGTG-

CAGGTGTTCG; reverse: 59-CCTGAAGATATAGAAGA-

TAATCG), and for Glu-Cre (forward: 59-AAAATGCAGGCA-

GATGAGCA; reverse: 59-CAGGCTGTTGGCGAAGACA),

and for b-globin (forward: 59-CCAATCTGCTCACACAGGA-

TAGAGAGGGCAGG; reverse: 59-CCTTGAGGCTGTC-

CAAGTGATTCAGGCCATCG) were utilized to generate

500 bp, 401 bp, and 494 bp PCR products, respectively. The

PCR conditions for detecting floxed and deleted Vhl alleles have

been described [48].

Animal Tissue Collection and Processing
The pancreatic tissue was processed for frozen histological

analysis by embedding tissues in Tissue-Tek OCT freezing medium,

and for formalin-fixed paraffin embedding (FFPE). Frozen (10–

20 mm) and FFPE pancreas sections (5 mm) were routinely stained

with Mayer’s hematoxylin and eosin (H&E) for histopathological

analysis. For all histological analysis, Cre;Vhl f/f mice were

compared with age-matched controls genotypes of Cre, Vhl f/f,

Vhl f/+ and Cre;Vhl f/+ mice. Only representative control

genotypes are shown in figures. For whole mount mouse pup

analysis, a sagittal incision was made to allow formalin fixation to

penetrate internal organs. Mouse pups were divided into two parts

via the sagittal incision prior to the paraffin embedding process.

FITC-lectin perfusion to visualize the blood vasculature was

performed as described [49]. Briefly mice were injected intrave-

nously via tail vein with 50 ug of FITC-labeled lectin (Lycopersicon

esculentum, Vector Laboratories, Burlingame, CA), which was

allowed to circulate for 3 minutes. Then mice were euthanized via

cervical dislocation, and the pancreas was removed. All procedures

involving mice were performed with approval by the NIH

Institutional Animal Care and Use Committee.

Islet Isolation, Dissociation, and Flow Cytometry
Mice were perfused with FITC-lectin as described above prior to

being euthanized. Pancreatic islets were isolated by standard

techniques, with minor adaptations. Briefly, pancreata were inflated

via bile duct cannulation and retrograde pancreatic duct injection of

3–4 ml of ice-cold collagenase type XI (1 mg/ml in HBSS, Sigma,

St. Louis, MO). Following digestion (37uC, 14 min), pancreata were

dispersed by gently aspirating through a 14G needle, then filtered

through a metal strainer (0.8 mm). Pancreas suspensions were then

subjected to buoyant density gradient centrifugation (14–15%

Optiprep, Accurate Chemicals, Westbury, NY), followed by

handpicking with great care to collect all visible islets.

Isolated islets were dissociated into single cell suspensions by

careful pipeting after washing in 2 mM EDTA/PBS, and

incubation for 10 min at room temperature in Ca2+ free phosphate

buffered saline (PBS) supplemented with 0.025% trypsin. Disso-

ciated islet cells were immediately fixed and permeabilized in 4%

paraformaldehyde (PFA) (Electron Microscopy Sciences, Hatfield,

PA), 0.1% saponin, (Fluka Chemicals, Switzerland) in PBS for 30

min at room temperature. After removing PFA by washing in 0.1

saponin/1% bovine serum albumin (BSA)/PBS, islet cells were

stained intracytoplasmically for 30 min with antibodies against

insulin (1:300, guinea pig, DAKO, Carpinteria, CA). After

Table 4. Postnatal death in Pdx1-Cre;Vhl f/f mice.

Pdx1-Cre positive offspring

Postnatal (P) days Cre;Vhl +/+ Cre;Vhl f/+ Cre;Vhl f/f N x2 p-value

P1 (birth) 5.3% 63.2% 31.6% 19 3.947 0.139

P3–P5 22.6% 38.7% 38.7% 31 3.194 0.203

P7–P10 31.3% 68.8% 0.0% 16 5.375 0.068

P21 (weaning) 25.8% 70.1% 4.1% 97 24.77 4.2E-06

Pdx1-Cre negative offspring

Postnatal (P) days Vhl +/+ Vhl f/+ Vhl f/f N x2 p-value

P1 (birth) 12.5% 50.0% 37.5% 8 1.000 0.607

P3–P5 14.3% 57.1% 28.6% 7 0.429 0.807

P7–P10 60.0% 40.0% 0.0% 10 7.600 0.022

P21 (weaning) 28.3% 47.8% 23.9% 46 0.261 0.878

Table 4 combines data from A/J and Balb/C background strains and genotypes were determined at different postnatal (P) time points.
doi:10.1371/journal.pone.0004897.t004
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washing, cells were stained in a second staining step with an

glucagon monoclonal antibody (clone K79bB10, Sigma, St. Louis,

MO) using Zenon (pre)labeling technology for mouse IgG1 (Pacific

Blue, Invitrogen, Carlsbad, CA), and an highly cross-absorbed,

second-step polyclonal antibodies (pAb), anti-guinea pig-Cy5

(Jackson ImmunoResearch, West Grove, PA). After the final wash

in 1%BSA/saponin, cells were post-fixed in 1% PFA, and

concomitantly 4-way sorted for insulin positive, glucagon positive,

FITC-lectin positive and unstained samples using a FACSAria cell

sorter with Diva software (BD Biosciences, San Jose, CA).

Electronic gating was set to include viable cells on the basis of

forward scatter versus side scatter while the doublet-exclusion

gating setup was applied to eliminate non-dissociated islet cell

couplets on the basis of pulse width versus total signal area (linear

scale). Sorted islet cell subsets were washed in PBS and kept frozen

at 270uC until DNA extraction.

Figure 4. Histological analysis of the microcystic adenomas (MCA) which developed in Pdx1-Cre;Vhl f/f adult pancreas. A. H&E
staining of pancreas from representative control Pdx1-Cre (panel a), and Vhl f/+ (panel d), and two different Pdx1-Cre;Vhl f/f (panels b, c, e and f) mice
at 16–18 months of age. Gross pancreas histology is shown at 406 in panels a, b, d, e., and areas (black boxes) in panels b and e are magnified at
2006 in panels c and f. Islets are indicated by arrows and MCA are indicated by asterisk. B. Immuno-histochemical staining of MCA utilizing a CD31
antibody (top panel) and a pan-keratin MAK6 antibody (bottom panel) to identify endothelial cells and epithelial cells of MCA, respectively. Arrows
indicate CD31 positive endothelial cells. Images shown are at 5006magnification. C. Representative immuno-fluorescent images of MCA, indicated
by asterisks. FITC-lectin identifies endothelial cells, DAPI identifies cell nuclei and cytokeratin 18 identifies epithelial cells within MCA. Top panels are
at 2006 and bottom panels are at 4006magnification.
doi:10.1371/journal.pone.0004897.g004
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Growth Hormone Measurements
Whole blood was collected via orbital or mandible bleed to isolate

serum. Growth hormone levels were measured with the Mouse/Rat

Growth Hormone ELISA (Diagnostic Systems Labroatories, Inc.,

Webster, TX) according to the manufacturer’s instructions.

Glucose Measurements
Mice underwent a 24 hour fast prior to collecting whole blood

via a tail snip. Blood glucose was measured using a glucometer

(Ascensia Contour, Bayer HealthCare, Mishawaka, IN).

Immuno-Staining for Histological Analysis
For immuno-histochemical staining, monoclonal mouse anti-

human CD31 (1:25, DAKO clone JC70A, Carpinteria, CA)

antibodies, and a cocktail of mouse-anti-cytokeratin, or MAK6

antibodies (predilute, Invitrogen, Carlsbad, CA) were used. The

Universal DakoCytomation Labelled Streptavidin-Biotin2 System,

Horseradish Peroxidase (LSAB2 System, HRP) followed by the

additiona of DAB chromogen was utilized for antigen detection.

Sections were counterstained in Mayer’s hematoxylin, mounted

and photographed using a Zeiss microscope.

Figure 5. Histological analysis of the endocrine pancreas in Pdx1-Cre;Vhl f/f mice. A. Immuno-fluorescent staining of representative
pancreas in Pdx1-Cre (panel a) and Pdx1-Cre;Vhl f/f mice (panels b and c) to demonstrate the abnormally shaped and hyperplastic islets (red) in Pdx1-
Cre;Vhl f/f mice at 16–18 months of age. Images are taken at 1006. B. Immuno-fluorescent images of representative pancreas in Pdx1-Cre (panels a–
c) and Pdx1-Cre;Vhl f/f (panels d–i) to demonstrate hypervascularity within islets of Pdx1-Cre;Vhl f/f mice. Blood vessels are visualized via FITC-lectin
injection (green; panels b, e, and h) while pancreatic islets are identified using an anti-insulin antibody (red; panels c, f, and i). Images are taken at
2006.
doi:10.1371/journal.pone.0004897.g005
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For immuno-staining of FITC-lectin injected pancreas, frozen

sections were briefly fixed in 4% paraformaldehyde, washed in PBS,

and incubated in blocking buffer (5% normal goat serum/2.5% BSA

in PBS). Primary antibodies guinea pig anti-swine insulin (1:500,

DAKO, Carpinteria, CA) and rabbit anti-cytokeratin 18 (1:50,

Santa Cruz Biotechnology, Santa Cruz, CA) were diluted in 0.56
blocking buffer. Sections were incubated with primary antibody

overnight at 4uC in a humidified chamber followed by brief washes

in PBS. Secondary antibodies Alexa Fluor 594 or 633-conjugated

anti-guinea pig and Alexa Fluor 594 -conjugated anti-rabbit (1:200;

Invitrogen, Carlsbad, CA) were applied to sections. After incubation

at room temperature for one hour, the fluorescently stained sections

were washed several times in PBS, cover slipped using mounting

medium with DAPI (Vector Laboratories, Burlingame, CA), and

visualized using either a Zeiss Axiovert fluorescence microscope

(Carl Zeiss MicroImaging, Thornwood, NY).

RNA collection and Quantitative Real-Time PCR
Islet RNA was collected from frozen pancreas sections on slides

by microdissection and extracted using the PicoPure RNA

Isolation kit (Arcturus, Mountain View, CA). RNA concentration

was determined by NanoDrop ND-1000 (NanoDrop, Wilmington,

DE), and equal amounts (1.4 mg) of total RNA was used to

generate cDNA. Reverse transcription and quantitative PCR was

performed as described previously [50]. TaqMan primers and

probes were purchased from Applied Biosystems (Foster City, CA):

Gapdh (Mm99999915_g1), Hif1a (Mm00468878_m1), Hif2a/

Epas1 (Mm0438717_m1).

Hif1a ELISA
Total pancreatic protein lysate was harvested by sonicating

pancreas on ice in RIPA buffer (Pierce, Rockford, IL) containing

16 Complete Protease Inhibitor Cocktail (Roche, Nutley, NJ).

Protein concentration was determined with the Quick Start

Bradford Protein Assay (Bio-Rad Laboratories, Hercules, CA).

Mouse Hif1a protein was measured using Surveyor IC human/

mouse total Hif1a immunoassay according to manufacturer’s

protocols (R&D Systems, Minneapolis, MN).

Statistical Analysis
Statistical analysis was performed using GraphPad Prism v.5.01

and Microsoft Excel. The distributions of genotypes after inter-

breeding of Cre;Vhl f/+ mice were compared to the expected

Mendelian distributions with Chi-square-test. Chi-square and p-

value (2 degrees of freedom) are indicated for each strain and each

postnatal time point in Tables. Mouse body weight, serum growth

hormone levels, and fasted blood glucose levels were evaluated

with one-way ANOVA with multiple comparisons testing.

Expression data of Hif1a and Hif2a were analyzed with Mann-

Whitney (unpaired, nonparametric) t-test. A p value less than (,)

0.05 was considered statistically significant.

Supporting Information

Figure S1 A. H&E staining of representative Rip-Cre and Rip-

Cre;Vhl f/f pancreas at 15 months of age. Islets are as indicated

(Is), and images are taken at 1006. B. Genotyping PCR to

determine Vhl allele status using genomic DNA isolated from

Figure 6. Expression analysis in Pdx1-Cre;Vhl f/f pancreas. Relative gene expression of Hif1a and Hif2a mRNA transcripts (A) and protein
expression of Hif1a (B) in pancreas of control (Pdx1-Cre and Vhl f/+), and Pdx1-Cre;Vhl f/f genotypes at older than 16 months of age. Each column
represents the average expression of three mice for the indicated genotype.
doi:10.1371/journal.pone.0004897.g006
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exocrine (exo) and endocrine (endo) pancreas in Rip-Cre;Vhl f/f

and Rip-Cre mice at 12 months of age.

Found at: doi:10.1371/journal.pone.0004897.s001 (2.54 MB TIF)
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