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Abstract

Glyoxalase 1 (Glo1) has been implicated in anxiety-like behavior in mice and in multiple psychiatric diseases in humans. We
used mouse Affymetrix exon arrays to detect copy number variants (CNV) among inbred mouse strains and thereby
identified a ,475 kb tandem duplication on chromosome 17 that includes Glo1 (30,174,390–30,651,226 Mb; mouse
genome build 36). We developed a PCR-based strategy and used it to detect this duplication in 23 of 71 inbred strains
tested, and in various outbred and wild-caught mice. Presence of the duplication is associated with a cis-acting expression
QTL for Glo1 (LOD.30) in BXD recombinant inbred strains. However, evidence for an eQTL for Glo1 was not obtained when
we analyzed single SNPs or 3-SNP haplotypes in a panel of 27 inbred strains. We conclude that association analysis in the
inbred strain panel failed to detect an eQTL because the duplication was present on multiple highly divergent haplotypes.
Furthermore, we suggest that non-allelic homologous recombination has led to multiple reversions to the non-duplicated
state among inbred strains. We show associations between multiple duplication-containing haplotypes, Glo1 expression
and anxiety-like behavior in both inbred strain panels and outbred CD-1 mice. Our findings provide a molecular basis for
differential expression of Glo1 and further implicate Glo1 in anxiety-like behavior. More broadly, these results identify
problems with commonly employed tests for association in inbred strains when CNVs are present. Finally, these data
provide an example of biologically significant phenotypic variability in model organisms that can be attributed to CNVs.
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Introduction

Multiple lines of evidence suggest a potential role for GLO1 in

human psychiatric disorders. In humans, an A111E amino acid

polymorphism (rs2736654) in GLO1 has been described. The 111E

allele was reported to be significantly more common in autism

patients versus controls and there was also a decrease in GLO1

enzymatic activity in autistic brains [1]. A subsequent study

partially replicated this finding by showing evidence that the 111A

allele of GLO1 confers protection from autism in unaffected

siblings [2]. However, two more recent examinations of this and

other SNPs in GLO1 failed to replicate any association with autism

spectrum disorders [3,4]. The A111E polymorphism has also been

associated with panic disorder without agoraphobia [5]. More

recently, reductions in GLO1 mRNA in the blood of mood

disorder patients have been reported; patients with the same

diagnosis but in remission showed normal GLO1 mRNA levels,

raising the possibility that mRNA for GLO1 is a state-dependent

marker of certain affective disorders [6]. Thus, there are multiple

lines of evidence suggesting a role for GLO1 in various psychiatric

traits.

A study by Hovatta et al [7] found that high Glo1 expression was

strongly associated with high anxiety-like behavior among a panel

of 6 inbred mouse strains. This correlation was bolstered by the

use of viral vectors to over-express or knock-down Glo1 expression.

These studies supported a positive relationship between Glo1

expression and anxiety-like behavior [7]. However, a different

group found that mouse lines selectively bred for high anxiety-like

behavior have lower Glo1 expression and protein levels when

compared to lines selected for low anxiety-like behavior [8,9,10].

This contradiction has raised concerns about the role of Glo1 in

anxiety-like behavior in mice [11].
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Previous studies have not addressed the mechanism that gives

rise to differential Glo1 expression in mice or the location of the

causal allele. We present evidence that differential Glo1 expression

in mice is the result of a common duplication of a large genomic

region that includes Glo1. Segregating duplications and deletions

in DNA are termed copy number variants (CNVs) and are a newly

appreciated source of genetic diversity. It has become technically

possible to identify CNVs on a genome-wide scale in humans [12],

mice [13,14,15,16,17,18,19] arabidopsis t. [20], drosophila m. [21]

and other organisms via comparative genomic hybridization. In

humans, CNVs have been shown to underlie variability in

expression [22] and complex traits [23]. Furthermore, while there

is growing evidence that psychiatric disorders including autism

[24] and schizophrenia [25] may be associated with de novo CNVs,

the contribution of common CNVs to behavioral variability in

model organisms such as mice remains poorly defined. In the

present study we first identified CNVs among inbred mouse

strains, and then investigated their relationship to Glo1 expression

and anxiety-like behavior.

Materials and Methods

CNV Analysis
We used Affymetrix Mouse Exon ST 1.0 microarrays to identify

copy number differences in the genomes of inbred mice (Mus

musculus). CNV detection was accomplished through the applica-

tion of Hidden Markov Modeling (HMM) [21]. We limited our

analysis to regions spanning 3 probe lengths that were either

duplicated or deleted in one strain relative to C57BL/6J (B6; the

reference strain). We selected B6 as the reference strain because

the current assembly of the mouse genome and the design of the

Affymetrix Mouse Exon ST 1.0 microarray rely heavily on B6. We

compared 4 strains to the reference strain: A/J, DBA/2J, LG/J,

and SM/J. Two microarrays were used to represent each strain.

Genomic DNA samples from each strain were hybridized onto

Affymetrix Mouse Exon ST arrays. The exon array is composed of

6,553,600 25-nucleotide-length probes with a coverage density of

4 probes for each exon of all known and predicted genes in the

mouse genome. Differences in probe hybridization are used as a

quantifiable measure to determine CNVs between strains. Spatial

correction procedures [20] were implemented to account for

confounding experimental artifacts such as local spatial bias and

continuous spatial gradients. The probe hybridization intensity

signal was quantile normalized [26] across all probes to further

correct for systematic variance in arrays.

Each probe on the exon array was matched to its corresponding

base-pair position using MegaBlast. We relied on the Mus musculus

genome build 36.1 (Feb. 2006), obtained from the National Center

for Biotechnology Information (NCBI). The annotation, and

subsequent analysis, was limited to those probes for which there

was a perfect alignment to a single position in the reference

genome. The gene annotation was derived from NCBI’s Genbank

and matched to probes (natural.uchicago.edu/,tgal).

The CNV detection model used an HMM approach;

predictions of deletions or duplications utilize relative hybridiza-

tion intensity data for each probe. Probes representing one strain

were assigned probabilities of being in one of three states:

duplicated (more copies), deleted (fewer or no copies) or ground

(equivalent copies), relative to a reference strain. Duplications and

deletions are identified as contiguous regions of probes with high

probabilities for their respective states. The unknown underlying

pattern of relative deletions and duplications between strains

constitutes the hidden aspect of the HMM. Parameters for the

HMM were selected by training on known duplications and

deletions followed by visual inspection across a range of settings to

balance false positives and false negatives. The primary methods for

this algorithm have been published [21]. Here we describe only the

modifications of those methods used in the present study. We limited

our analysis to regions spanning a minimum of 3 probe lengths that

were either duplicated or deleted in one strain relative to a reference

strain. Posterior probabilities for each state were calculated at all

probes using a forward-backward algorithm. The forward-backward

algorithm produced a biologically relevant fit to the array data and

reduced the potential for over correction due to probe effects. To

further reduce noise in the posterior probabilities, the algorithm’s

smoothing parameter was set to 0.55 for both duplicated and deleted

states. The scripts for this analysis, as well as unprocessed and

processed data, are all available at (borevitzlab.uchicago.edu/

Members/rwilliams/copy-number-analysis/supplemental-data).

PCR to Confirm Duplication on Chromosome 17
We used the sequence from the 25-mer probes at the

predicted ends of the duplications as primers for real time

PCR to determine the approximate boundaries of the duplica-

tion. Primers were used to amplify regions from B6 and A/J mice

using ABI SYBRH Green master mix and an ABI 7900

thermocycler in accordance with the manufacturer’s instructions

(Applied Biosystems, Foster City, CA). We then selected single

primers from the 59 and 39 extremes of the putative duplication

that were confirmed to be within the duplicated region by real

time PCR (Figure 1); a PCR product could only be obtained

from these primers if there was a tandem duplication. Based on

the size of this product we then designed sequencing primers that

flanked the duplication boundary. Sequencing was performed

using an ABI capillary based sequencer; primer sequences are

shown in Table S2.

Ethics Statement
All research involving animal subjects was approved by the

relevant institutional animal care and use committees.

Mouse Genomic DNA
Genomic DNA from inbred mouse strains was purchased from

the Jackson Laboratory (Bar Harbor, ME) or was obtained as a

gift. Genomic DNA from 106 outbred CD-1 mice was obtained

from animals sold by Charles River (Wilmington, MA). DNA from

wild-caught mice was obtained from the worldwide collection of

mouse DNAs maintained at the Max-Planck Institute for

Evolutionary Biology, Germany. Our approach used only a single

DNA sample from a single individual to represent each inbred

strain. Both our data and those from other studies suggest the

existence of copy number differences that are segregating within

inbred strains [17]; our approach was not designed to detect

segregation of a CNV within an inbred strain.

Amygdala Gene Expression Measurements
Amygdala tissue was collected from groups of three male 10–12

week old mice from 27 different inbred strains at Genomics Institute

of the Novartis Research Foundation. The amygdala was used

because it has been extensively implicated in anxiety-like behavior.

Mice were euthanized by cervical dislocation and decapitated. The

brain was removed from the skull and positioned in a 1 mm brain

block with the anterior surface abutting a single-edged razor blade

placed in the first slot. The slot nearest the boundary of medulla was

used as the first landmark. Double-edged razor blades were placed

in slots one and two mm anterior and three mm posterior to that

boundary. Two 2-mm thick sections 22 mm with respect to

Glo1 and Anxiety-Like Behavior
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Bregma at posterior surface were dissected. In the first section, a

horizontal cut was made at the ventral boundary of the external

capsule. Another cut in line with the external capsule was made to

separate the piriform cortex from the amygdala. In the remaining

2 mm thick section, the cortex was peeled apart from the

hippocampus. Tissues were quickly frozen on dry ice. Tissues were

pulverized while frozen, and total RNA was extracted with Trizol

(Invitrogen, Carlsbad), then further processed by using the RNeasy

miniprep kit according to manufacturer’s protocols (Qiagen,

Chatsworth, CA). The quality of all samples was verified with an

Agilent Bioanalyzer (Palo Alto, CA) prior to further processing. 5 mg

of total RNA was used to synthesize cDNA that was then used as a

template to generate biotinylated cRNA. cRNA was fragmented

and hybridized to Affymetrix MOE430 gene expression arrays

using the manufacturer’s protocols. The arrays were then washed

and scanned, and images were analyzed and expression measure-

ments summarized by gcRMA from the quantile-normalized probe

intensities of a probe set. The 4 probe sets on the array that target

Glo1 were highly correlated (r.0.6) with each other. Individual

probesets were converted to z-scores and the average of those z-

scores was used to represent each strain.

Glo1 Expression in wild-caught mice
Gene expression was measured in whole-brain samples from six

male mice from a German population (Cologne/Bonn area) and

six male mice from a French population (Massif Central area)

using the Affymetrix MOE430 gene expression microarrays. Each

mouse was an F1 offspring from a male and a female that were

collected directly in the wild. F1 offspring were used rather than

individuals collected directly in the wild to avoid the effects of

environmental factors (e.g. diet, age) of wild animals. In each

population, the parents that gave rise to the F1 male originated

from the same barn, or from locations in very close proximity to

each other. We ensured that all of the F1 mice were unrelated to

each other by collecting their parents from farms that were at least

1 km apart. Mating pairs were set up under standard laboratory

conditions and F1 offspring were sacrificed at 12 weeks of age.

RNA from brain was extracted and processed as described above.

Figure 1. Schematic representation of the duplication. The top shows the location on chromosome 17 from 29.9 to 30.9 Mb and the
duplication as identified by the HMM algorithm using hybridization intensity signals from probes (black circles) between B6 and A/J mice. The HMM
predicted maximum and minimum boundaries are shown as red and green vertical lines. The duplicated region encompasses part of Btbd9, all of Glo1
and Dnahc8, and part of Glp1r. The location of primers for qPCR are shown as P1, P2, etc. red or green indicates which primer pairs were outside or
inside the duplication, respectively. Forward primer 11 and reverse primer 3 or 4 were successfully used to amplify a fragment across the boundary of
the duplication. S1 indicates the location of primers used for sequencing. Ten bases at each critical junction are shown; CTGA (underlined) is observed
on either end of the duplication.
doi:10.1371/journal.pone.0004649.g001
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Sequencing to Obtain Additional SNPs within the
Duplication

We performed de novo sequencing of regions within the

duplication in an effort to identify additional SNPs. Because this

was an exploratory effort we used only a subset of the strains

examined in other parts of this study: 129X1/SvJ; C57BL/10J;

C57L/J; C58/J; LG/J; NON/LtJ; NZB/BlNJ; RIIIS/J; NZW/

LacJ; SJL/J; ST/bJ; BUB/BnJ; A/J; AKR/J; CBA/J; CE/J;

DBA/1J; LP/J. A total of 9 previously reported SNPs were

genotyped in this manner (rs33799594, rs33797803, rs33796825,

rs33804194, rs33801611, rs33800133, rs33800131, rs33798567

and rs33797503). In addition, we performed sequencing across the

duplication boundary and at the two ends of the duplication in an

effort to obtain sequence from amplicons that would be unique in

mice that had the duplication. Sequencing was performed using an

ABI capillary based sequencer; selected primer sequences are

shown in Table S2.

Correlations with Behavioral Data
Behavioral phenotypes were examined using the tools at www.

jax.org/phenome and were further analyzed using Statistica 5.1H

(StatSoft, Tulsa, OK). Association between local SNPs and the

duplication as determined using PCR was assessed using the non-

parametric permutation test that is implemented at snpster.gnf.

org.

Open Field Behavior in Inbred Mice
A panel of inbred strains was tested for anxiety-like behavior in

the open field; these studies were performed at Genomics Institute

of the Novartis Research Foundation. A total of 901 male and

female mice from 38 inbred strains were tested. The open field

arena measured 43643633 cm (width6depth6height) and had a

white Plexiglas floor and clear Plexiglas walls (ENV-515, Med

Associates) that were surrounded by infrared detection beams on

the X, Y and Z-axes, which tracked the animals’ activity. The

apparatus was isolated within a 73.5659659 cm testing chamber

that was fitted with overhead fluorescent lighting (14 lux). All

testing was conducted during the light cycle between the hours of

08:00 and 12:00. At least one hour before testing, cages were

moved from the housing racks to a quiet anteroom adjacent to the

testing room. Following this period of habituation, animals were

removed from their home cage, immediately placed in the open

field arena and allowed to freely explore the apparatus for

10 minutes. The software scored animals for a number of

behaviors in the open field including total distance traveled and

percent time spent in the center of the arena. These data were

recorded during testing and scored in post-session analyses using

commercially available software (Activity Monitor 5.1, Med

Associates). Data were analyzed using a one-tailed ANOVA; a

one-tailed test was justified because all previous associations (Table

S4) showed that the duplication increased anxiety-like behavior.

The testing apparatus was cleaned between each animal with a

0.1% bleach solution.

Open Field Behavior in Outbred, CD-1 Mice
A cohort of 94 male, outbred CD-1 mice was tested for anxiety-

like behavior in the open field; these studies were performed at The

University of Chicago. CD-1 mice were obtained from Charles

River (Wilmington, MA; age 4–5 weeks old) and were housed in our

vivarium for 3 weeks until testing. In order to avoid false positive

(type 1) errors that might occur when using outbred mice that are

siblings, we specifically requested that each mouse be obtained from

a separate family. The open field consisted of a clear Plexiglas

container with internal dimensions of 30630640 cm (width6
depth6height) and was lit by a small incandescent overhead light-

bulb such that the center of the chamber was about 80 lux. The

chamber was fully enclosed in a melamine cabinet to shield it from

laboratory noise and was ventilated by a small fan on the back of the

cabinet. Locomotor activity in the open filed was monitored by

photo beam sensors that were arrayed in a 2 cm grid to monitor

horizontal movements; the data were collected by a microcomputer

and processed using software provided by the manufacturer

(AccuSacn Instruments, Columbus, OH). On the test day, animals

were allowed to habituate to the test room for at least 30 minutes,

and were then gently placed in the center of the open field and

observed for 20 minutes. We examined center time and distance

traveled because the results from inbred strains suggested that these

two variables would be lower in mice with the duplication. The

effect of the duplication on behavior was assessed using a one-tailed

ANOVA. The test chamber was cleaned between subjects with a

10% isopropanol solution.

Measurement of Glo1 expression in Outbred, CD-1 Mice
Whole brain homogenates were prepared from 59 randomly

selected CD-1 mice that had been tested in the open field study

more than 2 weeks prior to tissue collection. RNA was extracted

using Trizol and Qiagen RNeasy kit. Invitrogen Superscript III

was used to produce cDNA according to the manufacturer’s

instructions. An ABI SYBRH Green master mix in conjunction

with an ABI StepOne Plus machine was used according to the

manufacturer’s instructions to quantify Glo1 and beta-actin cDNA

expression levels. These data were expressed as fold change with

respect to B6 control cDNA samples and were converted to z-

scores. We observed significant test-retest variability in individual

Glo1 expression values; perhaps for this reason, we did not observe

a direct correlation between behavior and Glo1 expression. The

effect of the duplication on Glo1 expression was assessed using a

one-way ANOVA.

Results

CNV Analysis
We identified CNVs in inbred laboratory mouse strains by

hybridizing genomic DNA to GeneChipH Mouse Exon 1.0 ST

Arrays, which contain probes that specifically target exons and are

thus ideally suited to identify CNVs that underlie gene expression.

These arrays provide at least an order of magnitude increase in

probe number compared to previous efforts [13,14,15,16,17,18].

CNVs were identified from probe hybridization intensity data

using a Hidden Markov Model (HMM) approach. The HMM

assigned probabilities to each probe for three states: duplicated,

deleted or ground, relative to the B6 reference strain. The use of

the HMM model and a large number of exon-specific probes

provides high power to detect large CNVs that involve known

genes; smaller or intergenic CNVs are less likely to be identified

using this method. We identified a total of 68 duplications and 47

deletions (Table S1) some of which have been identified previously

[13,14,15,16,17]. The limited overlap between our results and

those previously published was expected because our probes did

not uniformly interrogate non-genic regions. The size and

frequency distribution of CNVs identified by our approach are

shown in Figure S1. In this paper we focus on a duplication that is

among the most consistent findings of this and previous studies of

CNVs in mice [13,14,15,16,17]. This duplication is located on

chromosome 17 from 30,174,390 to 30,651,226 Mb (build 36) and

encompasses full copies of Glo1 and Dnahc8 and partial copies of

Glp1r and Btbd9 (Figure 1).

Glo1 and Anxiety-Like Behavior
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PCR to Confirm Duplication on Chromosome 17
We confirmed the presence of this duplication using real time

PCR to quantify genomic DNA template near the predicted ends

of the duplication (Table S2) and subsequently used PCR with

primers directed across the predicted duplication; such primers

would only produce a product in the presence of a tandem

duplication (reverse primers P3 or P4 and forward P11, see

Figure 1 and Table S2). We then sequenced across the duplication

boundary which allowed us to precisely define the location and the

full extent of the duplication (30,174,390–30,651,226; mouse

genome build 36). We used this PCR-based assay to test for the

duplication in 71 inbred mouse strains, which included the 40

strains that make up the JAX phenome panel [27] (Table S3), and

determined that 23 of these strains have the duplication.

Characterization of Duplication in Wild-caught Mice
To further evaluate the history of this duplication, we examined

unrelated individuals collected directly from the wild over a large

geographic range from all three mouse subspecies: M. m. domesticus,

M. m. musculus, and M. m. castaneus. PCR and sequencing at the

tandem duplication boundary confirmed that domesticus mice from

Germany (100%) and France (25%) and a single castaneus mouse

from Taiwan (12.5%) had the duplication (Table 1). The

duplication was absent in some domesticus populations (those from

Iran), as well as most castaneus and all musculus mice and was also

absent in the closely related species M. spretus. These results

indicate that the duplication predates the isolation of laboratory

mice from the wild. Whether the single observation of this

duplication in a castaneus mouse is the result of gene flow between

domesticus and castaneus populations or indicates that the duplication

predates the divergence of these two populations is a important

question that cannot be immediately resolved given the current

data.

Relationship between Duplication and Gene Expression
in BXD RI Strains

We next explored the possibility that this duplication causes

heritable gene expression differences. We used WebQTL (www.

webqtl.org) to explore the relationship between the duplication

and Glo1 expression in the BXD recombinant inbred (RI) lines.

The BXD RI lines are a cross of DBA/2J, which has the

duplication and B6 which does not have the duplication. We

identified highly significant cis-eQTLs for all 4 probesets that

target Glo1 (Figure 2A), as well as probe set 1458719_at which has

been annotated as either Btbd9 or Glp1r (Figure 2B) in

hippocampal expression data (Hippocampus consortium M430v2

(Jun06) PDNN). We observed similar eQTLs in all other tissues for

which expression data in the BXD RI strains was available (whole

brain, striatum, cerebellum, eye, hematopoietic cells, kidney and

liver).

The probeset 1458719_at maps to an intron of Glp1r and is

homologous to several mouse ESTs (BM233846, BQ560923,

BX632944). These ESTs appear to be fusion products of the

duplicated copy of Btbd9 and an intron of Glp1r; mRNA

transcription presumably continues across the duplication bound-

ary and incorporates sequence from an intronic region of Glp1r,

thus producing a novel gene product in strains that possess this

duplication. Consistent with this hypothesis, we have only

observed appreciable signal from 1458719_at in strains that are

positive for the duplication. We did not observe any significant cis-

eQTLs in any of the tissues that we examined for the many probes

that correctly measure the partially duplicated genes Btbd9 and

Glp1r nor did we observe evidence of significant eQTL for

Dnahc8. Thus, while 2 genes are fully duplicated (Glo1 and

Dnahc8) and two others are partially duplicated (Btbd9 and

Glp1r), only Glo1 shows a statistically significant increase in

expression as a result of the duplication.

Relationship between Duplication and Gene Expression
in a Panel of Inbred Strains

Having established that an eQTL for Glo1 was highly significant

when considering a cross between two inbred strains, we sought to

extend these findings by mapping an eQTL for expression of Glo1

in a panel of inbred strains, similar to approaches that have been

proposed for genome-wide association analysis [28] and in an

effort to follow up on the findings of Hovatta et al [7]. We

obtained expression data from the amygdala for 27 inbred strains

for which duplication status was also known. To our surprise, of

the 48 SNPs examined between 30 and 31 Mb neither single SNPs

nor 3-SNP haplotypes were strongly associated with Glo1

expression in the amygdala. Specifically, the maximum 2log10(p)

for any single SNP was 2.9 (rs3150712; 30.49 Mb) whereas the

maximum 2log10(p) for any 3-SNP haplotype was 2.77

(rs33190587; 30.12 Mb). When the same tests were re-run with

a correction for population structure, the highest scoring SNP and

3-SNP haplotypes did not change, but their 2log10(p) decreased to

2.15 and 2.28, respectively. In contrast, the presence of the

duplication, as determined using our PCR-based assay, was

extremely significantly associated with Glo1 expression

(2log10(p).6), revealing the expected cis-eQTL for Glo1. Correc-

tion for population structure did not diminish this extremely

significant result. These data were surprising because we had

expected that SNPs and 3-SNP haplotypes in the vicinity of the

duplication would be strongly associated with the duplication and

hence expression of Glo1.

Haplotype Structure Among Inbred Strains from 30 to
31 Mb

SNP-association results from the BXD RI strains, but not from

a panel of inbred strains, identified a cis-eQTL at the location of

the duplication for Glo1. To better understand this surprising

result, we examined the haplotype structure from 30–31 Mb in the

71 strains where the duplication status was known using the same

Table 1. Presence of the duplication in wild mice.

Location (sub-species)
Number with duplication/
total number observed

Germany (dom) 18/18

France (dom) 4/16

Iran (dom) 0/8

India (cast) 0/8

Taiwan (cast) 1/8

Czech Republic (mus) 0/8

Kazakhstan (mus) 0/8

Mus spretus 0/18

Table showing the location of wild mouse collection and the fraction of total
mice observed that tested positive for the duplication. The assay used does not
distinguish between mice that are heterozygous for the duplication and those
that are homozygous; both conditions are scored as positive. Abbreviations:
‘‘dom’’: Mus musculus domesticus; ‘‘cast’’: Mus musculus castaneous; ‘‘mus’’: Mus
musculus musculus. Mus spretus is a different species that is closely related to
Mus Musculus.
doi:10.1371/journal.pone.0004649.t001
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48 SNPs. Significantly, these SNPs flanked, but were not internal to

the duplicated region. We observed four distinct haplotypes that

contained the duplication (Figure 3, denoted with green borders).

Careful examination of the data in Figure 3 led us to conclude that

multiple non-allelic homologous recombination events had taken

place within the duplicated region. Non-allelic homologous

recombination can occur between two chromosomes that both

contain the duplication or between one duplicated and one non-

duplicated chromosome. Such a recombination would lead to the

exchange of either the distal or proximal haplotypes shown in

Figure 3 without altering duplication status. In particular, this

explanation accounts for the SNP haplotype observed in the

proximal regions of B6 and related strains (not duplicated) and

DBA/2J (duplicated; Figure 3). Thus, we hypothesize that

recombination within the duplication is at least partially responsible

for the complex haplotype structure around the duplication.

Sequencing to Obtain Additional SNPs within the
Duplication

The number of SNPs located within the duplication that were

available from public databases was relatively small compared to

the number of SNPs on either side of the duplicated region. Those

that were available had higher than average rates of missing

genotypes, and genotypes appeared to be disproportionately

missing in strains that were positive for the duplication. We

suspected that both phenomena were due the SNP assays or strain-

specific SNP genotypes being scored as failures because hetero-

zygous genotypes were obtained from inbred strains. A heterozy-

gous genotype contradicts the assumption that these mice are

inbred, and could thus appear to be a technical error. We

suspected that these apparently heterozygous genotypes weredue

to polymorphisms between the proximal and distal duplicated

regions. To test this hypothesis, we sequenced 9 SNPs that were

entirely within the duplication in 18 inbred strains (6 of which had

the duplication). We observed multiple apparently heterozygous

genotypes in duplicated strains, but none in non-duplicated strains

(data not shown). The heterozygous genotypes can best be

explained by a region that is polymorphic when comparing the

proximal and distal copies of the duplication, rather than being

heterozygous due to differences between two chromosomes. The

heterozygous genotypes agreed with the haplotype structure

shown in Figure 3, and it was possible to identify the haplotypes

of the proximal and distal copies. These observations are

consistent with the hypothesis that the complex relationship

between the duplication and surrounding haplotypes is due to

crossovers that occurred within the duplicated region.

Figure 2. cis-eQTL for Glo1 and the probe 1458719_at. Plot shows mouse genome on x-axis and log ratio score (LRS) on y-axis. Horizontal lines
indicate genome-wide suggestive and significance thresholds as determined by permutation. Glo1 (1424109_a_at) (panel A) and the probe
1458719_at (panel B) measured by MOE430v2 microarray using hippocampal tissue as described elsewhere (generated by www.genenetwork.org).
doi:10.1371/journal.pone.0004649.g002
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In order to avoid the ambiguity associated with heterozygous

genotypes we used sequencing primers that spanned the duplication

boundary (duplicated strains only). For comparison, we also used

sequencing primers where one primer was outside of the duplicated

region and the other was inside the duplicated region (all strains).

This allowed us to uniquely compare SNPs that might be

polymorphic between the proximal and distal copies in the

duplicated strains, and also to directly extend our haplotype

analysis into the duplicated region. When considering the proximal

duplication boundary (,30.17 Mb), we observed two informative

SNPs (30,174,423 and 30,174,589) both of which appear to have

been exchanged via crossing over between duplicated and non-

duplicated strains. The region near to 30.65 Mb was more

interesting: a SNP at 30,650,629 is polymorphic such that the

second duplication-containing haplotype block (the one that

includes the A/J strain) differs from all other duplicated strains.

The second duplication-containing haplotype block has a charac-

teristic allele that is never observed in the analogous region in any of

the other duplicated or non-duplicated strains. The second SNP in

this region (30,650,736) perfectly distinguishes the internal from the

external duplicated and non-duplication sequence and is thus never

observed in non-duplicated strains. Both observations are consistent

with these SNPs arising after the duplication occurred, though we

cannot exclude the possibility of recombination or gene conversion

with an unobserved, non-duplicated chromosome that contained

these SNPs. Had the SNP at 30,650,736 been present in the inbred

strain database, it would have performed as well as our PCR assay

in terms of predicting the presence of the duplication; thus,

exhaustive SNP coverage may help to address problems with inbred

strain haplotype mapping, but will also increase the multiple testing

burden and thus are unlikely to offer a solution to the problem of

using SNPs to identify CNV among inbred strain panels.

Evidence for Recent Loss of the Duplication
Another observation that we made in examining the data in

Figure 3 is that four strains (129X1/SvJ, BALB/cJ, BTBR T+tf/J

Figure 3. Haplotype blocks from 30–31 Mb across 71 inbred strains at 48 SNP markers. The duplicated region is denoted by heavy black
vertical lines; duplicated strains are denoted with two repeating regions labeled ‘proximal copy’ and ‘distal copy’, whereas non-duplicated strains are
indicated with a single box that contains the text ‘non-duplicated’. The major and minor alleles are coded as yellow (major) and blue (minor),
respectively. Missing data at a given SNP is indicated in white. Strain names are shaded to indicate haplotype identity. Green boxes indicate
haplotypes that contain the duplication. Red boxes (129X1/SvJ, BALB/cJ, BTBR_t+_tf/J, PERA/EiJ) indicate strains that belong to duplication
containing haplotypes but do not have the duplication; we suggest that these strains have undergone reversions to the non-duplicated state. Within
the duplicated region it was possible to genotype 4 SNPs (30,174,423; 30,174,589; 30,650,629; 30,650,736) that have been duplicated and to uniquely
determine their genotype at both locations, as described in the text, these SNPs occur twice in the duplicated strains. Marker position (Build 36.1) and
strain ID are indicated.
doi:10.1371/journal.pone.0004649.g003
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and PERA/EiJ) appeared to belong to one of the two common

duplication-containing haplotypes but did not contain the

duplication (Figure 3; denoted with red boxes). We hypothesized

that the duplication has reverted to the non-duplicated state in

these strains by a process of non-allelic homologous recombination

(sometimes termed unequal crossing over). This hypothesis was

confirmed both by examination of DNA samples obtained from

previous generations of these inbred strains as well as by taking

advantage of the known breeding history of these strains. In this

regard, one compelling case was the absence of the duplication in

BALB/cJ. Historically, we know that BALB/cByJ and BALB/cJ

were separated in the 1930s [29] but they remain isogenic at all

typed SNPs and clearly share the same haplotype throughout the

duplicated region (Figure 3). The absence of the duplication in

BALB/cJ could be explained by a reversion event that occurred

after their separation from BALB/cByJ in 1937. We obtained

DNA samples from JAX for BALB/cByJ from 1982 and 2000 and

determined that both had the duplication. We also obtained DNA

from BALB/cBy (used by Tafti et al [30], see below), which was

separated from BALB/cByJ in the 1970s, and found that, unlike

BALB/cByJ, BALB/cBy did not have the duplication. Finally, we

obtained DNA from 1998 and 2006 for BALB/cJ and found that

the duplication was not present in either sample. These data are

consistent with the hypothesis that the duplication has reverted to

the non-duplicated state and/or that duplicated and non-

duplicated alleles have been segregating within the BALB/c-

lineage for some time. Because of the known breeding history of

the BALB/c mice, the reversion observed in 129X1/SvJ, which

shares the BALB/c haplotype, is presumed to have an indepen-

dent origin. We obtained a sample from the F30 generation of

PERA/EiJ (1982) and found that this sample was positive for the

duplication, whereas the modern samples (F99) were negative for

the duplication. SNPs that were inside the duplication in the F30

sample of PERA/EiJ exactly matched the other strains in that

haplotype block (data not shown). These observations are

consistent with loss of the duplication due to unequal crossing-

over, as discussed above. Genomic DNA from BTBR T+tf/J from

1996 and 2004 as well as a sample from 129X1/SvJ from the

1990s were similar to modern samples and thus offered no further

insights.

Thus, this duplication cannot be reliably predicted based on

single SNPs or multi-SNP haplotypes due to simple recombina-

tion, genotyping problems due to heterozygous genotypes, and

reversion to the non-duplicated state via non-allelic homologous

recombination. The observation of changes in CNVs over time are

consistent with recent reports from Watkins-Chow & Pavan [18]

and Egan et al [17] which show changes in CNVs among and

within inbred strains. Indeed, Egan et al [17] appears to have

identified a copy number difference for the duplication discussed

in this paper between two different A/J mice (denoted as INTRA-

1 in Supplemental Table 1c on page 76 of the supplemental

materials for that paper).

Relationship between the Duplication and Glo1
Expression in Wild-Caught Mice

We examined gene expression in whole brain homogenates

from unrelated, outbred, wild-caught domesticus mice from

Germany (6 mice) and France (6 mice). We found a highly

significant (2log10(p).4) association between the presence of the

duplication, as determined using our PCR-based assay, and

expression of Glo1 as measured by all four Glo1-specific probesets

as well as 1458719_at.

We examined expression levels of all 4 Glo1 probesets as well as

1458719_at in a previously published dataset [31] that examined

inbred wild-derived domesticus, musculus and castaneus strains. Even

with a very small sample size (n = 2 per group) Glo1 expression was

significantly higher in the domesticus-derived inbred strains

(2log10(p).2.25) relative to the other two inbred strains. PCR-

based genotyping of genomic DNA confirmed that only the

domesticus-derived inbred strain had the duplication. These data

further support a direct relationship between the duplication and

Glo1 expression in outbred, wild-caught and wild-derived inbred

mouse strains.

Relationship between the Duplication and Anxiety-Like
Behavior Using Publicly Available Datasets

Our data clearly establish that increases in Glo1 expression in

panels of inbred strains, outbred populations and even in wild-

derived populations are driven by a duplication of the Glo1 gene.

This knowledge should facilitate an examination of this gene’s role

in behavioral phenotypes. We used the results from our PCR-

based genotyping method to score presence or absence of the

duplication in many common inbred strains using data shown in

Table S3 and found significant correlations with various classical

tests of anxiety-like behavior including the elevated zero maze,

elevate plus maze, light dark box and open field test that were

available from the JAX Phenome site (www.jax.org/phenome). A

partial summary of these findings is presented in Table S4. For

example, data from 8 strains tested in the elevated zero maze [32]

showed that the duplication was associated with fewer beam

breaks in the closed quadrant of the open field and more fecal boli

(r = 0.82; p = 0.01, r = 0.78; p = 0.023, respectively). Data from

another set of 13 strains tested in elevated zero maze study

(Brown1; unpublished) showed that the duplication was associated

with greater numbers of fecal boli (r = 0.67; p = 0.034). Data from

13 strains tested in the elevated plus maze (Brown1) again showed

that the duplication was associated with a greater number of fecal

boli (r = 0.73; p,0.01). Data from 13 strains tested in the light

dark box (Brown1) showed that the duplication was associated

with less total activity and a greater number of fecal boli (r = 0.76;

p,0.01, r = 0.83; p,0.01, respectively). Data from 21 strains

tested in the open field test [33,34] showed that the duplication

was associated with less movement in the open field for each of the

first 5 minutes (e.g. distance traveled in the first minute: r = 0.57;

p,0.01). Data from a separate study of 8 strains also tested in the

open field [33], showed that the duplication was associated with

less activity and time in the center of the open field (r = 0.89;

p,0.01 and r = 0.84; p = 0.010, respectively). Data from a third

study of the open field (Brown1; unpublished) showed that the

duplication was associated with less activity and a greater number

of fecal boli (r = 0.73; p,0.01, r = 0.67, p,0.013, respectively). It

is important to note that in all cases, presence of the duplication

was negatively associated with activity and positively associated

with anxiety-like behavior, consistent with our hypothesis and the

observations of Hovatta et al [7]. A number of other phenotypes

were also correlated with the presence of the duplication even

though they have no obvious relationship to anxiety. For example,

latency to respond to the hot plate test, a measure of nociception

[35], was slower in strains that carried the duplication (r = 0.81;

p,0.01). Taken together these data demonstrate that the

duplication is correlated with behaviors including, but not limited

to, those associated with anxiety-like behaviors.

Relationship between the Duplication and Anxiety-Like
Behavior Using New Inbred Strain Data

Because of the limited number of inbred stains for which

behavioral data were available in the public databases (21 or less
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strains per study), and the genetic and environmental variability

presumed to exist for anxiety-like behavior, the power of the

correlations observed in public databases was limited. To more

rigorously test the association between the duplication and

anxiety-like behavior, we used our own behavioral data from 38

inbred strains (901 individual mice total) for which the duplication

status was known. We observed a significant reduction in percent

time in the center of the open field among strains that had the

duplication (p = 0.0043), further demonstrating that the duplica-

tion was associated with greater anxiety-like behavior (Figure 4B).

The strength of this association was not changed when a

correction for population structure available in SNPster

(snpster.gnf.org) was applied, suggesting that this association was

not due to artifacts associated with population structure. While

none of these correlations would have been significant if a

correction for multiple comparisons (e.g. all CNV identified in this

study) had been applied, such corrections were unwarranted

because we had a strong prior hypothesis that Glo1 expression

affects anxiety-like behavior. In the present study we have focused

on a single CNV, and so the required threshold has been set to the

traditional value of 0.05.

Relationship between Glo1 Expression and Anxiety-Like
Behavior in Inbred Strains

Because our hypothesis is that the duplication increases gene

expression and thus alters behavior, we also examined the

relationship between the duplication and Glo1 expression in the

amygdala (Figure 4C; p,0.000001) and the relationship between

Figure 4. Relationship between behavior, duplication, gene expression and haplotype block. A) hypothesized relationship between the
duplication, Glo1 expression and anxiety like behavior; B) Correlation between duplication status and anxiety-like behavior as measured by percent
time in the open field and presence of the duplication. A total of 901 male and female mice from 38 inbred strains were tested (n = 5–42 per strain).
Random scatter along the x-axis and within duplicated and non-duplicated groups has been added. C) Correlation between duplication status and
normalized gene expression in the amygdala from 27 inbred strains. Random scatter has again been added along the x-axis. D) Correlation between
normalized Glo1 expression in the amygdala from 27 inbred strains and anxiety-like behavior as measured by percent time in the open field. E)
Relationship between haplotype blocks and anxiety-like behavior as measured by percent time in the open field. Behavioral data were obtained from
multiple individuals from each of the indicated number of strains, error bars represent the standard error for the mean of strains, not individuals,
which would have been much smaller, but statistically inappropriate because the unit of analysis is strains not individuals.
doi:10.1371/journal.pone.0004649.g004
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Glo1 expression in the amygdala and anxiety-like behavior

(Figure 4D; p = 0.0012). Both correlations were more significant

than the correlation between the duplication and behavior. We

used multiple regression to examine the relationship between the

duplication, Glo1 expression and behavior. Both forward- and

reverse-selection methods arrived at a model that included

expression but did not include our PCR-based measure of the

duplication. This might be attributed to some strains having more

than two copies of the duplicated region and showing correspond-

ingly higher expression; our PCR-based technique does not

determine the number of extra copies of this region. These results

are consistent with the hypothesis that expression of Glo1 is a better

predictor of behavior than the duplication itself.

Relationship between Flanking Haplotypes and Behavior
in Inbred Strains

An alternative hypothesis that might also explain the correlation

between the duplication and anxiety-like behavior is that the

functionally significant allele is genetically linked to, but not

contained within, the duplication. To test this hypothesis, we

calculated the average anxiety-like behavior associated with three

of the four duplication-containing haplotypes identified in Figure 3

for which our study of 38 inbred strains provided corresponding

behavioral data (Figure 4E). We found that each of the three

duplication-containing haplotypes was associated with higher

anxiety-like behavior compared to the average anxiety-like

behavior associated with all non-duplicated strains, which is

consistent with the hypothesis that the duplication alters behavior,

but is inconsistent with the alternative hypothesis that the

duplication is genetically linked to another allele that alters

anxiety-like behavior. We considered separately the two strains

that were members of the duplication containing haplotype blocks

but had apparently lost the duplication (BTBR_T+_tf/J and

PERA/EiJ; red boxes, Figure 3); their anxiety-like behavior was

similar to the average behavior of the non-duplication containing

strains (Figure 4E). This observation further supports the

hypothesis that the presence of the duplication directly effects

anxiety-like behavior.

Relationship between the Duplication, Anxiety-like
Behavior and Glo1 expression Using Outbred CD-1 Mice

To further test the relationship between the duplication and

anxiety-like behavior, we evaluated behavior in the open field in

outbred CD-1 mice. We found that 52 of the 94 mice examined

had the duplication while 42 did not. We also examined an

additional 12 CD-1 mice that were not tested behaviorally; 7 had

the duplication and 5 did not. Our PCR assay cannot discriminate

between mice that are heterozygous or homozygous for the

duplication; nevertheless it is possible to solve the equations

p2+2pq+q2 and p+q = 1 given the data above, which yields a

frequency of 0.334 for the duplication and 0.666 for the non-

duplicated allele. These values apply only to the subset of 106 CD-

1 mice that we genotyped, but should provide an approximate

guide for future studies.

We observed a significant decrease in total distance traveled in

the first 5 minutes of the open field test (F(1,92) = 3.81; p,0.05;

Figure 5A) and a significant decrease in the time spent in the

center of the open field among CD-1 mice that were positive for

the duplication (F(1,92) = 3.14; p,0.05; Figure 5B). Moreover, we

observed greater Glo1 expression among outbred CD-1 mice that

were positive for the duplication (Figure 5C; F(1,57) = 19.31;

p,0.00005). These data are consistent with the positive

relationship between the duplication and anxiety-like behavior

observed among the inbred strain panels, and support the

hypothesis that these relationships are unlikely to be due to

linkage between the duplication and a nearby allele. In both

inbred and outbred mice many other alleles are presumed to also

affect anxiety-like behavior so that the contribution of this

duplication would account for only a small percentage of the

total trait variance; this is characteristic of all complex traits and

Figure 5. Behavior and gene expression in CD-1 mice with and
without the duplication. There was significantly less activity, as
measured by total distance traveled in the first 5 minutes in mice with
the duplication (panel A). There was also significantly greater anxiety-
like behavior, as measured as decreased percent time spent in the
center of the open field in mice that had the duplication (panel B).
Finally, there was a highly significant increase in Glo1 expression in
whole brain homogenates of mice with the duplication. Expression was
represented as fold change versus B6 mice, which are known not to
carry the duplication; values were transformed to z-scores.
doi:10.1371/journal.pone.0004649.g005
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has made the elucidation of their molecular correlates a

challenging problem.

Discussion

Our data indicate that a CNV found in the largest extant mouse

RI panel, a large inbred strain panel, an outbred laboratory mouse

population and wild-caught mice causes an eQTL for Glo1. The

CNV exists in many different haplotypes and has recently mutated

to the non-duplicated state in multiple inbred strains, confounding

haplotype association analysis. Furthermore, this CNV is corre-

lated with differences in anxiety-like behavior in multiple datasets

derived from studies of inbred strains and in outbred CD-1 mice.

These correlations appear to persist even when the population

structure of the inbred strains is taken into account. Furthermore,

the relationship between Glo1 expression and behavior does not

appear to be related to linkage with alleles outside the duplication.

Taken together, these data extend upon and support the

observations of Hovatta et al [7] which showed a positive

relationship between anxiety-like behavior and Glo1 expression,

but are inconsistent with studies based on selection for divergent

levels of anxiety-like behavior in CD-1 mice, which showed a

negative relationship between anxiety-like behavior and Glo1

expression [8,9,10,11]. More broadly, our data suggest that CNV

are common among inbred strains and that they influence both

gene expression and complex behavioral traits.

Implications for the relationship between Glo1
expression and anxiety-like behavior

Previous data have shown a positive association between Glo1

expression and anxiety-like behavior across 6 inbred strains [7].

Over- and under-expression of Glo1 by lentiviral vectors confirmed

a positive relationship between Glo1 expression and anxiety-like

behavior [7]. However, another study in outbred Swiss mice

indicated that greater levels of anxiety-like behavior in the light

dark box test were positively correlated with increases in reactive

oxygen species in granulocytes [36]. Moreover, selection for

anxiety-like behavior, as measured by the elevated plus maze,

produced low-anxiety mice with higher Glo1 expression, suggesting

a negative relationship between anxiety-like behavior and Glo1

expression and Glo1 protein levels [8,9,10,11]. Thus, previous

studies disagree about whether expression of Glo1 increases or

decreases anxiety-like behavior [11]. The selection studies of

Kromer et al [8] used outbred CD-1 mice. Our studies have

shown that CD-1 mice are polymorphic for the duplication.

Therefore it seems very likely that differences in Glo1 expression in

the selected lines were due to the duplication; a combination of

genetic drift and inbreeding might have caused this apparently

surprising result. All data in this paper support a positive

relationship between Glo1 and anxiety-like behavior. In particular,

we observed such a relationship in CD-1 mice that should be

similar to those used by Kromer et al [8]. While it has been

suggested that GLO1 may be a novel target for anxiolytic

intervention in humans [37], disagreement among mouse studies

has been a source of major concern [11]. Our data significantly

inform this debate by clearly establishing the primary molecular

locus that causes differential Glo1 expression among mice and by

providing extensive support for a positive correlation between Glo1

expression and anxiety-like behavior.

The haplotype structure shown in Figure 3 indicates that the

duplication is associated with multiple distal and proximal

haplotypes. We used open field data to calculate the average

behavior associated with 3 of the 4 haplotypes for which data were

available. This analysis showed that all duplication containing

haplotypes are associated with higher anxiety-like behavior, which

is consistent with a direct role for the duplication in behavior. In

addition, the two strains that are part of haplotype block 2 but

have lost the duplication spend more time in the center of the open

field (less anxiety-like behavior) compared to strains in the same

haplotype block that retain the duplication (Figure 4E). Finally, the

CD-1 mice presumably have a very different haplotype structure

around this duplication, but still show the expected relationship

between the duplication and behavior (Figure 5). These three

observations support a causal role of the duplication in behavior

and are inconsistent with the alternative hypothesis that the

duplication is simply in LD with some other causal allele

(Figure 4E).

Because this duplication contains 4 genes it is not immediately

clear which gene is responsible for the observed behavioral

differences. Because 2 of the 4 genes are incomplete it is less likely

that they are functional. In addition, Glo1 was the only gene that

showed a significant eQTL as a result of the duplication in any of

the tissues examined. These observations suggest that Glo1 most

likely accounts for the observed behavioral differences. However

the observation that over-expression or knockdown of Glo1 altered

anxiety-like behavior [7] offers the most compelling evidence that

Glo1 is responsible for the observed differences in anxiety-like

behavior. In general, direct manipulation genes identified by

genetic associations are critical to establish causality when multiple

genes are contained within a CNV.

Thornalley [11] has suggested the association with anxiety-like

behavior ‘‘…might reflect induction of Glo1 expression as a

consequence of chronic exposure to increased methylglyoxal

concentration…’’. Along the same lines, a recent clinical study has

suggested that GLO1 expression in blood may be a state-dependent

marker of affective disorder [6]. Given that our data clearly show

that differences in Glo1 expression among mice are the direct result

of this duplication, rather than the downstream result of a dynamic

process, our data strongly argue that differential Glo1 expression in

mice is a trait rather than state marker of anxiety-like behavior.

This further illustrates the significance of the elucidation of the

molecular cause of differential Glo1 expression described in the

present report.

Implications for other studies of Glo1
Beyond the relationship to anxiety-like behavior, our observa-

tions appear to explain a variety of other previously published

results related to Glo1. In 1977, two electrophoretically distinct

alleles of Glo1 were reported to serve as genetic markers, and it was

observed that an inbred female AKR/J mouse was heterozygous

for this marker [38]. While the electrophoretic polymorphism is

not due to the duplication, the observation of a heterozygous

genotype for an inbred strain may well have been due to a

polymorphism between the two duplicate copies (modern AKR/J

mice have the duplication; Figure 3). A more recent study [30]

suggested that differences in Glo1 expression are caused by a

mutation in Acads; however, in light of our data we would instead

suggest that differential Glo1 expression is due to differential

fixation of the Glo1 duplication between BALB/cByJ and BALB/

cBy, and is therefore not functionally related to the Acads mutation

(DNA from BALB/cBy and BALB/cByJ, the two strains

compared by Tafti et al [30] are discordant for the duplication).

Cutler et al [16] suggested that many CNVs, including the

duplication of Glp1r, which is contained in this duplication, might

be responsible for differences in food intake among inbred strains.

Their analysis did not account for population structure, and may

therefore overestimate the significance of this association. In

addition, because Glp1r is only partially duplicated it is not clear
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that the extra copy is functional as discussed above. Thus, we

believe that Glo1 rather than Glp1r may be the cause of the

differences observed by Cutler et al [15].

Implications for research related to CNVs
Analysis of expression differences in the absence of knowledge of

CNV can produce misleading results. No single SNP or 3-SNP

haplotype was able to tag this duplication in a densely genotyped

panel of inbred strains. This is due to complex haplotype structure

around the duplication as well reversions to the non-duplicated

state. Because many CNVs may show similar patterns, greater

caution will be required when working with inbred populations

because the loss of CNVs, accompanied by potentially dramatic

phenotypic consequences, will be more common than has been

generally appreciated [17,18]. In addition, direct characterization

of CNVs, rather than extrapolation based on shared SNP

haplotypes, appears to be warranted for studies utilizing inbred

strain panels. Existing recombinant inbred panels and future

resources like the collaborative cross will require strategies to cope

with CNVs, which cannot be correctly predicted by using nearby

SNPs. Among inbred strains, sequencing a putatively duplicated

region can provide a preliminary test for CNVs; the presence of

heterozygous genotypes would suggest the presence of a

duplication. Along the same lines, distortions of Hardy-Weinberg

equilibrium would be expected for markers within a duplication

when working in an outbred population. PCR assays like the one

utilized in the present study can be readily developed for both

deletions and duplications, providing a valuable and efficient

means of genotyping large numbers of subjects. For large scale

discovery and typing of copy number differences, array-based

methods, such as the ones used in this paper are clearly the most

efficient.

Data implicating CNV in both autism [24] and schizophrenia

[25] have focused on de novo mutations rather than common CNV

alleles. In contrast, the present study focuses on a duplication that

is common among mice. In an effort to determine whether the

peculiar history of inbred mouse strains had made a recent de novo

CNV common by a combination of sampling error, genetic drift,

inbreeding and perhaps unintended selection, we examined wild-

caught mice (Table 1). Our studies of wild-caught mice indicated

that this particular duplication is common in both wild and

laboratory mice. Crosses among inbred mouse stains are efficient

for identifying the effects of copy number variants that are

differentially fixed among inbred strains, since the frequency of the

CNV can be set at 1:1 by crossing two contrasting inbred strains.

This is a different approach than focusing on de novo CNV in

human subjects [24,25]; examination of de novo duplications shares

more in common with existing mouse mutagenesis strategies. In

understanding whether SNPs or CNVs found among inbred

strains are the result of a rare allele that was sampled from the wild

and then amplified during the inbreeding process, reference back

to wild populations, as in our study, provides invaluable insights.

Conclusions
In summary, these data show that a large CNV alters Glo1

expression and is associated with differences in anxiety-like

behavior in inbred and outbred mice. Furthermore, we show

evidence that complex haplotype structure and loss of duplicated

regions by non-allelic homologous recombination may degrade the

statistical power of methods that seek to associate genotypes with

phenotypes in panels of inbred strains. More generally, the present

results show that eQTLs and genetically complex behavioral

differences in mice can be caused by CNVs.

Supporting Information

Table S1 Duplications called by the HMM relative to C57BL/

6J. Table shows the beginning and end of each duplication or

deletion, which strain did or did not have the duplication or

deletion, as well as the size and genes involved in each feature.

While the same duplication or deletion may have been identified

in more than one comparison, each entry represents the

boundaries as defined by a single contrast between the indicated

strain and the C57BL/6J reference strain.

Found at: doi:10.1371/journal.pone.0004649.s001 (0.55 MB

DOC)

Table S2 Primers used to fine map and sequence the boundaries

of the chromosome 17 duplication. Real time PCR primers were

designed to span the predicted duplication boundaries at ,5 kb

interval. Triple lines indicate .5 kb sequence gaps in the primer

survey. Primers outside the duplicated region are highlighted. a

Primers used to amplify across the duplication boundary

(Dup1F11/Dup1R3 or Dup1F11/Dup1R4) and to screen some

inbred and outbred mice. Dup1R11, Dup1F3 or Dup1R11,

Dup1F4 were simultaneously added as internal amplification

controls. b Primers used for sequencing across the duplication

boundary to identify the duplication boundary sequence bases.

The template for the sequencing reaction was a PCR product

generated using Dup1F11/Dup1R4 in B6AJF1 DNA, which was

subcloned into pCR2.1 vector (Invitrogen) according to manufac-

turer’s instructions. c Primers used to screen all strains-inbred,

outbred, and wild-caught mice. Primers, qRTPDup2F/2R, span

the duplication boundary. d Primers used to amplify and sequence

59 and 39 end of ,1 Kb inside and flanking the duplicated region.

Dup1Boundary1F/Dup1Boundary1R and qRTDup1F2/Dup1-

Boundary2R were used only with strains that contain the

duplication. SeqBoundDup1F/Dup1SeqR3 and Dup1Boun-

dary1F/Dup1Boundary4R were used for all strains surveyed for

haplotype mapping.

Found at: doi:10.1371/journal.pone.0004649.s002 (0.08 MB

DOC)

Table S3 Table showing which inbred strains contain the

duplication. This table indicates which strains contain a

duplication of the regions on chromosome 17 from 30,174,390–

30,651,226 Mb (Build 36). These data were generated by testing

for the presence of the duplication using PCR primers as described

in the text. DNA that was obtained from The Jackson Labs is

indicated by the JAX Stock Number, DNA for strains not

available from JAX were provided as gifts. Measurement of the

duplication is not quantitative, in some cases more than two copies

may be present for certain strains.

Found at: doi:10.1371/journal.pone.0004649.s003 (0.11 MB

DOC)

Table S4 Significant associations between the duplication and

behaviors related to activity and emotional behaviors. Shown are

all phenotypes under the JAX Phenome website defined category

‘‘behavior’’ that are correlated with the duplication with r$0.5

and p#0.05.

Found at: doi:10.1371/journal.pone.0004649.s004 (0.20 MB

DOC)

Figure S1 Size and frequency of duplications detected in

genome-wide scan. Histograms showing frequency distribution of

deletions (upper left) and duplications (upper right) as a function of

size and the number of strains in which deletions (lower left) and

duplications (lower left) were observed.

Found at: doi:10.1371/journal.pone.0004649.s005 (5.42 MB TIF)
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