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Abstract

Background: Although over 1400 Salmonella serovars cause usually self-limited gastroenteritis in humans, a few, e.g.,
Salmonella typhi and S. paratyphi C, cause typhoid, a potentially fatal systemic infection. It is not known whether the typhoid
agents have evolved from a common ancestor (by divergent processes) or acquired similar pathogenic traits independently
(by convergent processes). Comparison of different typhoid agents with non-typhoidal Salmonella lineages will provide
excellent models for studies on how similar pathogens might have evolved.

Methodologies/Principal Findings: We sequenced a strain of S. paratyphi C, RKS4594, and compared it with previously
sequenced Salmonella strains. RKS4594 contains a chromosome of 4,833,080 bp and a plasmid of 55,414 bp. We predicted
4,640 intact coding sequences (4,578 in the chromosome and 62 in the plasmid) and 152 pseudogenes (149 in the
chromosome and 3 in the plasmid). RKS4594 shares as many as 4346 of the 4,640 genes with a strain of S. choleraesuis,
which is primarily a swine pathogen, but only 4008 genes with another human-adapted typhoid agent, S. typhi. Comparison
of 3691 genes shared by all six sequenced Salmonella strains placed S. paratyphi C and S. choleraesuis together at one
end, and S. typhi at the opposite end, of the phylogenetic tree, demonstrating separate ancestries of the human-adapted
typhoid agents. S. paratyphi C seemed to have suffered enormous selection pressures during its adaptation to man as
suggested by the differential nucleotide substitutions and different sets of pseudogenes, between S. paratyphi C and S.
choleraesuis.

Conclusions: S. paratyphi C does not share a common ancestor with other human-adapted typhoid agents, supporting the
convergent evolution model of the typhoid agents. S. paratyphi C has diverged from a common ancestor with S.
choleraesuis by accumulating genomic novelty during adaptation to man.
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Introduction

Salmonella are important human and animal pathogens [1,2],

and over 1400 serovars have the potential to cause human

gastroenteritis, which is essentially a self-limited disease. Howev-

er, a few Salmonella serovars, such as S. typhi and S. paratyphi A, B

and C, elicit typhoid, which is a serious systemic infection with

high mortality rates [3,4]. S. paratyphi C as a typhoid agent [5–7]

is not reported as frequently as S. typhi or S. paratyphi A or B,

partly because this pathogen shares the antigenic formula

6,7:c:1,5 with S. choleraesuis and S. typhisuis and clinical

identification of Salmonella isolates usually does not go beyond

serotyping, although molecular methods are available to reliably

distinguish S. paratyphi C from other Group C members [8]. As

the gastroenteritis-causing and typhoidal Salmonella serovars are

all closely related, sharing up to about 90% of their genetic

contents [9–14], it is natural to ask how typhoid pathogenicity has

developed in just a few of the thousands of Salmonella serovars.

Specifically, are these similar pathogens the products of divergent

(recent common ancestry) or convergent (common pathogenic
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traits incorporated into different genetic backgrounds) evolution-

ary processes?

Speculations have been made regarding these questions. The

overwhelming genetic similarity (homologous genes having over

97% DNA sequence identity) and sharp pathogenic differences

(self-limited local infections vs potentially fatal systemic infections)

among the Salmonella serovars suggest horizontal acquisition of

different pathogenic traits by these closely related bacteria. Whole

genome comparisons at the physical map level reveal blocks of

genomic insertions in different Salmonella lineages [15–22].

Genomic sequence comparisons identified 11–13% unique genes

between S. typhi and S. typhimurium [9,10,12]. These results indicate

that the Salmonella core genome provides a genetic framework for

specific pathogenic determinants to be housed: acquisition of

gastroenteritis- or typhoid-causing traits may ‘‘direct’’ the bacteria

towards fundamentally distinct pathogens.

Among the human-adapted typhoid agents, comparison has

been mostly focused on S. typhi and S. paratyphi A for elucidation of

the genetic basis that might have led them to become

fundamentally distinct pathogens. This pair of typhoid agents

have greatly different sets of pseudogenes [11], suggesting separate

immediate ancestries and thus favoring the convergence hypoth-

esis of typhoid pathogenesis evolution. Later, the convergence

model was again supported by a different approach, i.e., a

Bayesian changepoint model, which points out a high level of

recombination between S. typhi and S. paratyphi A [23]. However,

neither approach was conclusive about the evolution of the

typhoid agents, largely due to the difficulty to have the divergent

and convergent genomic events to be unambiguously distin-

guished. To reveal with greater confidence the genomic features

common to the typhoid agents but not seen in non-typhoidal

Salmonella pathogens for the elucidation of the genetic basis of the

typhoid pathogenicity, we included additional typhoid agents as

well as non-typhoidal salmonellae in the genomic comparisons. In

this study, we determined the complete genome sequence of a

strain of S. paratyphi C, RKS4594, and compared it with other

published Salmonella genome sequences. Our analysis demonstrates

that S. paratyphi C may have diverged from a common ancestor

with S. choleraesuis, which is primarily a swine pathogen [13] but

may also occasionally cause invasive infections in humans [24–27],

relatively recently by adapting to a different niche and converged

with S. typhi by accumulating genomic changes, including

acquisition of genomic insertions and loss of certain genes.

Results

Overall features of S. paratyphi C and global comparisons
with other Salmonella genomes

S. paratyphi C RKS4594 was a clinical isolate and representative

of a specific electrophoretic type, ET Pc-2, as determined by multi-

locus electrophoresis; it was included in the set of the Salmonella

Reference collection B strains (SARB49)[28]. This S. paratyphi C

strain contains a chromosome of 4,833,080 bp and a plasmid of

55,414 bp (Fig. 1 and Table 1). We predicted 4,640 intact coding

sequences (4,578 in the chromosome and 62 in the plasmid) and

152 pseudogenes (149 in the chromosome and 3 in the plasmid;

Table S1). S. paratyphi C RKS4594 shares 3691 genes with all five

previously sequenced Salmonella strains, including S. typhi CT18[9]

and Ty2[12], S. typhimurium LT2 [10], S. paratyphi A

ATCC9150[11], and S. choleraesuis SC-B67[13]; we define these

genes as the Salmonella core genome (See details in Table S1).

Between S. paratyphi C and each of the other five sequenced

Salmonella strains, the actual numbers of shared genes differ greatly.

For example, S. paratyphi C and S. choleraesuis share as many as

4346 genes, covering a total length of 4672 kb that accounts for

96.66% of the S. paratyphi C genome and 98.23% of the S.

choleraesuis genome, with the differences being mostly clustered in

prophages or Salmonella pathogenicity islands (SPIs) as large DNA

segments. In contrast, S. paratyphi C RKS4594 and S. typhi CT18,

both being human-adapted typhoid agents, share only 4008 genes,

which account for 89.78% of the RKS4594 genome and 90.23%

of the CT18 genome (similar percentages to the genes shared

between S. typhimurium LT2 and S. typhi Ty2), with most differences

being scattered throughout the genomes as small gene clusters.

These data support the previous notions that S. paratyphi C is more

closely related to S. choleraesuis than to S. typhi or S. paratyphi A [3].

Figure 1. Map of the S. paratyphi C RKS4594 genome. (A) The
chromosome. Circles range from 1 (outer circle) to 7 (inner circle): 1 and
2, genes on forward and reverse strand, respectively; 3, pseudogenes; 4,
genes that are conserved among all six sequenced strains compared in
this study; 5, rRNA operons (blue), and prophages and SPIs (brown); 6,
G+C content, with values greater than average in green and smaller in
red; and 7, GC skew (G2C/G+C), with values greater than zero in green
and smaller in red. All genes displayed in circles 1 and 2 are colored by
NCBI COG (Clusters of Orthologous Groups) function category:
information storage and processing, cyan; cellular processes and
signaling, yellow; metabolism, magenta; poorly characterized, black.
The locations of two prophages, Gifsy2 and Gifsy 1, are indicated by
arrows, which are recombination sites inverting a large chromosomal
segment (ca. 1600 kb). (B) The virulence plasmid pSPCV. This plasmid
comprises spv operon (cyan), pef operon (yellow), tra operon (magenta),
and other regions (grey). The outermost arcs are additional regions of
pSLT (a virulence plasmid from S. typhimurium LT2) compared with
pSPCV. The inner black arc represents the conserved region of pKDSC50
(a virulence plasmid from S. choleraesuis SC-B67), pSPCV and pSLT. The
gene content of pKDSC50, the most reduced of the three virulence
plasmids, is virtually equal to the black arc.
doi:10.1371/journal.pone.0004510.g001

S. paratyphi C Genome
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We then looked further into the phylogenetic relationships of S.

paratyphi C with five other sequenced Salmonella strains through

systematic sequence comparisons.

We aligned sequences of common regions of the six Salmonella

genomes and calculated genetic distances to estimate their

relatedness. The resulting phylogenetic tree (Fig. 2) reveals a

strikingly short genetic distance between S. paratyphi C and S.

choleraesuis, indicating their very recent divergence, and a much

greater distance from S. paratyphi C to S. paratyphi A, S. typhi or S.

typhimurium. These data, again, strongly suggest that the typhoid-

associated pathogenicity has evolved by convergent processes in

different Salmonella genetic backgrounds.

Comparison between S. paratyphi C and S. choleraesuis
The demonstrated recentness of the divergence between S.

paratyphi C and S. choleraesuis suggests that we may still have an

opportunity to track the evolutionary events that might have

contributed to the evolution of a human-adapted typhoid agent.

For this, we made systematic sequence comparisons between S.

paratyphi C RKS4594 and S. choleraesuis SC-B67 [13].

We first focused on large genomic segments that differ between

S. paratyphi C RKS4594 and S. choleraesuis SC-B67, as they are

supposed to be laterally acquired and contain large numbers of

genes that may have facilitated the pathogenic divergence process.

Two regions, SPI-7 (SPC_4387–SPC_4471) and SPA-3-P2SPC

(SPC_0869–SPC_0908), are present in S. paratyphi C RKS4594

but absent from S. choleraesuis SC-B67. SPI-7 has only been found

in S. typhi, S. paratyphi C and human-isolates of S. dublin [29]. In S.

typhi, SPI-7 comprises four parts: type IVB pilus operon, SopE

prophage, Vi biosynthetic operon, and a 15 kb phage-like segment

[9,29], whereas in many S. paratyphi C and S. dublin strains, only

parts of type IVB pilus operon and Vi biosynthetic operon are

present, with the SopE bacteriophage and the 15 kb phage-like

segment being entirely absent [29,30]. Despite its differences in

structure among these bacteria, SPI-7 seems to have been

acquired by S. typhi and S. paratyphi C fairly recently at around

the same time, long after the emergence of S. typhi and S. paratyphi

C. We made this speculation based on the fact that the sequence

divergence of SPI-7 between S. paratyphi C and S. typhi (0.0006) is

considerably lower than their chromosomal divergence (0.0179).

SPA-3-P2SPC is highly similar to SPA-3-P2 of S. paratyphi A in

sequence but has a different insertion site in the chromosome of S.

paratyphi C RKS4594. Although SPI-7 and SPA-3-P2SPC constitute

the main genetic differences between S. paratyphi C and S.

choleraesuis, they do not exist in all human-adapted typhoid agents

(e.g., SPI-7 is not present in S. paratyphi A, SPA-3-P2 or SPA-3-

P2SPC is not present in S. typhi), suggesting that they are not

necessarily a determinant for the typhoid pathogenesis. Other

prophages and pathogenicity islands found in S. paratyphi C

RKS4594 are summarized in Table S2.

We then made systematic sequence comparisons of the

remaining parts of genomes between S. paratyphi C RKS4594

and S. choleraesuis SC-B67. These two strains have accumulated

distinct sets of mutations, which is striking considering their very

short divergence history. This is first reflected by their different sets

of pseudogenes (Table S3). Although S. paratyphi C and S.

choleraesuis have similar numbers of pseudogenes, with 152 in the

former and 156 in the latter, only 55 are common to both. These

findings may reflect distinct selection pressures on S. paratyphi C

and S. choleraesuis when they were adapting to different niches.

The distinctness of accumulated mutations between S. paratyphi

C and S. choleraesuis is also reflected by the exceptionally high non-

synonymous (dN) over synonymous (dS) substitution ratio (dN/dS,

ca. 0.62; Table 2), as compared to those between S. paratyphi C and

S. typhimurium, S. typhi or S. paratyphi A, which are in the range of

0.13–0.15 (Table 2). The two sequenced S. typhi strains also have a

high dN/dS ratio (Table 2), but the mechanisms might be

different.

To reveal the actual nucleotide substitutions that would lead to

amino acid changes, we aligned the sequences coding for 3238

proteins common to all six Salmonella genomes compared and

Table 1. Summary of S. paratyphi C RKS4594 genome.

Features Chromosome Plasmid

Size, bp 4,833,080 55,414

G+C content, % 52.2 52.8

Coding density, % 88.5 82.3

ORFs (excluding pseudogenes):

With assigned function 3,303 47

Unknown function 1,275 15

Total 4,578 62

Pseudogenes 149 3

Average ORF length, bp 887 634

rRNA operons 7 0

tRNAs 82 0

doi:10.1371/journal.pone.0004510.t001

Figure 2. Phylogenetic tree for the six sequenced Salmonella strains, based on whole-genome sequences (all conserved regions
among the six genomes are concatenated and aligned for tree construction).
doi:10.1371/journal.pone.0004510.g002
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identified 2335 amino acids that are different between S. paratyphi

C and S. choleraesuis. Since as many as 2222 of the 2335 amino

acids are identical in S. typhi, S. paratyphi A and S. typhimurium, we

assumed these amino acids to be the state in the ancestors of S.

paratyphi C, S. choleraesuis, S. typhi, S. paratyphi A and S. typhimurium.

Of these 2222 amino acids that are common to S. typhi, S. paratyphi

A and S. typhimurium, S. paratyphi C has 1147 (the other 1075 being

different from those in S. typhi, S. paratyphi A, S. typhimurium and S.

choleraesuis) and S. choleraesuis has 1028 (the other 1194 being

different from those in S. typhi, S. paratyphi A, S. typhimurium and S.

paratyphi C), suggesting differential selection pressures to ‘‘force’’ S.

paratyphi C and S. choleraesuis to have these distinct sets of particular

amino acids selected for their eventual adaptation to different

niches. Of special interest is a list of nine amino acids in S. paratyphi

C RKS4594 that are different from their counterparts in S.

choleraesuis SC-B67 but identical to those of either S. typhi or S.

paratyphi A (Table S4), possibly reflecting a need of these particular

amino acids by the human-adapted Salmonella lineages for dwelling

in the host. These features again strongly indicate S. paratyphi C as

an ideal model in studies to elucidate the molecular mechanisms of

human adaptation during the evolution of a typhoid agent from its

host-generalist ancestor.

Common gains and losses of genes among the
sequenced typhoid agents

We examined possible common gains and losses among the

sequenced human-adapted typhoidal strains, relative to S.

typhimurium LT2. Systematic comparisons of these typhoidal strains

with S. typhimurium LT2 did not lead to the identification of genes

common only to the human-adapted typhoidal strains. This raises

two possibilities: (i) different Salmonella typhoid agents might have

acquired different typhoid-causing traits, as suggested by the large

number of genes common to S. typhi and S. paratyphi A [23] but not

to S. paratyphi C, or SPI7 common to S. typhi and S. paratyphi C but

not to S. paratyphi A; and (ii) many Salmonella serovars might carry

genes that would participate in typhoid pathogenesis only in a

small number of serovars due to the acquisition (or activation) or

loss (or inactivation) of other genes. Both scenarios favor the

convergence evolution model of the typhoid agents, implicating

that the immediate ancestors of the extant human-adapted

Salmonella lineages acquired the typhoid-causing traits indepen-

dently and then converged under the same host pressure to

become clinically similar pathogens.

On the other hand, we found that a total of 24 genes were either

absent or inactivated in the sequenced S. typhi, S. paratyphi A and S.

paratyphi C strains relative to S. typhimurium LT2 (Table 3), which

suggests that these functions are not required for human infection.

Of special interest are genes encoding fimbriae, as fimbriae have

long been known to constitute a ‘‘signature’’ for Salmonella serovars

[31,32]. More importantly, Salmonella fimbriae are known to be

involved in infections and may play a role in host determination

[33]. Although human-adapted typhoid agents possess special

repertories of fimbrial genes that are involved in the bacterial

infection process in humans [32], the inability of these bacteria to

infect other host may be accounted for by loss of certain fimbial

genes. We found that three fimbial genes, safC, bcfC and stfD, are

pseudogenes in the sequenced S. typhi, S. paratyphi A and S. paratyphi

C strains, and one fimbial gene, stj, is entirely absent in the

sequenced S. typhi, S. paratyphi A and S. paratyphi C strains; these

four fimbial genes are present and intact in S. typhimurium LT2.

Chromosomal rearrangement mediated by Gifsy
sequences

Previously, we reported that physical balance of the bacterial

chromosome between replication origin, oriC, and terminus, terC,

affects growth rate in S. typhi and therefore may influence the

competition capability of the bacteria in nature [34]. Unlike S.

typhimurium and S. paratyphi A, which have well balanced and very

stable genome structures [20,35], S. paratyphi C and S. typhi both

have less optimally balanced genomes and so have undergone

frequent rearrangements [18,19,21]. Most often, chromosomal

rearrangements occur through recombination between homolo-

gous sites such as rrn genes [18] or IS200 [36]. However, as S.

paratyphi C does not have IS200 (See Table S1), most genomic

rearrangements among wild type strains of S. paratyphi C are

mediated by rrn genes [21], with an important exception as

detailed below.

In RKS4594, oriC is located at 4016 kb and terC is around

2256 kb from thrL. As the genome size is 4833 kb, the balance is

249u clockwise and 131u counterclockwise between oriC and terC,

which is far off the 180u balanced status. Through comparison

with S. typhimurium LT2, an inversion of about 1600 kb was found

between homologous regions of prophages Gifsy-1 and Gifsy-2

(Figure 3), which was confirmed by physical mapping [21]. To our

knowledge, it is the first report of prophage mediated chromo-

somal rearrangement in Salmonella.

Virulence plasmid
S. paratyphi C RKS4594 contains a plasmid, pSPCV, with very

high sequence identity with the virulence plasmids pSLT (S.

typhimurium LT2) [10] and pKDSC50 (S. choleraesuis SC-B67) [13].

The three plasmids have decreasing sizes from pSLT (93.9 kb) to

pSPCV (55.4 kb) and to pKDSC50 (49.6 kb), suggesting a gradual

degradation process to shed unnecessary genes during evolution.

All three Salmonella plasmids contain operons spv, pef and tra. The

spv operon is conserved among all Salmonella virulence plasmids

that have been characterized to date [37] and is proven to be

required for the systemic phase of the infection in their host [38].

The genes pefABCD in the pef operon (plasmid-encoded

fimbriae) are conserved among the three plasmids. However, the

downstream region, i.e., between pefD and the repA loci, shows

remarkable variability between pSLT and pSPCV, and is entirely

absent from pKDSC50 (see Fig. 1b). Within this region of pSLT,

two genes, srgA (PSLT011, encoding thiol:disulphide oxidoreduc-

tase) and srgB (PSLT010, encoding a putative outer membrane

protein), have significant homology to two genes in SPI-10 of both

S. typhi and S. paratyphi A. As most S. typhi and S. paratyphi A strains

do not have virulence plasmids, it was once speculated that the two

genes might partly complement the functions of the virulence

plasmids [39]. However, because the srgA counterparts in S. typhi

Table 2. dN and dS values in pairs of compared genomes.

Genomes
compared dN dS dN/dS

SPC vs SC 0.00131(60.00697) 0.00209(60.00940) 0.62453

SPC vs STM 0.00459(60.03428) 0.03416(60.14710) 0.13451

SPC vs CT18 0.00642(60.03156) 0.04564(60.14594) 0.14074

SPC vs Ty2 0.00641(60.03156) 0.04568(60.14611) 0.14029

SPC vs SPA 0.00726(60.04701) 0.04762(60.18746) 0.15252

CT18 vs Ty2 0.00016(60.00329) 0.00029(60.00601) 0.57240

Footnote: SPC, S. paratyphi C RKS4594; SC, S. choleraesuis SC-B67; STM, S.
typhimurium LT2; Ty2, S. typhi Ty2; CT18, S. typhi CT18; SPA, S. paratyphi A
ATCC9150.
doi:10.1371/journal.pone.0004510.t002
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Table 3. Deletion and pseudogene formation in the four human-adapted typhoidal strains.

Locus_tag Symbol Product Category

SPC_0797 slrP leucine-rich repeat protein 1

SPC_1513 mglA galactose (methyl-galactoside) transport protein 1

SPC_1647 sopA secreted effector protein 1

SPC_1757 fliB N-methylation of lysine residues in flagellin 1

SPC_2542 fhuE outer membrane receptor for ferric iron uptake 1

SPC_4172 - putative permease of the Na+:galactoside symporter family 1

SPC_0673 ybeS putative molecular chaperone, DnaJ family 2

SPC_0675 ybeV putative molecular chaperone, DnaJ family 2

SPC_0760 - transcriptional regulator, lysR family 2

SPC_0859 - putative inner membrane protein 2

SPC_1396 yfbK putative von Willebrand factor, vWF type A domain 2

SPC_1703 - putative endoprotease 2

SPC_2105 - putative inner membrane protein 2

SPC_2378 ydiS flavoprotein 2

SPC_2702 - Gifsy-2 prophage host specificity protein J 2

SPC_3146 - putative mannitol dehydrogenase 2

SPC_3591 rtcR sigma N-dependent regulator of rtcBA expression 2

SPC_2077 - putative methyl-accepting chemotaxis protein 3

SPC_2458 - putative Methyl-accepting chemotaxis protein 3

SPC_2232 dmsB anaerobic dimethyl sulfoxide reductase chain B 3

SPC_0311 safC fimbrial operon protein 3

SPC_0025 bcfC fimbrial operon protein 3

SPC_0213 stfD fimbrial operon protein 3

putative deletion stj fimbrial operon protein 3

Note: we divide the presumably lost genes, relative to S. typhimurium LT2, into three categories: 1, they are all pseudogenes in the four typhoidal strains; 2, they are
pseudogenes in S. paratyphi C but entirely absent in S. typhi and S. paratyphi A; and 3, other genes in the same or a similar pathway are either pseudogenes or absent.
doi:10.1371/journal.pone.0004510.t003

Figure 3. Chromosomal rearrangement mediated by Gifsy-1 and Gifsy-2. (A) Alignment of Gifsy-1 and Gisfy-2 in S. paratyphi C. Common
genes in Gifsy-1 and Gifsy-2 are colored in yellow, with the remaining genes of Gifsy-1 being colored in red and those of Gifsy-2 in green; conserved
genes adjacent to Gifsy-1 and 2 are in black. The blue shade indicates identity .90% between Gifsy-1 and Gifsy-2. (B) Chromosomal comparison
showing the relative inversion between S. paratyphi C and S. choleraesuis. The scheme is color-coded as above and shows that the broad ranges of
homologous regions between Gifsy-1 and Gifsy-2 instead of integrases mediate the chromosomal rearrangement.
doi:10.1371/journal.pone.0004510.g003
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CT18, Ty2 and S. paratyphi A ATCC9150 have become

inactivated by a frameshift mutation, and because the genes srgAB

are either degraded or deleted in pSPCV and pKDSC50, it is

obvious that the two genes are not involved in virulence or other

key biological activities.

The tra operon is responsible for conjugative transfer of the

plasmid. pSLT has intact tra operon and is self-transmissible [40]. In

pSPCV and pKDSC50, the operon is in the process of degradation.

We examined the divergence calculated from conserved regions

of the three plasmids. The divergence between pSPCV and pSLT

and that between pSPCV and pKDSC50 is 0.0176 and 0.0020,

respectively, both of which are fairly consistent with the divergence

levels of the chromosomes between S. paratyphi C and S. typhimurium

LT2 (0.0117) and between S. paratyphi C and S. choleraesuis (0.0011).

The consistence of divergence levels between the chromosomal

and plasmid sequences strongly suggests the vertical inheritance

nature of the plasmids.

Discussion

Analysis of the S. paratyphi C genome has revealed to us new

facts about the genetic divergence of Salmonella pathogens and

helped clarify the phylogenetic relationships among the human-

adapted typhoid agents and other Salmonella lineages. This work

will also significantly facilitate the studies of pathogenic divergence

of Salmonella as a whole and, especially, the Group C Salmonella

lineages bearing the common antigenic formula 6,7:c:1,5,

including S. paratyphi C, S. choleraesuis and S. typhisuis [41]. The

highly similar genomic constructions between S. paratyphi C and S.

choleraesuis [13] and their distinct pathogenic features [5,42] make

them excellent models for studies of Salmonella host adaptation and

pathogenic divergence. Our results strongly suggest that the two

lineages had a common immediate ancestor and that they

diverged fairly recently and provide further evidence about the

closer relatedness between S. paratyphi C and S. choleraesuis than

either to S. typhi or S. paratyphi A [3]. Perhaps an occasional

invasion of and gradual adaptation to human body caused a

branch of the ancestor to become settled in the new niche. During

this process, favorable changes of nucleotides/amino acids may

have been quickly selected and accumulated to facilitate the host

shift, as reflected by the greater dN than dS substitutions between

S. paratyphi C and S. choleraesuis.

Usually, when a bacterial lineage begins to diverge from the

ancestor, dN may transiently be greater than dS among members

of the same diverging lineage due to the nature of genetic codons

(changes in the first two of the three nucleotides in a codon tends

to cause dN). For example, S. typhi may have diverged from its

ancestor for no more than fifty thousand years [43] and individual

strains still have relatively high dN/dS values as seen between

CT18 and Ty2 (See Table 2). Then as deleterious mutations (i.e.,

many dNs) are eventually purged [44], dS would gradually exceed

dN. Therefore, the ratio of dN/dS may in a way reflect

evolutionary distances among a certain range of closely related

bacteria living in the same kind of niche, e.g., independent isolates

of S. typhi that dwell only in the human body; in such cases, more

closely related strains may have greater dN/dS values than more

distantly related ones and the dN/dS ratio may then decrease with

time. We speculate that the scenario may be different, however, in

bacteria that are closely related but do not dwell in the same niche,

such as S. paratyphi C and S. choleraesuis, in which the dN/dS ratio

may remain relatively high for long evolutionary times due to the

potential benefits brought to the bacteria by the non-synonymous

nucleotide substitutions.

Although several lines of evidence, especially those presented in

this paper, support the convergence evolution model of the

human-adapted typhoid agents [11,23], genes directly contribut-

ing to the typhoid phenotypes remain to be identified. In this

study, we compared the genomes of the human-adapted typhoidal

strains (S. typhi CT18 and Ty2, S. paratyphi A ACTT9150 and S.

paratyphi C RKS4594) with those of S. typhimurium LT2 and S.

choleraesuis SC-B67 to attempt identifying typhoid-associated genes.

However, we did not obtain a significant list of genes present in the

former but absent in the latter. This might be because S.

typhimurium, though causing gastroenteritis in humans, does have

genes to cause typhoid-like disease in mice and some of the genes

might be related to those in the human-adapted typhoid agents.

Additionally, S. choleraesuis, having a narrow host range and

causing invasive infections in humans [24–27], can cause swine

paratyphoid [45]. Therefore, all six sequenced Salmonella strains

compared in this study have the potential of causing typhoid-like

diseases in humans or animals, so none of them could be used as a

real ‘‘typhoid-free’’ reference for comparison to identify typhoid-

associated genes. As a result, the genomic sequence of a Salmonella

lineage that does not cause typhoid-like disease in any host, such as

S. pullorum, is desired in studies for further narrowing down the

typhoid determinants. On the other hand, the large number of

degraded genes (pseudogenes) and the distinct set of selected

amino acids (dN) identified in the S. paratyphi C genome through

this study will provide a guide in studies for the elucidation of the

genetic basis for host adaptation of this pathogen to humans.

Conclusions
S. paratyphi C does not share a common ancestor with other

human-adapted typhoid agents, supporting the convergent model

of the evolution of the typhoid agents. S. paratyphi C has diverged

from a common ancestor with S. choleraesuis by accumulating

genomic novelty during adaptation to man.

Materials and Methods

Sequencing
The genome sequence of S. paratyphi C RKS4594 was

determined by dye terminator chemistry on Megabace1000 and

ABI3730 automated sequencers, with DNA clones from several

pUC18 genomic shotgun libraries (insert sizes ranging from1.5 to

4.0 kb). The Phred/Phrap/Consed package was used for quality

assessment and sequence assembly. Gaps were filled by PCR

amplification and primer walking methods. Ambiguous areas were

re-sequenced and the assembly was verified by a physical map; the

final sequence reached accuracy over 99.99%.

Annotation
Gene prediction was performed by use of GLIMMER3 and by

comparison with the annotated genes from five available Salmonella

genomes, i.e., S. typhimurium LT2, S. choleraesuis SC-B67, S. paratyphi

A ATCC9150, and S. typhi CT18 and Ty2. Intergenic regions

were searched against NCBI non-redundant libraries for potential

genes. The function of all coding sequences was further

investigated by searching against InterPro database. Genes that

contains insertion, deletion or mutation to a stop codon compared

with those known Salmonella genes were categorized as pseudo-

genes. Transfer RNA genes were predicted with tRNAscan-SE,

and ribosomal RNA genes were predicted by similarity to other

Salmonella rRNA genes.

Comparative and phylogenetic analysis
Whole genome alignment was made by use of MAUVE and

MUMmer program. Phylogenetic tree construction was done with

PHYLIP 3.6 package. Nucleotide divergence in this article was

S. paratyphi C Genome
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defined as the number of mismatch bases divided by that of

comparable bases after pairwise alignment made by CLUSTALW.

dN/dS values were calculated with Yn00 program in PAML 3.15

package.

URLs
The Phred/Phrap/Consed package is available at http://www.

phrap.org/phredphrapconsed.html. GLIMMER3 is available at

http://www.cbcb.umd.edu/software/glimmer/. NCBI non-re-

dundant libraries is available at ftp://ftp.ncbi.nih.gov/blast/db/.

InterPro database is available at http://www.ebi.ac.uk/interpro/.

tRNAscan-SE is available at http://lowelab.ucsc.edu/tRNAscan-SE/.

MAUVE program is available at http://gel.ahabs.wisc.edu/

mauve/. MUMmer program is available at http://mummer.

sourceforge.net/. PHYLIP 3.6 package is available at http://

evolution.genetics.washington.edu/phylip.html. CLUSTALW

program is available at http://www.ebi.ac.uk/Tools/clustalw/.

PAML 3.15 package is available at http://abacus.gene.ucl.ac.

uk/software/paml.html.

Accession numbers
Genbank: S. typhimurium LT2 [NC_003197]; S. choleraesuis SC-

B67 [NC_006905]; S. paratyphi A ATCC9150 [NC_006511]; S.

typhi CT18 [NC_003198]; S. typhi Ty2 [NC_004631]; S. paratyphi

C RKS4594 chromosome [CP000857]; S. paratyphi C RKS4594

plasmid pSPCV [CP000858].
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