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Abstract

Disordered proteins are highly abundant in regulatory processes such as transcription and cell-signaling. Different methods
have been developed to predict protein disorder often focusing on different types of disordered regions. Here, we present
MD, a novel META-Disorder prediction method that molds various sources of information predominantly obtained from
orthogonal prediction methods, to significantly improve in performance over its constituents. In sustained cross-validation,
MD not only outperforms its origins, but it also compares favorably to other state-of-the-art prediction methods in a variety
of tests that we applied. Availability: http://www.rostlab.org/services/md/
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Introduction

Disordered regions come in different flavors
Many genes in higher organisms encode proteins or protein

regions that do not adopt well-defined, stable three-dimensional

(3D) structures under physiological conditions in isolation. These

proteins are commonly labeled as intrinsically disordered, unfolded, or

natively unstructured proteins [1,2,3]. Different words reflect differences

in the underlying biophysical traits of these regions.

The assignment of disordered or unstructured regions is problematic,

since by definition, these regions consist of an ensemble of rapidly

inter-converting conformers that we cannot visualize. One way to

circumvent this problem is by measuring biophysical characteris-

tics that are associated with the lack of ordered 3D structure.

Many techniques monitor properties such as distances between

atoms, hydrodynamic features, and local or global changes in the

environment of the atoms [4,5,6]. Since different experimental

techniques capture different aspects or types of protein disorder,

they occasionally do not agree on the assignments of these regions

[7,8]. For instance, a new experimental method is able to

distinguish between molten-globule and other disordered states

based on their susceptibility to 20S proteasomal degradation,

providing operational definition for disorder. Results from this

study suggested that unstructured regions in the cell are often

protected from degradation by interaction with other molecules

[8].

Disordered regions can be classified into three groups based on

sequence features alone, where proteins from each group are

identified by different experimental techniques [9]. Several new

studies showed that disorder predictors trained on regions that

were characterized as disordered by one experimental method are

usually less accurate in predicting unstructured regions that were

identified by a different technique [9,10,11]. Thus, there is no

single gold standard for order/disorder assignment; instead, we

need to use several experimental methods in concert

[5,12,13,14,15,16,17].

We use the term ‘‘flavors’’ to refer to different types of disorder

[9,18] simply to indicate that we neither suggest a rigorous

Aristotelian classification scheme, nor want to introduce any

meaningful word for what appears a mesh of disorder. This mesh

of flavors is accompanied by a variety of functional roles that

increase organism complexity [11,19,20,21,22,23,24,25,26].

Disordered regions have unique sequence characteristics
One of the main reasons for the predictability of unstructured

regions is their amino-acid compositional bias. Unstructured

regions are abundant in low complexity regions containing a

reduced amino acid alphabet. They are usually depleted of

hydrophobic and bulky amino acids, which are often referred to as

‘‘order promoting’’ residues [3,27,28]. Unstructured regions have

a large solvent-accessible area, which explains why polar and

charged residues, which favorably interact with water, are

prevalent in these regions. Due to the high net charge of these

regions, it was suggested that the unfolding is driven by charge-

charge repulsion [3]. Other sequence-related biases in disordered

regions include the high percentage of proline and frequent lack of

regular secondary structure [9,27,29,30]. The amino acid

composition of disordered regions was also found to correlate

with the length of disordered regions. For example, short

disordered stretches are mainly negatively charged whereas long
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unstructured regions are either positively or negatively charged,

but on average, nearly neutral [27].

Two types of short amino acid patterns are highly abundant in

disordered regions: a proline-rich pattern and a (positively or

negatively) charged pattern [31]. Interestingly, many of these

proline-rich motifs in unstructured regions are important for

protein-protein interactions. For instance, the polyproline-II (PPII)

helix is a ubiquitous helical structure motif that is found in

extended conformation and is abundant in molecular recognition

features (MoRF) of unstructured regions [32]. The sequence-

conserved unstructured motif P-X-X-P (where X is a variable

amino acid) in the SH3 domain is important for mediating

protein-protein interactions [33]. Numerous linear motifs mediate

a variety of functions including protein localization, post-

translational modifications and protein-protein interactions [34].

It has been estimated that ,85% of the linear motifs from

Eukaryotic Linear Motif (ELM) database are located within

disordered regions [34,35]. A recent study demonstrated the link

between linear motifs and the putative mechanism for the

interaction between unstructured regions and their partners [33].

Prediction methods capture many different aspects of
disorder

Some methods focus on the fact that unstructured regions tend

to have low hydrophobicity/high net-charge [3,36], high loop

content [37], and few stable intra-chain contacts [38,39]. One

major limitation of methods using this approach is that they are

protein- and position- independent. That is, they only depend on

the amino acid composition of the sequence and do not take into

account the specific order of the residues. This simplification

ignores the important roles that some disordered regions play in

target recognition by forming highly specific electrostatic interac-

tions and hydrogen bonds upon folding and binding to substrates

[40,41], and through the use of conserved motifs [33,34].

Several advanced methods attempt to capture complex

relationships between sequence and disorder by using machine-

learning algorithms optimized to discriminate between well-

structured and unstructured regions [18,42,43,44,45,46,47]; these

methods are usually very good for what they are trained for, for

example, the identification of residues that do not appear in

electron density maps of X-ray structures [46,48,49,50]. Many of

these methods use protein-specific sequence properties such as

profiles of evolutionary exchanges. One limitation of methods

based on machine learning is that they are prone to over-

optimization when developed on data sets as small as the Database

of Protein Disorder (DisProt) or as specialized as missing

coordinates from the Protein Data Bank (PDB). Performance

assessments should therefore be taken with a grain of salt.

Due to the fuzzy definitions of mobility/disorder/flexibility,

some predictors focusing on different aspects of protein mobility

can sometimes capture protein disorder [11,37,51,52,53,54]. For

instance, the method Wiggle was optimized to identify functionally

flexible regions and captures some aspects of disorder [53]. Our

group identified long regions with no regular secondary structure

(NORS), i.e. $70 sequence-consecutive surface residues depleted

of helices and strands [55]. NORS regions share many cellular,

biochemical and biophysical properties with long unstructured

regions in proteins [54,55]. Loops with high B-factors also

correlate with disorder [37,49]. In fact, a recent study demon-

strated that PROFbval, which was trained on regions with high

normalized B-factors from the PDB, accurately predicted the long

unstructured region in the adaptor protein GAD [56]. Another

method, NORSnet, distinguishes between long (.30 residues)

loops that are well-structured and those that are disordered [11].

While most of these methods are not optimal for the identification

of the ‘‘average’’ disorder, they are usually optimized on data sets

that are very large and are not biased by current experimental

means of capturing disorder. Thus, they reach into regions in

sequence space that are not covered by the specialized disorder

predictors [11,57,58].

Some methods combine more than one approach where the

combined methods typically outperform individual approaches.

For instance, one method employs a neural network trained on

residues missing from electron density maps and on residues in

high B-factor loops [42]. A recently developed method is based on

the consensus of the distributions of charge-hydropathy values and

disorder prediction scores to predict proteins that are mostly

disordered [10]. Another predictor uses two different prediction

methods, each optimized on unstructured regions of different

lengths [28]. Recently, we developed a method that combines

inter-residue internal contacts with pairwise energy potentials and

accurately predicts long and functional unstructured regions [59].

Better methods still urgently needed
The unraveling of the phenomenon of disorder continues. We

need more and better specialists, i.e. methods that identify specific

types of disorder and through this facilitate the functional and

structural interpretation such predictions. We also need more

accurate generalists, i.e. methods that perform best for most types

of disorder. Finally, despite the variety of current prediction

methods, some aspects of disorder remain untapped, demonstrated

by the observation that if a new experimental technique for

identifying disorder comes along, existing methods fail impres-

sively (GT Montelione, unpublished). Some methods account for

these demands by combining original methods [28,42,59]. As for

other prediction tasks, it has been demonstrated that a simple

combination of just few orthogonal methods improved accuracy

over all its original sources [10].

In this work we hypothesized that a combination of several

orthogonal methods will capture many types of disorder at

improved performance without sacrificing the distinction of the

type of disorder that is detected. We first showed that even a

simple arithmetic average over different methods slightly improved

over the best method confirming and expanding previous

observations [10,11,28,42,59]. We topped this significantly by

combining the output from various prediction methods with

sequence profiles and other useful features such as predicted

solvent accessibility, secondary structure and low complexity

regions. The new method, MD (Meta-Disorder predictor),

significantly outperformed each of its constituents on average

and in our tests also topped commonly used top-of-the-line

methods such as RONN, IUPred and the VSL2 series of

prediction methods.

Results and Discussion

Simple averaging over output improved over best
individual method

First, we calculated the arithmetic average over the raw output

of four disorder prediction methods: DISOPRED2 (Support

Vector Machine based prediction of missing coordinates in X-

ray structures), IUPred (prediction of unstructured regions based

on pairwise statistical potential), NORSnet (prediction of unstruc-

tured loops) and Ucon (specific contact based prediction method).

The resulting method was better than any of the original methods

(AUC.0.77, Fig. 1A). Even an average compiled exclusively over

the most accurate individual method (Ucon) and a less accurate

but quite orthogonal method (DISOPRED2) improved slightly

Improved Disorder Prediction
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(AUC.0.76, Fig. 1B). The main reason for the improvement was

the difference in their predictions [59]. A combination of accurate

but similar methods (Ucon and IUPred) hardly improved on its

components (AUC = 0.76). Not all simple combinations yielded

better predictions, e.g. the average over Ucon and NORSnet

(AUC = 0.75) did worse than Ucon. These results were particularly

important in light of researchers who are confused by the plethora

of existing prediction methods and respond by compiling averages,

which is not always a good idea.

Final method MD better than simple averaging
We then input to neural networks the results from the above

four servers along with the output of a method predicting flexibility

(PROFbval), and sequence profiles. This method outperformed

any of its constituents (AUC = 0.78, Fig. 1A) as well as the best

simple average over the original four methods (AUC = 0.77,

Fig. 1B). Then, we trained our final method which also included

explicit predictions of secondary structure, solvent accessibility and

other sequence properties (Methods). This final meta-disorder

prediction method topped the previous ones considerably

(AUC = 0.80, Fig. 1B). The method, MD, significantly outper-

formed its components (NORSnet, PROFbval, Ucon and

DISOPRED2) as well as other predictors, such as IUPred and

RONN [60], which have been demonstrated to be rather accurate

[39,49]. MD also outperformed all VSL2 methods that we tested,

including VSL2 (AUC = 0.77), one of the most accurate predictors

at the 7th Critical Assessment of methods of protein Structure

Prediction (CASP7) [49,61]. VSL2 itself is a meta-predictor that

combines different approaches [28,62]. Overall, our results show

that averaging over many tools can go wrong, and there is always a

prediction available that is considerably better than the best

average (Fig. 1B). Note that similar results were observed for a

subset of proteins that did not share homology using a stricter

cutoff (HSSP-value,0, Fig. S1).

Final method best for all flavors of disorder captured by
other methods

MD was best in terms of per-residue performance, but it also

distinguished best between proteins with and without long (.30

residues) disordered regions: at a prediction threshold with an

estimated false-positive rate ,0.25, MD correctly identified 160

proteins, while NORSnet, Ucon, DISOPRED2 and IUPred

identified 104, 149, 97 and 133 proteins, respectively (yellow

column in Fig. 2A and Venn diagram in Fig. 2B). We confirmed

this trend for a dataset that was compiled using more stringent

cutoff for homology (HSSP-value,0, Fig. S2). IUPred and Ucon

were previously established to be very accurate in the distinction

between disordered and well-ordered long regions. As MD was

trained to capture the entire length spectrum, i.e. also short

regions with disorder, it was particularly encouraging that MD

competed successfully with those two original methods. The

question remains whether MD is just zooming into the type of

disorder that is most commonly captured by today’s tools.

Not all prediction methods capture the same flavor of disorder

[11,59]. Here, we analyzed the set of proteins correctly identified

at false positives rates #0.25 to have at least one long disordered

region (Fig. 2A, yellow column). Most of the proteins (145 of 160

proteins) identified by MD were also predicted by at least one of

the other methods. Surprisingly, MD identified 15 proteins that all

other methods missed (unique predictions, Fig. 2B). In contrast,

NORSnet and DISOPRED2 had relatively low number of unique

predictions; this is partially due to the fact that these two methods

Figure 1. Per-residue performance on sequence-unique DisProt subset. (A) The final method MD (blue filled diamonds), which uses neural
networks to combine the output of other methods with sequence profiles and other sequence features, is significantly more accurate than the
methods that it uses as input such as NORSnet (dark gray) and DISOPRED2 (dark green) as well as other popular predictors such as IUPred (purple),
RONN (light green), VSL2B (pink) and VSL2 (light gray). Other VSL2 models resulted in AUCs ranging the values obtained by VSL2B (sequence based)
and VSL2 (sequence+secondary structure+profiles). Note that the VSL methods were trained on DisProt. Since we tested that method on essentially
the same data set without cross-validation, our results are likely to over-estimate the performance of the VSL methods. Using additional sequence
features also improved over using only the output from other methods and profiles (light blue open diamonds). (B) We compared methods that
would result from simply averaging over the output of original prediction methods (triangles). Most averages were better than the best original
method (here Ucon, orange circle). Our final neural network-based method, MD, significantly outperformed others throughout almost the entire ROC-
curve.
doi:10.1371/journal.pone.0004433.g001
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overlap with each other: NORSnet predicts unstructured loops

and DISOPRED2 predicts residues missing from the electron

density map in X-ray structures, which are often flexible loops.

One limitation of Venn diagrams is that they may hide trends

because they represent predictions for a single cutoff. We

addressed this problem by plotting the per-residue false positive

rate against the number of unique proteins, i.e. proteins that were

not identified by any of the other methods (Fig. 2C–D). We first

compiled unique predictions for only three methods (Ucon,

NORSnet and DISOPRED2) and then compared this to the

unique predictions upon including MD. Including MD shrunk the

number of unique predictions considerably, supposedly because it

captured some features of each of the three original methods

(Fig. 2C–D). While excluding predictions by any method is likely

to drop the total number of correctly predicted proteins, we found

that when excluding proteins identified by MD this number had

shrunk the most (Fig. S3). This view again revealed that MD

captured surprisingly many disordered regions that none of the

other methods had identified. The downside of this result was that

for those cases, we no longer have evidence as to which flavor of

disorder is predicted; this makes interpretations about the

structural and functional impacts of the region more challenging.

On the other hand, MD shares this occasional disadvantage with

many prediction methods [10]. Moreover, one simple aspect of

Figure 2. Per-protein performance on long disordered regions. Data set: 205 DisProt proteins with at least one long (.30 residues)
disordered region. (A) Our final method MD identified more true positives than the other methods at most of the false positive rates. (B) The results
for false positive rates #0.25 (yellow bar) are presented in the Venn diagram. The numbers in parentheses correspond to the y-axis values of the
points in the yellow column in graph (A). (C+D) This is the same data as for (A) except that we only considered the subset of proteins correctly
predicted exclusively by the method shown, i.e., proteins with long disordered regions that no other method captured. Due to low counts, we
smoothed values by running averages over three percentage points. In (C) the panels represent the proteins that are unique if MD is not included in
the overlap calculation, whereas in (D) the panels represent the proteins that are unique when MD is included. The number of unique predictions is
substantially smaller when including MD suggesting that MD not only yielded a good average but also captured all types of disorder.
doi:10.1371/journal.pone.0004433.g002
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disordered regions is their length. Overall, the length distribution

predicted by MD was very similar to the one in observed regions

(Fig. S4). Limitation of some of the experimental methods

characterizing disorder and computational methods serving as

input features for MD may have led to apparent over-prediction of

short stretches and under-prediction of long regions (Fig. S4).

Stronger predictions of disorder more accurate
The distribution of the normalized method output (compiled as

the difference between the two output units) indicates that

disordered residues tend to have higher output values than

ordered residues (Fig. S5, Supporting Online Material). Therefore,

we converted this normalized output into a reliability index (RI),

and found that this measure correlated well with accuracy and

coverage (Fig. 3). In this analysis we focused on residues from long

unstructured regions (.30). For example, ,52% of the disordered

residues from long unstructured regions in the DisProt data set

were predicted at RI$4 (coverage in Eqn. 1); at that level, the

prediction accuracy was.68%, compared to 62% for all residues.

The method is particularly accurate for ordered residues. For

instance, for the same reliability index, ,55% of the residues that

are not located in long unstructured regions were predicted at

,85% accuracy (coverage ordered and accuracy ordered in Eqn. 2).

MD output provides hints for the predicted disordered
region type

Although it is evident from Fig. 2 that MD predicts new

unstructured regions, it is not clear what regions MD captures that

other methods ‘‘miss’’. Ultimately, the achievement of MD over its

constituents appears to be one of slightly moving thresholds. In the

context of analyzing entire proteomes as well as structural and

functional genomics, methods that move cases from ‘‘may be

disordered’’ to ‘‘clearly disordered’’ may matter very much. Note

that the ROC curves (Fig. 1, Fig. 2A) indicate relatively sharp

transitions, i.e. moving the threshold slightly may identify

hundreds of proteins in human alone that might fall out of the

analysis without MD.

The question remains as to what types of disorder MD pulls out.

Are they ‘‘salvaged ones’’ loopy-like (as identified by NORSnet)?

Or are they low in contact propensity (as predicted by Ucon)? If

we had used a simple neural network that only uses the output

from other methods as input, we could easily analyze the

contribution of the input to the final decision. However, we found

that such a simple network did not improve importantly enough

over simple averaging, and therefore included a lot of other

information. We are not aware of any analysis that succeeded in

gaining understanding from the ‘‘rules’’ contained in levels of such

complexity in real-life applications of networks. Put simply: when

problems are so complex that their solutions need very high levels

of complexity, it is more difficult to fool ourselves into believing

that we understand the dominant sources.

An ad hoc approach is to simply provide the raw output of all

constituent prediction methods, some of which allow very clear

interpretations of the flavor of disorder that they pick up. In the

examples shown in Fig. 4, we analyzed predictions by MD, as well

as some of its constituents and other sequence features including

secondary structure and solvent accessibility. None of these

recently annotated disordered regions has been used to train

MD or any of its constituents. For both the C-terminal domains of

cell-surface glycoprotein CD3 gamma chain and alkylmercury

lyase, Ucon and NORSnet gave some signal of disorder (Fig. 4A–

B), thereby correctly predicting some parts of the disordered

regions. In both cases MD captured the whole disordered region.

This observation is not surprising; while MD does not define a

completely new type of disordered region, it averages scores from

several prediction methods and other sequence properties to define

a new, refined score predicting disorder. Although one can argue

that by changing the thresholds of the other methods they can also

predict MD-identified regions, we hypothesize that MD can do it

effectively in an automatic manner. Finally, we demonstrate how

by combining results from secondary structure prediction, different

disorder predictors and MD, one can estimate the type of the

predicted disorder region (Fig 4C–D). For instance, as illustrated

in Figure 4D, NORSnet, predicts the protein to be entirely lacking

unstructured loops and PROFsec, a profile neural network based

method predicting secondary structure, predicts the disordered

region to be mostly helical. Ucon, which focuses on identifying

disordered regions with low contact-density, predicts the protein to

have a disordered region. In this case, MD correctly predicted the

Ucon-like disordered region.

Conclusions
We demonstrated that methods predicting disorder based on

different concepts identified very different ‘‘flavors’’ of disorder.

Two extreme examples were contributed by the results of methods

such as NORSnet and DISOPRED2 on the one side and IUPred

and Ucon on the other side. While the field will need more

specialized methods that capture regions in the space of disordered

Figure 3. Reliability index allows focusing on more accurate
predictions. The normalized output of MD was converted into a
reliability index that reflects the prediction strength. Different
performance measures (Eqn. 1 and 2) were calculated and averaged
over the six sets using the default cutoff defining positive prediction.
Stronger predictions (higher reliability indices) were, on average, more
accurate, e.g. if a user looked only at residues predicted at RI$4, then
she or he would expect to find about 52% of all disordered residues at
that level, and over 68% of the residues identified at that level would be
correct (marked by gray column). Note that one limitation of using
DisProt is that the per-residue assignment of long unstructured regions
can be inaccurate as some experimental techniques characterizing
disorder may only capture global properties of the protein resulting
mislabeling of the whole domain or protein as disordered.
doi:10.1371/journal.pone.0004433.g003
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sequences that remain untapped, here our goal was the develop-

ment of the best generic prediction method. In all our comprehen-

sive tests, we amassed data supporting the notion that we succeeded

in implicitly extracting the best of each specialist and in carving this

into an excellent generalist, dubbed MD. MD not only performed

best in terms of per-residue and per-protein accuracy/coverage, but

it also identified unique regions that had been missed by ALL the

original methods that we analyzed, i.e. it somehow intruded into the

untapped region of sequence space. Nevertheless, the downside of

averaging is always that some pearls discovered by the original

methods can be lost when only considering the average, i.e. MD.

Therefore, it is probably best to use the most reliable predictions

from many methods on top of MD.

Materials and Methods

DisProt data set
We used all residues that were shown by at least one

experimental technique to be in disordered regions according to

DisProt version 3.4 [7] as positives, and all other residues in those

proteins as the negatives. Unlike in our other studies, we used

residues from disordered regions of all lengths (expecting the meta-

predictor to pick up all types of disorder). Note that DisProt

regions are on average longer than regions of missing residues

from X-ray structures, and have different amino acid composition

(data not shown).

From the initial set of 460 proteins we discarded 60 proteins

with .780 residues as these could not be handled by all of the

methods we tested. From the remaining set, 17 more proteins

crashed when applying at least one of the predictors in this study,

and were also discarded. We generated sequence-unique subsets

through UniqueProt [63] ascertaining that the pairwise sequence

similarity between any pair of proteins corresponded to HSSP-

values,10 [64,65] which translated to ,31% pairwise sequence

identity for .250 aligned residues. Alignments were generated by

three iterations of PSI-BLAST [66] searches against UniProt using

our standard protocol for the generation of profiles [67]. The

entire data set included 298 sequence-unique proteins with 27,117

Figure 4. MD predictions demonstrated by specific examples. Predicting disorder and other sequence features using the MD server through
the PredictProtein web-interface for protein sequence analysis (Methods) [75,76]. (A) NORSnet and Ucon predict some signal for the presence of
disordered region in the C-terminal domain of T-cell surface glycoprotein CD3 gamma chain (DP00508) [77], while MD correctly predicts the whole
domain to be disordered. (B) Similar results were obtained for the C-terminal domain of E. Coli Alkylmercury Lyase (DP00575) [78]. (C) The signaling
molecule Nogo-B (DP00524) [79] contains disordered N-terminal, which was captured by MD. PROFsec and NORSnet predictions suggest that this
region is long disordered loop. (D) The C-terminal domain of the ribosomal protein L5 (DP00579) [80] is disordered. While PROFsec predicted this
region to be helical (red rectangles), Ucon identified it as disordered, probably due to small number of internal contacts. MD agreed with Ucon
output and correctly predicted this region to be disordered.
doi:10.1371/journal.pone.0004433.g004
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disordered (positives) and 61,118 well-structured (negatives)

residues. Our results were qualitatively similar for sequence-

unique filtering at HSSP-values,0 (i.e., 21% pairwise sequence

identity for .250 aligned residues); however, for that number only

135 proteins remained in the DisProt data set.

Neural networks: training, cross-training and testing
We randomly divided the sequence-unique data set into six

equally sized groups, using proteins from four groups for training

(optimization of junctions in the neural networks), one for cross-

training (optimization of general network parameters, including

‘‘stop-training’’), and one for testing (estimate performance). We

then rotated through these sets so that each protein was used

exactly once for testing, and averaged the performance measures

over the six groups. All the results that we reported were valid for

the independent testing sets.

Input from prediction methods
In selecting the methods used as input to the Meta-disorder

predictor (MD) we applied the following rationale:

(1) Include the most unique methods: to prevent over-optimiza-

tion for one particular type of disorder, we focused on

methods that were based on different concepts.

(2) Preference for in-house methods: this focus originated solely

from considerations that had to do with the prospect of having

to manage the resulting method for a considerable amount of

time in environments of constant changes.

(3) Preference for easily reproducible algorithms: methods that

are based on simple concepts, such as the statistical potential

based method IUPred [39] and the hydrophobicity/net-

charge based method FoldIndex [3,36] can easily be

reproduced by anyone. Our resulting local versions of these

methods were slightly less accurate than the originals when

tested on our data sets.

(4) Preference for methods that can be installed locally and can

be used freely. Since one important aspect of protein disorder

is the prediction of residues that are invisible in X-ray

structures, we needed to use one of the methods that predict

this aspect as input for our meta-predictor. Many machine

learning based methods were optimized for residues missing

from PDB structures [28,42,43,44,45,46,68]. Despite many

differences, these methods overlap. Therefore, we decided to

represent this class by the incorporation of one single method,

namely DISOPRED2 [46]. We used DISOPRED2 for several

reasons: it was one of the best methods according to the

CASP6 disorder assessment [49], it installed easily locally, and

DISOPRED2 is quite orthogonal to our in-house methods

[11,59].

Neural network architecture
We trained standard feed-forward neural network with back-

propagation and a momentum term [69]. Due to a significant

difference in the number of positive and negative samples we used

balanced training [69]. The input features for the network

included properties that were shown to be correlated with protein

disorder: (1) local properties such as predicted secondary structure,

local sequence profiles, solvent accessibility, the presence of low

complexity regions, and amino acid composition of a given

sequence window length; (2) global properties such as the length of

the sequence; (3) predictions from other servers that included the

probability for a given residue to be disordered. These included

NORSnet [11], DISOPRED2 [46], PROFbval [58,70] and Ucon

(where several models were implemented) [59]; (4) for the

reproduction of predictors similar to the amino acid propensity

based methods FoldIndex [3,36] and IUPred [39], we calculated

hydrophobicity/net-charge as described by Uversky [3] and

estimated the energy of a local sequence window using a statistical

potential, respectively. Note that we also trained a method that

used as input only predictions from NORSnet, DISOPRED2,

PROFbval, Ucon and sequence profiles without using any other

sequence properties.

Per-residue vs. per-protein performance
Many of the methods used as input to MD used DisProt and

similar sets for parameter optimization. Monitoring per-protein

prediction is more prone to over-optimization than monitoring per-

residue performance as the set contains significantly fewer samples;

it also may bias the results for predicting proteins with very short

unstructured regions. In order to minimize this risk, we focused on

per-residue predictions and only ultimately, assessed per-protein

performance. We also validated the performance of MD on a subset

of our set that was obtained using a more stringent criterion for

sequence uniqueness, i.e., for HSSP-values,0. For the per-protein

analysis, we used a sequence-unique subset of DisProt that consisted

of 205 proteins with at least one long (.30 residues) disordered

region, and again, validated the results on a set that was created

using the more stringent criterion for sequence uniqueness.

Assessing performance
We assessed performance on the DisProt data set. All results in

the study were based on the sequence-unique subset; some data for

the full set is provided in Supporting Online Materials. Receiver

operating characteristic (ROC) curves were constructed by

calculating FP (false positives) and TP (true positives) rates at

different thresholds defining a positive prediction. The curves were

then integrated in order to calculate the area under the curve

(AUC). TP are unstructured residues experimentally observed

AND correctly predicted; FP are structured residues that are

predicted to be unstructured; TN (true negatives) are residues

observed and predicted as well-structured, and FN (false negatives)

are residues observed to be unstructured and predicted to be

structured.

We also measured accuracy/specificity (Acc), coverage/sensi-

tivity (Cov) and false positive (FP) rate by the standard formulas:

Accuracy~
TP

TPzFP
; Coverage~TP rate~

TP

TPzFN
;

FP rate~
FP

FPzTN
ð1Þ

In analogy, we computed the accuracy and coverage for the

negatives, i.e., residues that there is no evidence for them to be

disordered, thus we assume they are structured:

Accuracy ordered~
TN

TNzFN
;

Coverage ordered~
TN

TNzFP
ð2Þ

Web-server
MD server provides results in text and graphical formats. To

gain further insight into the nature of the predicted disordered
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region, the server also provides visual output of methods predicting

different aspects of protein structure and function (Fig. 4).

DISULFIND [71] is a method that predicts cysteine pairs found

in disulfide bridges. Predicted pairs are marked by squared

brackets connecting the positions of two residues along the protein

sequence. PROFacc [72] is a method that predicts residue solvent

accessibility. Predictions range from highly accessible (blue) to fully

buried (yellow). PROFsec [69,73] is a method that predicts

secondary structure. Yellow rectangles represent predicted strands;

red smaller rectangles represent alpha helices. PROFhtm [74] is a

method that predicts transmembrane helices (green rectangles).

The remaining methods predict different aspects of disorder as

described in the text.

Supporting Information

Figure S1 Per-residue performance on sequence-unique DisProt

subset using a stringent homology cutoff. ROC curves were

compiled using a set with a stricter cutoff for homology redundancy

- HSSP-values are ,0. The final method MD (blue filled diamonds)

that uses neural networks to combine the output of other methods

with sequence profiles and other sequence features, is significantly

more accurate than the methods that it uses as input such as

NORSnet (gray) and DISOPRED2 (dark green) as well as other

popular predictors such as IUPred (purple) and RONN (light green).

Found at: doi:10.1371/journal.pone.0004433.s001 (0.56 MB TIF)

Figure S2 Per-protein performance on long disordered regions.

Data set: 86 DisProt proteins with at least one long (.30 residues)

disordered region. This set was compiled using more stringent

cutoff for homology (HSSP-values,0). Our final method MD

identified more true positives than the other methods at most of

the false positive rates. Note that this set is much smaller than the

one compiled using HSSP-values,10 that the error margins are

significantly higher.

Found at: doi:10.1371/journal.pone.0004433.s002 (0.56 MB TIF)

Figure S3 Per-protein performance on long disordered regions

when excluding proteins identified by the different methods. Data

set: 205 DisProt proteins with at least one long (.30 residues)

disordered region. Each line represents the performance when

taking protein regions that were correctly identified as disordered

by at least one of the methods, while excluding proteins identified

by one method. For example, the worst performing combination

of three methods is when we did not include MD predictions (blue

filled diamonds).

Found at: doi:10.1371/journal.pone.0004433.s003 (0.59 MB TIF)

Figure S4 Distribution of observed vs. predicted disordered

regions lengths. The fractions of residues that originated from

disordered regions from different lengths are plotted. More than

50% of the observed disordered residues originated from very long

unstructured regions - regions that are longer than 220 consecutive

unstructured residues (dark blue squares), and only about 35% of

the predicted residues originated from very long unstructured

regions (light blue triangles). Overall, the predictions and

observations differed significantly for the two extreme ends of

the distribution: MD significantly over-predicted short regions

(,30 residues) and significantly under-predicted very long regions.

This large difference could be attributed to two main factors; first,

among MD’s most useful input features was the disorder

probability predicted by DISOPRED2. While DISOPRED2 was

trained on X-ray disorder, it identifies many short regions as

disordered that some were predicted as such by MD as well. This

observation gives further evidence that MD captured the flavor of

disorder predicted by DISOPRED2. Future improvements of MD

may include filtering out very short and isolated predicted

stretches. Second, some of the experimental methods character-

izing unstructured regions are not accurate enough to determine

disorder in a resolution of a few residues. In fact, experimental

techniques such as circular dichroism (CD) and analytical

ultracentrifugation can only assign disorder at the protein or

domain level.

Found at: doi:10.1371/journal.pone.0004433.s004 (0.42 MB TIF)

Figure S5 Distribution of method values. The difference

between the two neural network output units (one coding for

disorder, the other for ordered) was normalized to values ranging

from 0 (ordered) to 100 (disordered). Some disordered residues

have very low values, i.e. are predicted strongly as well-ordered.

These might just be bad, generic prediction mistakes or problems

in the original data. Interestingly, residues from E. coli tend to be

very low and residues from H. sapiens follow similar distribution to

our set.

Found at: doi:10.1371/journal.pone.0004433.s005 (0.63 MB TIF)
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