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Abstract

Background: Air travel plays a key role in the spread of many pathogens. Modeling the long distance spread of infectious
disease in these cases requires an air travel model. Highly detailed air transportation models can be over determined and
computationally problematic. We compared the predictions of a simplified air transport model with those of a model of all
routes and assessed the impact of differences on models of infectious disease.

Methodology/Principal Findings: Using U.S. ticket data from 2007, we compared a simplified ‘‘pipe’’ model, in which
individuals flow in and out of the air transport system based on the number of arrivals and departures from a given airport,
to a fully saturated model where all routes are modeled individually. We also compared the pipe model to a ‘‘gravity’’ model
where the probability of travel is scaled by physical distance; the gravity model did not differ significantly from the pipe
model. The pipe model roughly approximated actual air travel, but tended to overestimate the number of trips between
small airports and underestimate travel between major east and west coast airports. For most routes, the maximum number
of false (or missed) introductions of disease is small (,1 per day) but for a few routes this rate is greatly underestimated by
the pipe model.

Conclusions/Significance: If our interest is in large scale regional and national effects of disease, the simplified pipe model
may be adequate. If we are interested in specific effects of interventions on particular air routes or the time for the disease
to reach a particular location, a more complex point-to-point model will be more accurate. For many problems a hybrid
model that independently models some frequently traveled routes may be the best choice. Regardless of the model used,
the effect of simplifications and sensitivity to errors in parameter estimation should be analyzed.
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Introduction

Air travel plays an important role in facilitating the spread of

many infectious diseases, and systems that model that spread may

need to take it into account. Crépey and Barthélemy [1] analyzed

30 years of data on seasonal influenza outbreaks in United States

and 20 years of data for France, concluding that, in the United

States, ‘‘realistic modeling of the spread of epidemics at the

interstate level may only need to take air transportation into

account,’’ whereas modeling France would require several

transportation modes. Brownstein et al. [2] analyzed the spread

of influenza in the United States for 9 years (1996–2005) using

signal processing methods, and found that domestic air travel

volume predicted the rate of influenza spread, and international

air travel affected the timing of influenza mortality. In their view,

the ‘‘delayed and prolonged influenza season’’ that followed the

ban on air travel in the United States after the September 11, 2001

terrorist attacks provided empirical evidence for the role of air

travel in long range disease spread. Subsequent analysis in defense

of their findings included data from a 30-year period [3]. While air

travel is clearly important for the long range spread of many

infectious diseases, as illustrated by the SARS epidemic [4],

regionally its importance may be diminished. Viboud et al. [5]

found that regional spread correlated most closely with the

movement of people to and from their workplaces, and that the

‘‘magnitude of impact’’ of air travel remained unclear in

comparison.

In modeling air travel, as with many aspects of disease spread,

the temptation is to include all possible detail, but this may lead to

unwieldy, complex systems that are difficult to validate and slow to

run. When stochastic models are used, this computational

complexity can seriously impact our ability to run the tens of

thousands of simulations may be necessary for valid results.

Models of air travel (or travel in general) may be integrated into

epidemiological models in different ways, but at some level must

account for the movement of, or contact between, people at distant

locations. The details of this integration and of the models

themselves are not our focus here, but an example is the open

source Spatial Temporal Epidemiological Modeling (STEM)

project [6–8], in support of which we performed this analysis.
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The modeler’s problem is to come up with models of

transportation that capture the contacts and movement important

to disease spread, yet are simple enough to be computationally

efficient and fit to (often minimal) data. Air travel introduces long

range and high degree connectivity to any transportation network

that can be computationally expensive. As such it is important to

consider the accuracies and inaccuracies, as well as the

computational cost of alternative air transportation models.

The appropriate level of abstraction, and indeed the importance

of air travel itself, is dependent on the disease being studied and

the question being asked. The analysis presented here focuses on

diseases spread by person-to-person contact, which includes many

of those where rapid control might be required, e.g., influenza,

smallpox [9,10]. We focus primarily on a single metric of the effect

of air travel: the frequency of long range introductions. However,

transmission during air travel, whether on the plane or at the

airport, may also be important [4].

As part of our work developing STEM, we evaluated a

simplified air transportation model, where all individuals flow

through a single hub, in comparison with a fully saturated model

where all routes are modeled individually, and a ‘‘gravity’’ model

where the probability of travel between airports is scaled by their

physical distance.

In this article we attempt to characterize the errors associated with

the simplified model in a manner meaningful to the disease modeler.

The level of complexity required for a model largely depends on the

question being asked; by specifying the type and magnitude of errors,

we hope to aid disease modelers in deciding if using a simplified air

transport model will substantively impact their conclusions.

Methods

We obtained data on individual tickets within the United States

for all of 2007 from the U. S. Department of Transportation

Research and Innovative Technology Administration Bureau of

Transportation Statistics (RITA-BTS). Tickets give the origin and

destination of full trips, rather than individual flights. The RITA-

BTS ticket data (DB1BTicket from the Airline Origin and

Destination Survey) are a sample of 10% of U.S. tickets from

reporting carriers. Using this model we calculated the probability

of a trip originating at any airport A, terminating at any other

airport B, as pA,B ~ TA,B=TA
where TA,B is the number of trips

from A to B, and TA is the total number of trips originating at A.

This defines the saturated, point-to-point model.

In order to account for the possibility of flights on unseen routes,

and ensure comparability between models, we assigned 0.1 trip

per year on every possible route not seen in the RITA-BTS data.

These unseen trips account for 0.01% of the trips considered in

this analysis.

The simplified model we used is a ‘‘pipe’’ model, in which

individuals flow in and out of the air transport system based on the

number of arrivals and departures from a given airport (i.e., there

is no explicit modeling of individual routes). In this model, the flow

of passengers in the air transportation network is considered to be

like that of an incompressible fluid flowing through pipes where

airports are sources and sinks of fluid. The more traffic through a

given airport, the more fluid is flowing and the larger the

associated ‘‘pipe’’ into the network. Since any traveler in the global

transportation system has some probability of mixing with any

other traveler (either on a flight or during a flight change at some

hub), the pipes of all diameters join in some abstract hub in this

model. Point-to-point travel is then determined by the product of

the probability of travel from the origin, to the destination,

normalized by the total travel. Under this model the probability of

a trip from origin A terminating at B is the proportion of all trips at

any location ending at B:

p�A,B ~

P
X

TX ,BP
X

P
Y

TX ,Y
:

To determine whether differences between pA,B and p*
A,B could

best be explained by the distance between the two locations, we

considered a third ‘‘gravity’’ model of transport. Gravity models

have proven useful in general (i.e., non-mode specific) models of

transportation [11], and assume that the probability of an

individual going from point A to point B is inversely proportional

to some power of the distance between those locations. Under this

model the probability that a trip from origin A terminates at B is:

pz
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X
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where DA,B is the distance between A and B calculated based on

their latitude and longitude using the spherical law of cosines. We

determined the appropriate b for this model by finding the value

that maximized the likelihood of the data using a Newton type

algorithm (as implemented in the nlm function in the R statistical

language) [12]. Note that for a b of 0 this model reduces to the

pipe model. More advanced gravity models have been developed

wherein the probability of travel to/from a population center

scales with population to some exponent. Including these

exponents can increase the accuracy of the model [13].

In infectious disease modeling we are interested in the rate of

introductions from A to B, lA,B, and the overall rate of introductions

into a given area, hB. Differences in these can be characterized in

terms of their ratio, or their absolute difference. The latter is of more

interest for the infectious disease modeler, because it can be used to

quantify the expected rate of false introductions (or missed

introductions) over the course of the epidemic. Table 1 shows these

relations. We do not calculate hB over the course of the epidemic as

this quantity does not have a closed form solution. All analysis was

done using the R statistical package [12].

Results

The maximum likelihood estimate of b for the gravity model

was 20.0527. The probability of a trip from a given origin to a

given destination is never more than 1.12 times more likely or less

than 0.74 times less likely under the gravity model than the pipe

model, and 95% are between 0.91 and 1.08 times as likely.

Overall, the gravity model is not significantly different from the

pipe model, and will not be considered further.

In Figure 1, panels A and B make clear the essential difference

between the two models. In the pipe transport travelers are equally

likely to go to a particular destination regardless of where the trip

originated, whereas in the saturated model tickets from smaller

airports are more likely to terminate at larger airports, and the

destinations of tickets from larger airports are more evenly

distributed across destinations. When comparing the relative

probability that a person from a given airport will go to another

one (panel C), we find that the frequency with which trips from

busy airports end at other busy airports is nearly correct under the

pipe model, but that the probability a trip from a busy airport is to

a less busy airport is underestimated by the pipe model. For trips

Air Travel and Disease Spread
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originating from smaller airports, the probability the destination is

another small airport is overestimated by the pipe model.

Of interest to the infectious disease modeler is the frequency

with which a disease will be introduced under the pipe model, and

not introduced under the full model (and vice-versa). To quantify

this, we looked at the difference in the rate of introductions from

an origin to each particular destination under the two models

under the assumption that everyone at the origin is infected with

the disease. Using this metric, we found that in only 10% of routes

will the rate of introductions be over- or underestimated by at least

one person per day, and this over- or underestimation will tend to

occur on the most traveled routes (Figure 1D). In 2% of routes, the

difference in rates is at least 10, and in 0.05% of cases is it at least

100. Only for four routes (JFKRLAX, LAXRJFK, JFKRSFO,

Table 1. Rate of introductions into a given airport.

Difference in rate of introductions from A to B at a particular point in the epidemic l�A,B { lA,B ~ iADTA p�A,B { pA,B

� �

Difference in number of introductions from A to B over the course of the epidemic
I�A,B { IA,B ~ DTA p�A,B { pA,B

� � ð?

0

iA,tdt

Difference in overall rate of introductions into B hB ~
X

X

iXDTX p�X ,B { pX ,B

� �

doi:10.1371/journal.pone.0004403.t001

Figure 1. Comparison of the pipe and saturated models of air transport. Legend: In all four graphs origins are ordered left to right by
increasing airport traffic, and destinations are ordered bottom to top by increasing airport traffic. (A) The log-probability a trip from a given origin
airport is to a particular destination airport under the saturated model. (B) The log-probability a trip from a given origin airport is to a particular
destination airport under the pipe model. (C) The log probability ratio of the pipe model versus the saturated model. (D) Trips for which the rate of
disease introductions from a fully infected location is overestimated by at least one individual per day (red) or underestimated by one individual per
day (blue) under the pipe model.
doi:10.1371/journal.pone.0004403.g001
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SFORJFK) is the difference at least 500. All of these routes are

frequently traveled ($600 passengers a day) cross country routes

where the pipe transport model significantly underestimates the

probability of the trip (and hence the number of introductions).

A final method of evaluating the extent to which the pipe model

approximates the full model involves comparing the difference

between the mixture of flight origins for individuals coming into a

given airport under the saturated model and the pipe model. This

can be characterized by the calculating the Euclidean distance

between the vector of percentages of arrivals coming from each

airport under the saturated model and the pipe model. Those

airports with the fewest arrivals per year have a larger difference in

the makeup of their arrivals between the predictions of the pipe

model and the saturated model, as shown in Figure 2.

Discussion

While the simplified pipe model of air travel provides a rough

approximation of actual air travel, it has several shortcomings.

Most of these can be traced back to the pipe model’s

overestimation of the number of small town to small town trips.

The other simplified model considered, a gravity model which

takes into account distance, has similar problems and offers little

benefit for the increased complexity.

For those highly infectious disease where air transportation plays

an important role, underestimation of the number of disease

introductions that would occur from travel between major western

and eastern populations centers (e.g., Los Angeles and New York)

may result in models that underestimate the speed with which the a

disease will cross the country. Similarly, the overestimation of the

number of locations from which people travel to less busy airports

may lead to models where diseases will more rapidly reach locations

that might remain protected for a longer period of time. However,

for most routes, the size of these effects are relatively small, and the

former problem may be correctable by a hybrid model, where

frequently traveled routes are treated independently (amplified).

Computationally a pipe model offers an enormous advantage as it

captures disease transmission by air travel with a 2N edged graph,

compared with the point-to-point model that requires 2N2 edges.

In modeling the large scale regional and national effects of

disease, the pipe model may be adequate, if the most important

driver of disease spread is local contact and transportation

modeling serves only to allow the disease to make long distance

jumps across the country. If we are interested in the specific effects

of interventions on particular air routes, or the time for the disease

to reach a particular location, a more complex point-to-point

model will be more accurate. For the most sophisticated and

realistic simulations even a model of point-to-point trips may be

too much of a simplification, as contact within airports during

transit may play an important role in transmission. There may be

other factors that lead the investigator to choose one model over

the other, for instance, in the pipe model it is straight forward to

implement mixing within the air transport system, whereas this

may be more difficult in a point to point model.

Regardless of which model is used, it is important that the

implications of any simplifications, or errors in parameter

estimation (which become more likely as model complexity

increases), are analyzed so that the appropriate level of complexity

for the problem at hand may be selected.
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