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Abstract

Background: In vertebrates, the skeletal elements of the jaw, together with the connective tissues and tendons, originate
from neural crest cells, while the associated muscles derive mainly from cranial mesoderm. Previous studies have shown
that neural crest cells migrate in close association with cranial mesoderm and then circumscribe but do not penetrate the
core of muscle precursor cells of the branchial arches at early stages of development, thus defining a sharp boundary
between neural crest cells and mesodermal muscle progenitor cells. Tendons constitute one of the neural crest derivatives
likely to interact with muscle formation. However, head tendon formation has not been studied, nor have tendon and
muscle interactions in the head.

Methodology/Principal Findings: Reinvestigation of the relationship between cranial neural crest cells and muscle
precursor cells during development of the first branchial arch, using quail/chick chimeras and molecular markers revealed
several novel features concerning the interface between neural crest cells and mesoderm. We observed that neural crest
cells migrate into the cephalic mesoderm containing myogenic precursor cells, leading to the presence of neural crest cells
inside the mesodermal core of the first branchial arch. We have also established that all the forming tendons associated with
branchiomeric and eye muscles are of neural crest origin and express the Scleraxis marker in chick and mouse embryos.
Moreover, analysis of Scleraxis expression in the absence of branchiomeric muscles in Tbx12/2 mutant mice, showed that
muscles are not necessary for the initiation of tendon formation but are required for further tendon development.

Conclusions/Significance: This results show that neural crest cells and muscle progenitor cells are more extensively mixed
than previously believed during arch development. In addition, our results show that interactions between muscles and
tendons during craniofacial development are similar to those observed in the limb, despite the distinct embryological origin
of these cell types in the head.
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Introduction

Craniofacial development requires the orchestrated integration

of multiple tissue interactions. Defining the spatial relationship and

the interactions between neural crest cells and muscle cells and

their derivatives during jaw development is an important step

towards understanding craniofacial malformations.

Jaws originate from the bilateral first branchial arches. The first

arch gives rise to the maxillary and mandibular prominences and

subsequently to musculo-skeletal structures of the upper and lower

jaws [1,2]. More caudally, the other branchial arches will provide

the neck and throat components. Branchial arches are composed

of pharyngeal endoderm, surface ectoderm, and two mesenchymal

cell populations, originating from the neural crest and from cranial

mesoderm, respectively. The ectodermal and endodermal com-

ponents envelope the two mesenchymal cell types. Mapping of the

cephalic neural folds, using quail chick chimeras, retroviral and

DiI injections have shown that neural crest cells filling the

branchial arches give rise to all the skeletal elements, connective

tissues and tendons of the jaw, while the mesodermal core gives

rise to myogenic cells of the jaw muscles [3–10].

Although previous fate mapping experiments have identified the

majority of derivatives of neural crest cells and cranial mesoderm

in the jaw, the spatial relationships and the interactions over time

between both cell types are not completely understood. Neural

crest cells colonising the first branchial arches originate from the

posterior mesencephalon to rhombomere 3 [8,11,12]. Neural crest

cells have been described as migrating in between the overlying

surface ectoderm and the cephalic mesoderm (containing the

myogenic progenitors), effectively separating these two tissues.

Then, cephalic mesodermal cells and neural crest cells expand

ventrally at the same time into the future branchial arch region. It

has been described that neural crest cells envelop but initially do

not penetrate the centrally located muscle plate of the branchial

arches. Subsequently, coincident with muscle segregation, each

muscle plate becomes infiltrated by neural crest cells, which may
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Figure 1. Comparison of MyoR and MyoD expression domains during chick first branchial arch development. (A) Lateral view of a HH20
chick embryo hybridized with a MyoR probe. HH20 (B,C), HH22 (D,E) HH24 (F,G) and HH26 (H,I) embryos were frontally sectioned at the head level.
The plane of section is indicated in the panel A. Adjacent sections from each stage were hybridized with DIG-labelled antisense probes for either
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provide the muscle connective tissue of muscles, reviewed in

[10,13,14]. Consequently, throughout their migration and subse-

quent organisation, neural crest cells are in close contact with the

myogenic precursor cells during arch development. These

extended interfaces between both cell populations have being

suspected to be important for cell interactions during arch

development and subsequent jaw morphogenesis.

Muscle formation relies on intrinsic program and extrinsic cues.

The genetic program controlling head muscle specification is

distinct from that underlying trunk and limb myogenesis, reviewed

in [15]. Moreover, specific genetic programs drive the specification

of head muscles, highlighting a genetic heterogeneity underlying

head muscle development. MyoR and Capsulin regulate an initial

step in the specification of a specific subset of branchiomeric

muscles, the major muscles of mastication, derived from the first

branchial arch [16]. The absence of Tbx1 function in Tbx12/2

mutant mice, severely perturbs branchiomeric muscle develop-

ment, while extra-ocular and body muscles are unaffected [17,18].

Pitx2 is expressed before MyoR, Capsulin and Tbx1 and is required

for their expression in the first branchial arch, although a second

study has revealed Pitx2 independent Tbx1 expression [19,20].

Although there is an emerging network of transcription factors

involved in branchial arch muscle formation, we still do not have a

global picture of the intrinsic developmental program responsible

for the specification of different head muscles. In addition to the

intrinsic genetic program, classical experiments in avian embryos

have shown that head muscle formation is also dependent on

extrinsic tissues [21,22]. It has long been suspected that cranial

neural crest cells influence head muscle formation [5,23,24].

However, the early steps of facial muscle specification have been

shown to be independent of the presence of neural crest cells, since

ablation of cranial neural crest cells in chick and amphibian

embryos does not block initiation of the myogenic program in the

branchial arches [21,25–27]. All muscle genes reflecting early steps

of the myogenic program, including Capsulin, Tbx1, MyoR, Myf5,

MyoD and desmin are expressed in the branchial arches following

neural crest cell ablation in chick embryos, although their

expression domains are altered [21,27]. The muscle differentiation

program based on myosin expression is also initiated in crest-

ablated arches; indicating that neural crest cells are not necessary

to initiate muscle differentiation [21,27]. However, in the absence

of neural crest cells, jaw muscles were found to be severely reduced

showing the requirement of neural crest cells for normal muscle

organisation after the onset of muscle specification and differen-

tiation [26,27]. These experiments indicate an early neural crest

cell-independent phase and then a later -dependent phase for

branchiomeric muscle formation.

Branchiomeric muscle formation has been studied in the

absence of neural crest cells [21,27], but we do not know how

neural crest cells behave in the absence of muscle. Tendons are

one of the neural crest cell-derived tissues likely to interact with

forming jaw muscles. Tendons did not attract much attention from

developmental biologists probably due to the lack of early markers.

The discovery that the gene encoding the bHLH transcription

factor Scleraxis is expressed in embryonic tendons in body and

limb muscles provided a major step forward [28–30]. Genetic

ablation of Scleraxis in the mouse leads to defective differentiation

of limb muscle tendons [31]. Although no head phenotype has

been reported to date in the Scleraxis mutant mice [31], Scleraxis is

expressed in the branchial arches and head tendons of mouse

embryos [30,32].

In the present study, we have reinvestigated the relationship

between neural crest cells and myogenic cells (both mesodermal

progenitors and differentiated muscle cells) during development of

the first branchial arch. Using molecular and embryological markers,

we observe an unexpected intermingling between myogenic cells and

neural crest cells at various stages of development. Furthermore, we

have show that all tendons in the embryonic head are of neural crest

cell origin and express Scleraxis. By analysing tendon formation in

absence of muscle using a genetic mouse model displaying loss of

branchiomeric muscles, we were able to demonstrate that tendons

initiate their development independently of muscles but that muscle

is required for further tendon development.

Materials and Methods

Chick and quail embryos
Animals were treated according to French institutional

guidelines. Fertilized chick eggs from commercial source JA 57

strain [Institut de Sélection Animale (ISA), Lyon, France] and

Japanese quail eggs (Chanteloup, France) were incubated at 38uC.

Before E2, embryos were staged according to somite number.

Older embryos (E3–E7) were staged according to Hamburger and

Hamilton (HH) [33]. The following day numbers and HH stages

are equivalent: HH13/E2, HH20/E3, HH21/E3.5, HH22/E4,

HH24/E4.5, HH26/E5, HH27/E5.5, HH28/E6, HH30/E7.

Quail into chick grafting experiments
Quail and chick embryos were allowed to grow until 5–6 somite

stages, when cephalic neural folds have formed. At this stage,

neural crest cells have not yet migrated [34]. Chick neural lips

from the first somite level to the diencephalic regions were excised

and replaced by their quail counterparts [35]. Quail-chick

chimeras were allowed to grow for another eight hours to five

days more and treated for tissue sections and in situ hybridization.

Mouse strains
Animals were treated according to French institutional

guidelines. Mice carrying the Tbx1 null allele (here referred to as

Tbx12/2) were kindly provided by Virginia Papaioannou

(Columbia University, New York) and mice and embryos were

genotyped as described in [36]. Mice carrying the yMyf5-nLacZ-96-

16 transgene expressing the nlacZ reporter gene under the control

of Myf5 regulatory sequences have been described in [37].

Embryos were dated taking the day of the vaginal plug as E0.5.

In situ hybridization to wholemount and to tissue
sections

Normal or experimental embryos were fixed in Farnoy (30%

(V/V) Formaldehyde 37,5%, 60% (V/V) Ethanol, 10% (V/V)

acetic acid) and processed for in situ hybridization to 8 mm wax

MyoR (B,D,F,H) or MyoD (C,E,G,I). MyoR delineates the myogenic core of the first branchial arch (B,D,F) and is subsequently expressed in all
branchiomeric muscles (H). MyoD transcripts are first detected in a lateral sub-region of the MyoR domain at HH20 (B,C, arrows) and HH22 (D,E,
arrows), then spread progressively from lateral to medial regions to overlap with the MyoR domain in branchiomeric muscles (E,G,I). (D–G) Arrows
point to the lateral domains of the core, while arrowheads show the medial domain of the core. (H,I) Arrows indicate the branchiomeric muscles
expressing both MyoR (H) and MyoD (I). (A) Arrowheads indicate the hypaxial lips at the interlimb level, expressing MyoR. BA1, first branchial arch, di,
diencephalon; e, eye; fl, forelimb; hl, hindlimb; mb, mandibular arch; mes, mesenchephalon; MR, medial rectus; mx, maxillary arch; ph, pharynx; tel,
telencephalon; VO, ventral oblique; VR, ventral rectus.
doi:10.1371/journal.pone.0004381.g001
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Figure 2. Comparison of MyoR and MyoD expression in extra-ocular muscles. HH22 (A,B), HH24 (C,D), HH26 (E,F), HH30 (G,H) chick embryos
were frontally sectioned at the head level. Adjacent sections from each stage were hybridized with DIG-labelled antisense probes for either MyoR
(A,C,E,G) or MyoD (B,D,F,H). E12.5 mouse embryos were sagitally sectioned at the head level and hybridized with DIG-labelled antisense probes for
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tissue sections as previously described [38]. Alternating serial

sections from embryos were hybridized with probe 1 and probe 2.

Pair of sections in the results comparing two probes is always

strictly adjacent. For wholemount in situ hybridization, embryos

were fixed with 4% (V/V) formaldehyde and processed as

previously described [38]. The digoxigenin-labelled mRNA probes

were used as described: chick and mouse MyoD [39], chick MyoR

[40], mouse MyoR [17], chick and mouse Scleraxis [39]. The probe

for chick AP2a originates from the UMIST EST library [41].

Immunochemistry
Chick differentiated muscle cells were detected on sections after in

situ hybridization using the monoclonal antibody MF20 (Develop-

mental Studies Hybridoma Bank). Quail cells were detected using

the QCPN antibody (Developmental Studies Hybridoma Bank)

either directly on 8 mm wax sections or after in situ hybridization.

Nerve cells were detected using the HNK1 antibody [42].

Immunochemistry on cryostat sections through mouse embryos

were performed as described in [32]. Specific antibodies against b-

galactosidase (polyclonal, 1/2000, Capel) and AP2a (polyclonal, 1/

25, Developmental Studies Hybridoma Bank) were used to detect b-

galactosidase and mouse AP2a proteins, respectively, in branchial

arches of yMyf5-nLacZ-96-16 transgenic embryos.

Results

MyoR and MyoD expression in head muscles
In order to analyse the neural crest cell/muscle interface during

branchial arch development, we needed to define an early marker

for muscle progenitors. We chose MyoR, since it has been

described as being expressed in developing branchiomeric muscles

in chick embryos [40]. In order to precisely define the MyoR

expression domain in relation to the various steps of muscle

formation, we compared its expression with that of MyoD by in situ

hybridization to adjacent tissue sections, during development of

the first branchial arch. At HH20, MyoR was strongly expressed in

the chick branchial arches in addition to the hypaxial lips of the

interlimb somites and muscle progenitors migrating to the limb

buds (Figure. 1A), [40]. The first branchial arch undergoes

profound rearrangements leading to formation of the upper

maxillary and the lower mandibular prominences. At HH20,

MyoR transcripts were detected in a large part of the mesenchyme

constituting the so-called myogenic core of the branchial arch

(Figure 1B). MyoD expression was first detected at this stage in a

sub-domain of the MyoR-positive region, corresponding to the

upper and lateral part of the mandibular process of the first

branchial arch (arrows in Figure 1B,C). At HH22, the MyoR

expression domain is still larger than that of MyoD in the

mandibular process of the first branchial arch (Figure 1D,E,

arrows and arrowheads). At HH24, the muscle plate strongly

expressed MyoD in the lateral part of the mandibular buds; MyoR

expression was maintained in this region (Figure 1F,G, arrows). In

addition, MyoD began to be expressed in the medial area of the

branchial arch, in a more discrete domain than that of MyoR

(Figure 1F,G, arrowheads). At HH26, the head of the avian

embryo has grown considerably and the muscle plates have been

profoundly rearranged, leading to the individualization of branchio-

meric-derived muscles, the jaw operating muscles. At this stage,

MyoR and MyoD expression domains overlapped completely in all

branchiomeric muscles (Figure 1H,I, arrows). In summary, MyoR is

expressed before MyoD in the myogenic core of the branchial arches.

From HH20, the MyoD expression domain progressively spreads out

to overlap with that of MyoR, which provides a good marker for

myogenic precursor cells in branchial arches.

We extended our analysis of facial muscle emergence by

analysing MyoR and MyoD expression in extra-ocular muscles.

Extra-ocular muscles comprise six muscles, namely ventral oblique,

dorsal oblique, lateral rectus, dorsal rectus, medial rectus and

ventral rectus. Despite their common final location site near the

eyes, extra-ocular muscles derive from distinct parts of the

mesoderm, the lateral rectus and dorsal oblique originate from

cephalic mesoderm, while the other 4 extra-ocular muscles

originate from prechordal head mesoderm [5,10] and reviewed

in [14]. In addition, the lateral rectus muscle has a distinct genetic

program from that of the other extra-ocular muscles, since it is the

only facial muscle, which expresses Pax3 and Lbx1 [43]. In the

head, in contrast to the exclusive association described for MyoR

and branchiomeric muscles [16,40], we also observed MyoR

expression in extra-ocular muscles (Figure 2). At stage HH22,

MyoR was expressed in the ventral and dorsal oblique muscles, in a

larger domain than that of MyoD (Figure 2A,B and data not shown,

see also Figure 1F,G for HH24). However, at HH26 MyoR and

MyoD expression domains overlapped in both ventral and dorsal

obliques (Figure 2. E,F). In the dorsal rectus, MyoD expression was

broader than MyoR, while the lateral rectus expresses both genes

(Figure 2C,D). The medial rectus was the only extra-ocular muscle,

which did not express MyoR (Figure 2G,H, see also Figure 1H,I).

MyoR transcripts were also observed in extra-ocular muscles in

mouse embryos at E11.5 and E12.5, in addition to being expressed

in branchiomeric muscles (Figure 2I,J, asterisks and data not

shown). However, MyoR expression was no longer observed in any

mouse head muscles at E15.5 (data not shown). In summary, MyoR

is not an exclusive marker of branchiomeric muscles as previously

described [16,40], but also labels extra ocular muscles in both chick

and mouse embryos.

The relationship between neural crest cells and
myogenic mesodermal cells in the first branchial arch

The current model describing the spatial relationship between

neural crest cells and myogenic precursor cells during branchial

arch development assumes that neural crest cells first circumscribe,

without penetrating, the condensed core of muscle precursors,

reviewed in [14]. Using specific molecular markers for muscle

precursors and neural crest cells, we did not observe such a scheme

(Figure 3). We used MyoR to label myogenic progenitors of

branchiomeric muscles (Figure 1), [40]. As a neural crest cell

marker, we used AP2a (Activating Protein-2a), a transcription

factor involved in face and limb morphogenesis [44–47]. These

either mMyoR (I) or mMyoD (J). In the chick embryo, At HH22, the ventral oblique is the first ocular muscle to express MyoR and MyoD (A,B). At HH 24,
MyoR transcripts are observed faintly in the dorsal rectus, strongly in lateral rectus (C), while MyoD is expressed in both dorsal rectus and lateral rectus
muscles and in branchiomeric muscles (D). At HH26 stage, the ventral and dorsal obliques harbour strong MyoR (E) and MyoD (F) expression. At HH30,
when the medial and ventral rectus muscles are individualized, MyoD is expressed in both muscles, while MyoR is expressed in ventral rectus but not
in medial rectus (G,H). (H) The innervation is labelled with HNK1 antibody, two arrowheads point to nerves. The optic nerve is also labelled in light
brown with the HNK1 antibody. (G) The absence of MyoR expression in the medial rectus is indicated by arrows. (I,J) In E12.5 mouse embryos, extra
ocular muscles, labelled by white asterisks (J) expressed both mMyoR (I) and mMyoD (J). di, diencephalon; DO, dorsal oblique; DR, dorsal rectus; LR,
lateral rectus; mBA1, first branchial arch muscles; MR, medial rectus; mx, maxillary arch; ON, optic nerve; ph, pharynx; VO, ventral oblique; VR, ventral
rectus.
doi:10.1371/journal.pone.0004381.g002
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two markers permitted analysis of the respective location of muscle

precursor cells and neural crest cells in the first branchial arch of

chick embryos between 22 and 32 somites. At these developmental

stages, MyoR expression defined the myogenic core (Figure 3A,C,E).

As expected, AP2-positive cells surrounded the MyoR-positive

domain and filled the entire space between the ectoderm and the

endoderm. However, we also observed a significant number of AP2-

positive cells inside the MyoR-positive mesodermal core

(Figure 3B,D,F). AP2 expression is also expressed in the covering

ectoderm (Figure 3B,C,F, black arrows) as previously described

[46,48]. This result suggests that neural crest cells intermingle with

myogenic precursor cells early during branchial arch development.

Analysis of E9.5 mouse branchial arches identified mAP2-positive

cells within the myogenic cores of the first and second branchial

arches, labelled by expression of a mMyf5 reporter transgene

(Figure 3G–I). Early infiltration of the mesodermal core by neural

crest cells therefore occurs in both species.

In order to follow the neural crest cells in the first branchial arch

other than with molecular markers, we replaced the cephalic

neural folds (diencephalon, mesencephalon, anterior rhomben-

cephalon) from chick embryos at 5–6 somite-stages, just before

neural tube closure, with the quail equivalent (Figure 4A). This

experiment replaces chick neural crest cells by their quail

counterparts. Using the QCPN antibody, which specifically

recognizes quail cells, combined with in situ hybridization using

MyoR probe, we were able to analyse the behaviour of neural crest

cells and muscle precursor cells during formation of the first

branchial arch. Studies of 2 day-old chimeras between 16 and 21

somite-stages (HH12–HH14) permitted quail neural crest cells to

be followed en route to the future branchial arch. At16 somite-

stage, QCPN-positive cells are clearly observed within the MyoR-

positive domain at the future arch level (Figure 4B,C). At a slightly

more caudal level (80 mm), QCPN-positive cells are about to

invade the MyoR-positive cephalic mesoderm (Figure 4D), consis-

tent with the anterior to posterior progression of neural crest cell

migration [34]. Three hours later (18 somite-stage) neural crest

cells have totally invaded the mesenchyme of the forming branchial

arch (Figure 4E). From the 18 somite-stage onwards, neural crest

cells are intermingled with MyoR-positive cephalic mesoderm

regardless of the axial level. In 21 somite-stage embryos, neural

crest cells and mesoderm were still mixed, but neural crest cells

have begun to accumulate close to the pharyngeal endoderm and

surface ectoderm (Figure 4F), generating a physical frontier

between the mesodermal core and pharyngeal epithelia. From this

stage (21 somites), the head of the embryos begins to rotate and

branchial arches start to expand. These results show that neural

crest cells do not circumscribe the MyoR-positive domain of

cephalic mesoderm but rather penetrate into this domain and

intermingle with it. However, as branchial arch formation proceeds

there is an increase of neural crest cell number close to the

endoderm and ectoderm surrounding the myogenic core.

Twenty-four hours after grafting, the head of the embryo has

grown considerably. As shown on frontal sections of HH21

chimeras (Figure 5A–C), neural crest cells were the major cell type

present in first branchial arch mesenchyme. The myogenic plate

was restricted to the central part of the arch, where MyoD

expression began to be detectable in the MyoR-positive domain

(Figure 5A,B). Nevertheless, neural crest cells continued to be

observed in the muscle plate of the first branchial arch (Figure 5C).

However, the density of QCPN-positive cells in the muscle plate is

low compared to that in surrounding mesenchyme (Figure 5C),

reflecting the massive expansion of neural crest cells outside the

core. A similar situation is observed at HH23 (Figure 5D,E). After

six days of development (HH27), profound rearrangements of the

first branchial arch muscle plate have led to individualization of

the jaw muscles. At this stage, there is a clear increase in neural

crest cell density inside the muscle masses compared to previous

stages (compare Figure 5G with Figure 5C,E). This expansion of

QCPN-positive cells within branchiomeric muscles is concomitant

with the appearance of Scleraxis expression in tendon primordia,

which are of neural crest cell origin (Figure 5F,G). Neural crest

cells inside the muscle masses may constitute the muscle

connective tissue.

In summary, our molecular and cellular analyses during

branchial arch development showed that neural crest cells first

penetrate into the cephalic mesoderm, resulting in intermingling of

neural crest and mesodermal cells at early stages. After two days of

development, neural crest cells outside the forming mesodermal

core expand dramatically leading to the outgrowth of the arch and

to an obvious difference in neural crest cell density between the

myogenic core and the rest of the branchial arch. It is only after

muscle splitting has occurred, from HH27, that neural crest cells,

likely providing the muscle connective tissue cells, expand within

developing branchiomeric muscles.

All forming head tendons of chick embryos express
Scleraxis

Tendon is a candidate tissue derived from neural crest cells

susceptible to interact with muscle organisation. The best marker

for tendon formation is the bHLH transcription factor, Scleraxis

[28,39]. Prior to HH24, expression of Scleraxis in head mesen-

chyme is general and diffuse, while Scleraxis expression clearly

defines the syndetome domain within somites at the same stages

(data not shown), [29]. At HH24, an increase of Scleraxis

expression was observed in tendon primordia of the first branchial

arches, surrounding the muscle masses labelled by MyoD

(Figure 6A–C, arrows). The timing of Scleraxis expression in

tendons associated with extra-ocular muscles is similar to that in

branchiomeric tendons. By HH26, Scleraxis expression delineated

forming tendons of all head muscles including the future jaw-

operating muscles, the tongue and eye muscles (Figure 6D–H and

data not shown). At HH30, Scleraxis expression is observed in all

head tendons (data not shown). We conclude that Scleraxis labels all

chick head tendons. However, its expression is detected later in

head tendons compared to somite and limb tendons.

In order to demonstrate that the Scleraxis positive-tendons are of

neural crest cell origin, we performed neural fold replacement in

5–6 somite-stage chick embryos by their quail counterparts as

Figure 3. Neural crest cells visualized with AP2a expression are observed inside the mesodermal core of the first branchial arch.
Adjacent transverse sections of chick embryos at the level of the first branchial arch at 22 (A,B), 29 (C,D) and 32 (E,F) somite-stages were hybridized
with MyoR (A,C,E) and AP2a (B,D,F) probes. The mesodermal core is visualized with MyoR expression (A,C,E). AP2a is expressed in all neural crest cells
within the arch and in the surface ectoderm (B,D,F). The AP2a-positive surface ectoderm is arrowed in (B,D,F). AP2 a positive cells are also observed
inside the MyoR-positive domain (B,D,F). The inset in F shows an enlargement of the mesodermal core, where the AP2 a-positive cells are indicated by
arrowheads. Frontal sections of E9.5 mouse embryos from Myf5-nlacZ mice were immunostained using an anti-b-galactosidase antibody to visualise
mMyf5 expression (G, green) and an anti-AP2 antibody to detect mAP2a location (H, red). I is a merged picture of G and H. AP2a-positive cells (red) are
observed in the mesodermal core delineated by Myf5-postive cells (green). Hoechst staining in blue indicate nuclei. a, aortic arch; BA1, first branchial
arch; BA2, second branchial arch; ecto, surface ectoderm; endo, pharyngeal endoderm; No, notochord; ph, pharynx.
doi:10.1371/journal.pone.0004381.g003
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described previously (Figure 4A) and analysed Scleraxis expression

in such chimeras. Scleraxis expression domains associated with

extra-ocular muscles and branchiomeric muscles (Figure 6I–M, see

also Figure 5G) are all constituted of quail cells, confirming that

branchiomeric and eye tendons are of neural crest origin, as are

the corresponding skeletal structures [34].

Figure 4. Neural crest cells invade the cephalic mesoderm. (A) Schematic representation of the chick neural fold replacement by its quail
counterpart (red) performed on 5/6-somite stage quail and chick embryos. (B–F) Transverse sections of quail–chick chimeras at 16 (B,C,D), 18 (E) and
21 (F) somite-stages, at the level of the future first branchial arch were hybridized with the MyoR probe followed by immunohistochemistry using the
QCPN mAb. (C) is a higher magnification of (B). (B,C,D) corresponds to sections from the same embryo, (B,C) being slightly (80 mm) more rostral than
(D). The asterisk in B marks the position of the graft. (B–D) At the future first branchial arch level, the QCPN-positive cells progressively invaded the
cephalic mesoderm expressing MyoR, in a rostral to caudal manner. At 18 and 21 somite-stages (E,F), QCPN positive cells are observed inside the
MyoR-positive domains. a, aortic arch; ecto, ectoderm; endo, pharyngeal endoderm; mes, mesencephalon; ph, pharynx.
doi:10.1371/journal.pone.0004381.g004
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Tendon and muscle interactions during branchial arch
development

The study of chimeras revealed a strong physical intermingling

between neural crest cells and mesodermal muscle cells in

branchial arches. The influence of neural crest cells on

branchiomeric muscle formation has been studied [21,26,27].

Conversely, we wanted to evaluate the relative importance of the

presence of myogenic cells for tendon formation. In order to

address this, we analysed Scleraxis expression in the absence of

muscle cells. We used Tbx12/2 mice as a genetic model of loss of

branchiomeric derived muscles [17]. In the absence of Tbx1,

branchiomeric muscles fail to form, or are severely reduced in size,

assayed by the quasi-absence of MyoD expression at sites of

branchiomeric myogenesis in Tbx12/2 versus wild-type embryos

at E12.5 (Figure 7A,B, black arrows), [17]. At this stage, MyoR

expression is no longer detected at sites of branchiomeric muscle

formation in Tbx12/2 embryos, whereas expression is observed

normally in control embryos (data not shown). In contrast, extra-

ocular muscles are unaffected despite the absence of Tbx1 activity

(Figure 7A,B, green arrows), [17]. In situ hybridization to tissue

Figure 5. Relationship between neural crest cells and muscle precursor cells during branchial arch development. (A–C) Adjacent
frontal sections from HH20 quail-chimeras at the first branchial level were hybridized with MyoR (A) and MyoD (B) probes and then incubated with
QCPN antibody or uniquely incubated with QCPN antibody (C). (D–G) Adjacent frontal sections from HH23 (D,E) and HH27 (F,G) quail-chimeras at the
first branchial level were hybridized with MyoR (D), MyoD (F) or Scleraxis (G) probes and then incubated with the QCPN antibody or directly incubated
with the QCPN antibody (E). QCPN-positive cells are observed in the MyoR- and MyoD-positive domains of the core at HH21 (A–C) and HH23 (D,E).
From HH27 there is an increase of QCPN-positive cells inside the muscles (F,G).
doi:10.1371/journal.pone.0004381.g005
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sections from mouse heads showed that Scleraxis transcripts were

detected in all forming tendons of the head at E12.5 (Figure 7C,E

and data not shown). In the first branchial arch, Scleraxis

expression was restricted to the extremities of differentiated

myofibres of branchiomeric muscles. In E12.5 Tbx12/2 embryos,

the Scleraxis expression domain in the maxillary and mandibular

prominences was indistinguishable from the normal situation

(compare panels C,E with D,F respectively in Figure 7, tendons

are indicated with black arrowheads), indicating that the initiation

of Scleraxis expression was independent of branchiomeric muscle

formation. However, at E15.5 Scleraxis expression was lost in the

structures derived from the first branchial arch of Tbx12/2

embryos, in the absence of branchiomeric muscles (Figure 8).

Arrowheads in Figure 8E point to the tendons associated with the

anterior digastric muscle derived from the first branchial arch. In

the Tbx12/2 mutant, this muscle is absent (compare Figure 8A,C

with Figure 8B,D, respectively, arrows in C,D) and the associated

tendons are not observed (Figure 8F). Scleraxis expression is

however observed normally in tendons of extra-ocular and non-

branchiomeric muscles of mutant embryos, in addition to regions

where hypoplastic branchiomeric muscles were present (data not

shown), [32]. These results showed that in the first branchial arch,

muscles are not necessary for the initiation of one neural crest cell-

derivative, tendons, but that muscles are required for further

tendon development.

Discussion

Spatial relationships between neural crest cells, cranial
mesoderm and their derivatives

The current consensus holds that neural crest cells do not mix

with cranial mesoderm but rather migrate superficially to the

mesoderm and underneath the overlying surface ectoderm and

then envelop the mesoderm-derived myogenic cores in the

branchial arches, thus leading to the formation of a sharp neural

crest cell-mesoderm interface, for reviews, [13,14,49]. Our quail

into chick transplantations combined with our molecular analysis

using markers for both cell types were not consistent with a sharp

interface between neural crest cells and cephalic paraxial

mesoderm. We clearly observed the presence of neural crest cells

(AP2a-positive or of quail origin after our transplantation studies)

within the cephalic mesoderm expressing MyoR (Figure 3,4),

highlighting a previously undescribed intermingling of both cell

types and the absence of a clear frontier between neural crest cells

and cephalic mesoderm. This tight association could reflect

intimate interactions between neural crest cells and cephalic

paraxial mesoderm at early stages of branchial development.

Indeed cranial (versus trunk) mesoderm has permissive properties

for allowing cranial neural crest cell migration [22,43,50].

Conversely, ablation of neural crest cells has been shown to affect

cephalic paraxial mesoderm invasion of the branchial arches [27].

The surrounding environment has been shown to be determinant

for the proper migration of both neural crest cells [34] and

cephalic mesoderm [9] to fill the branchial arches. Early

intermingling of neural crest cells and cephalic mesoderm is

consistent with the idea that both cell populations respond to the

same extrinsic cues for cell migration, at least at the level of the

first branchial arch. However, the mechanisms and the molecular

signals responsible for the coherent migration of cranial neural

crest cells and cephalic mesoderm to the specific branchial arches

remain to be elucidated [51].

As soon as the first branchial arch forms (at around the 21

somite-stage) there is a striking expansion of neural crest cell

populations surrounding the myogenic core relative to neural crest

cells within the core. This leads to a dramatic increase of neural

crest cell density around the core within 24 hours (between

HH13/E2 and HH20/E3). One hypothesis for this increase is that

the surface ectoderm and pharyngeal endoderm provide prolifer-

ative signal(s) to induce proliferation of underlying neural crest

cells. One obvious candidate for inducing neural crest cell

proliferation is the Fgf8 signal located in arch ectoderm and

endoderm, since a trophic and/or survival effect of Fgf8 on neural

crest cells has been well documented using various genetic models

and manipulations in chick embryos [52–54]. Shh is another

candidate, since Shh promotes the development of multipotent

neural crest cell progenitors [55–57]. Neural crest cells inside the

myogenic core would be unresponsive to such proliferative signals,

either by a passive mechanism such as being protected by the

future myogenic cells or by an unknown inhibitory signal from the

same cells. We hypothesise that the few neural crest cells observed

in the myogenic core of the first branchial arch at HH21 (E3.5) are

those observed at earlier stages. The neural crest cells within the

early mesodermal core are likely to be the progenitors of muscle

connective tissue cells and could play important roles in later

branchiomeric muscle organisation. Furthermore, these neural

crest cells may also be involved in myogenic differentiation, as they

are present in the mesodermal core during the early step of

myogenesis, before the myogenic program, assayed by MyoD

expression, is activated. Indeed, neural crest cells within the core

express the Wnt antagonist secreted factor, Frzb-1 [58], which has

been shown to promote the formation of vertebrate head muscle

[26]. The presence of Frzb-1 inside the myogenic core could

provide a favourable environment for muscle differentiation.

The intermingling of neural crest cells and cephalic mesoderm

in the future branchial arches is consistent with the congruence of

skeletal and muscle elements in the jaw, since the neural crest cells

and cephalic mesoderm at the same antero-posterior position

share common destinations [8,59–61]. The congruence also

applies to branchiomeric innervation; since all these muscle

precursors arise at the same axial levels as their corresponding

motor axons [60]. Moreover, neural crest cells have been shown to

be involved in the targeting of nerve exit points [62,63]. Here

again, the presence of neural crest cells mixed within cephalic

mesoderm, which will later give rise to branchiomeric muscles, is

consistent with the congruence of muscle and nerve components.

Muscle splitting occurs progressively from HH26 (E5), leading

to the formation of individual branchiomeric muscles derived from

the first arch [14,49,59]. The cellular and molecular mechanisms

underlying the splitting process of arch muscles are not known.

Although there is evidence that muscle connective tissue, tendons

Figure 6. Head tendons express Scleraxis and are of quail origin. (A) In situ hybridization to HH24 embryos with the Scleraxis probe. Adjacent
frontal sections of HH24 (B,C) and HH26 (D–H) embryos were hybridized with the Scleraxis (B,D,F,G) and MyoD (C,E,H) probes were followed by an
immunohistochemistry using the MF20 antibody to reveal differentiated muscle fibres. MF20 is visible in (F,G). (A,B) Arrows point to the Scleraxis
expression domain in tendon primordia at HH24. At HH26, Scleraxis labels branchiomeric tendons (D,E) and eye tendons (F–H). (I–M) Adjacent
saggital sections of HH28 quail-chick chimeras, were hybridized with the MyoD (I,K) and Scleraxis (J,L,M) probes followed by immunohistochemistry
using the QCPN antibody. QCPN is visible in (I,JM). The Scleraxis-positive tendons associated with the extra ocular muscle (I,J) or with a jaw operating–
muscle (K–M) are of quail origin. (M) is a higher magnification of (L).
doi:10.1371/journal.pone.0004381.g006
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and vessels are involved in limb muscle segregation [38,64,65], no

such evidence exists for the splitting of branchiomeric muscles.

Once branchiomeric muscles are individualised, neural crest-

derived cells surround the separated muscles. Although ablation of

neural folds in chick model leads to severe muscle defects,

suggesting an involvement of neural crest cells in muscle

Figure 7. Scleraxis expression is normally established in the absence of differentiated muscles in the first branchial arch of E12.5
Tbx12/2 mice. Adjacent saggital sections of either wild-type (A,C,E) or Tbx12/2 mutant mice (B,D,F) were hybridized with mMyoD (A,B) or mScleraxis
(C–F) probes. (C–F) After in situ hybridization with a mouse Scleraxis probe, the differentiated myofibres were detected using MF20 antibody. Tbx12/2

mutant mice display a loss of branchiomeric-derived muscles, highlighted by the absence of mMyoD expression (B, black arrow) and MF20 labelling
(D, F black arrows) compared to the wild type situation (A,C,E, black arrows). Despite the absence of branchiomeric muscles, mScleraxis expression
pattern remains unchanged in mutant mice (D,F black arrowheads) compared to wild-type (C,E black arrowheads). Green arrows (A,B) and
arrowheads (C,D) point to the non-affected extraocular muscles and tendons, respectively in control (A,C) and Tbx12/2 mutant mice (B,D). (E,F) are
high magnifications of (C,D) respectively. The open arrow in F indicates Scleraxis domain that has spread to the space left by the absent muscle.
doi:10.1371/journal.pone.0004381.g007
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patterning [27], there is as yet no demonstration of a direct

instructive role of cranial neural crest cells in controlling

branchiomeric muscle segregation. Concomitant with muscle

splitting, there is an increase of neural crest cell number inside

muscles from HH27 (E5.5) as compared to earlier stages (Figure 5).

These neural crest cells are not labelled by the tendon marker

Scleraxis and may provide muscle connective tissue cells. It has

previously been proposed that the neural crest cells providing

muscle connective tissue elements penetrate the muscle masses

from HH27/28 [14]. However, given that neural crest cells are

present within the myogenic core from earlier stages (this paper),

we do not favour cell infiltration but rather neural crest cell

proliferation inside the muscle masses. The molecular mechanisms

triggering this increase of neural crest cells inside the muscle

Figure 8. Scleraxis expression is lost in the absence of differentiated muscles in the first branchial arch of E15.5 Tbx12/2 mice.
Adjacent saggital sections of either E15.5 wild-type (A,C,E) or E15.5 Tbx12/2 mutant mice (B,D,F) were hybridized with mMyoD (A–D) or mScleraxis
(E,F) probes. (E,F) After in situ hybridization with a mouse Scleraxis probe (blue), differentiated myofibres were detected using MF20 antibody (light
brown). (C,D) are higher magnification of A,B), respectively, focusing on the mandible. Tbx12/2 mutant mice display loss of branchiomeric muscles,
highlighted by the absence of both mMyoD expression (B,D) and MF20 labelling (F) in the mandibula, compared to the wild type situation (A,C,E). The
anterior digastric muscle is arrowed in the control mandible (C,E), while residual muscle masses are indicated by an arrow (D,F) in similar mandibular
regions of Tbx12/2 mutant mice. Non-branchiomeric muscles are not affected in E15.5 Tbx12/2 embryos. (E) Scleraxis expression is observed in
tendons associated with the anterior digastric muscle in the wild type situation (arrowheads). (F) Scleraxis expression is lost in the absence of muscles
in E15.5 Tbx12/2 mutant mice, while Scleraxis expression is normally associated with non-branchiomeric muscles (green arrowheads). Mb,
mandibular, mx, maxillary; t, tongue.
doi:10.1371/journal.pone.0004381.g008
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masses from HH27 is not known. However, this increase of neural

crest cells within the arch muscles is correlated with the

appearance of tendon primordia expressing Scleraxis surrounding

the muscle masses.

In summary, it has been shown independently that cranial

mesoderm and neural crest cells have intrinsic properties along the

antero-posterior axis, but their migration, patterning and differ-

entiation depend on extrinsic cues (reviewed in [22] for cranial

mesoderm and in [66] for neural crest cells). The extrinsic cues

patterning the branchial arches are provided by the surface

ectoderm and pharyngeal endoderm [56,67–71]. Our results

suggest that these common extrinsic cues may lead to intermin-

gling of neural crest cells and cephalic mesoderm at early stages of

branchial arch development.

Tendon and muscle interactions in the branchial arches
We have shown that Scleraxis labels all the tendons associated with

extra-ocular and branchiomeric muscles in chick and mouse

embryos. In addition, the Scleraxis-positive cells associated with eye

and branchiomeric muscles are of neural crest cell origin. Finally,

using a genetic perturbation of branchiomeric muscle formation in

mouse embryos, we have shown that Scleraxis expression is initiated

independently of branchiomeric muscles, but is not maintained in

the absence of branchiomeric muscles. This shows that one neural

crest cell-derived tissue, tendon, initiates its development indepen-

dently of muscles in branchial arches. In Tbx1 mutant mice,

branchiomeric myogenesis fails, based on the absence of myogenic

regulatory factor activation and lack of subsequent muscle

formation. Capsulin and MyoR expression is initiated in the first

branchial arch at E9.5 in the absence of Tbx1 activity, indicating the

presence of a pre-myogenic mesodermal core [17,32]. However,

MyoR expression is down-regulated in the first branchial arch of

Tbx12/2 embryos by E11 before the appearance of Scleraxis

expression in tendon primordia (data not shown), indicating that

MyoR and Scleraxis expression in tendon primordia are not detected

at same time in Tbx12/2 mutant mice. This argues against an early

signal from the pre-myogenic mesodermal cells triggering the

establishment and patterning of Scleraxis-positive cells, indicating

that tendon development initiates normally in Tbx1 mutant embryos.

In addition, we have also shown that, at later stages, Scleraxis

expression is lost in the absence of branchiomeric muscles. This

shows that tendons do not continue their development in the absence

of branchiomeric muscles. The muscle-independence of tendon

initiation and the later muscle requirement for further tendon

development is similar to the situation in the limb, where Scleraxis

expression is normally detected in tendon primordia in muscleless

limbs in chick and mouse embryos, but is progressively lost in the

absence of limb muscles [39,72,73]. It is important to point out that

in the context of branchial development, it is the tendon precursor

cells originating from the crest that migrate into the cephalic

mesoderm containing the muscle precursors, while in the limb it is

the muscle precursor cells that migrate into limb mesenchyme,

which provides tendon cells. Despite this fundamental difference,

tendon and muscle cell interactions are similar in both branchial

arches and limbs. Interestingly, this type of muscle and tendon

interaction also operates in Drosophila, where tendon precursor cells

are specified in the absence of muscles, but muscle attachment is

required for subsequent differentiation of Drosophila tendon cells

[74,75].

Muscle development has been studied in the absence of neural

crest cells. The early steps of branchiomeric muscle formation are

independent of the presence of the neural crest cells but, in the

absence of neural crest cells, muscle formation is severely impaired

[21,27]. Combined with our studies of the influence of muscle on

the formation of one neural crest derived tissue (tendon), this

shows that both tendon and muscle precursors of the branchial

arches initiate their development independently of each other, and

that reciprocal interactions are necessary for further development

of both cell types.

In conclusion, during branchial arch development, neural crest

cells providing cartilage, connective tissues and tendons are

intricately mixed with cephalic mesoderm providing muscle cells,

both cell populations probably responding to the same extrinsic

cues. Despite this intermingling between neural crest and

mesodermal cells, the initial steps of the formation of one neural

crest cell-derivative, tendons, and of muscles are independent of

each other. However, late steps of tendon and muscle development

require reciprocal interactions.
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