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Abstract

Reproductive capacity and nutritional input are tightly linked and animals’ specific responses to alterations in their physical
environment and food availability are crucial to ensuring sustainability of that species. We have assessed how alterations in
dietary energy intake (both reductions and excess), as well as in food availability, via intermittent fasting (IF), affect the
gonadal transcriptome of both male and female rats. Starting at four months of age, male and female rats were subjected to
a 20% or 40% caloric restriction (CR) dietary regime, every other day feeding (IF) or a high fat-high glucose (HFG) diet for six
months. The transcriptional activity of the gonadal response to these variations in dietary energy intake was assessed at the
individual gene level as well as at the parametric functional level. At the individual gene level, the females showed a higher
degree of coherency in gonadal gene alterations to CR than the males. The gonadal transcriptional and hormonal response
to IF was also significantly different between the male and female rats. The number of genes significantly regulated by IF in
male animals was almost 5 times greater than in the females. These IF males also showed the highest testosterone to
estrogen ratio in their plasma. Our data show that at the level of gonadal gene responses, the male rats on the IF regime
adapt to their environment in a manner that is expected to increase the probability of eventual fertilization of females that
the males predict are likely to be sub-fertile due to their perception of a food deficient environment.
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Introduction

The availability of energy in the form of food is a critical factor

in the maintenance of the reproductive capacity of mammals.

Low, moderate and high levels of dietary energy intake can affect

reproductive function in different ways. Maintaining reproductive

capacity is an energy-consuming process which is tightly regulated

on a gonadal transcriptional level. It is presently unclear how

dietary energy intake affects gonadal gene regulation. We have

shown previously that low, moderate and high energy diets affect

male and female rats differently on biochemical, endocrine,

behavioral and genetic levels [1,2]. At a fundamental level, the

maintenance of reproductive capacity is the most crucial function

that animals need to maintain and, therefore, the capacity to

identify and secure energy in the form of food is essential to

maintain reproductive status.

We have previously shown that alterations in caloric intake in

rats had significant effects upon the female reproductive axis [1].

This altered reproductive state was also connected to an increase

in cognitive capacity and activity levels, changes expected to

improve the chances of females securing food in their environ-

ment. Their apparent masculinization in response to extreme

caloric restriction probably occurred to aid their competition (with

other males or females) for any available food sources. In the

females there seemed to be a specific capacity inherent to their

hippocampal transcriptional activity to sense their nutritional

input. The corresponding males showed no calorie-restriction

specific hippocampal transcriptome sensitivity [2]. In this context,

at the level of the hippocampus, it appears that males and females

seem to engineer a competition between each other for the

remaining available food, i.e. the females ‘masculinize’ to aid their

competition with any resident males. However for animals that

generate offspring via sexual reproduction, a cooperativity of

activity and response to environmental food availability would be

critical. It would be biologically wasteful for either gender to

maintain a contemporaneous high reproductive capacity while

their opposite gender does not. Whether this linkage is retained in

animals that have not been in contact with the opposite gender or

have mated is an interesting postulate. It has been shown to some

extent that reciprocal ‘anticipation’ of each other’s gender’s

fecundity occurs in natural settings. For example, in free-living

spotted hyenas (Crocuta crocuta) their reproductive status (number of

successful births) is controlled to some extent by seasonality but

much more strongly by variation in their environmental energy

availability [3], as this would determine how many fertile females

were available to mate.
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The aim of this study was to identify gender differences in the

gonadal transcriptional responses to alterations in the available

food energy. To do this, we used multiple dietary paradigms that

include calorie restriction (20% CR and 40% CR), every other day

feeding (intermittent fasting: IF) and an excessive energy intake

diet (high fat/high glucose: HFG). We have elucidated the gonadal

transcriptome responses to these different levels of energy intake

on a single gene level and on a parametric functional group level.

Our findings suggest molecular mechanisms by which males and

females differentially modify their reproductive capacity based on

the amount and frequency of food availability.

Results

Gonadal transcriptional and physical responses to caloric
restriction, dietary excess and intermittent fasting

Male and female Sprague Dawley rats were divided into five

diet groups: control (ad libitum), 20% CR, 40% CR, IF and HFG at

four months of age (8–15 animals per group; Figure 1A). The rats

in the first four diet groups were fed a diet with a typical

composition in which the majority of calories were from complex

carbohydrates, whereas the HFG diet contained higher amounts

of fat and glucose (Figure 1B). Rats were maintained on the diets

until 10 months of age (6 months total). Upon completion of the

study, rats were euthanized and the gonads (ovaries and testes)

were carefully dissected out and collected for transcriptome

analyses. The gonadal gene changes of rats on the different

dietary regimes were compared to gonadal genes from the ad

libitum control rats and significant gene alterations (up- or down-

regulation) were reported. The transcriptional heatmap (Figure 1C)

represents the variety of significantly up- (red) and down- (green)

regulated genes that were altered between the diets in the gonads

of the male and female rats.

In addition to our investigation into the gonadal transcriptional

responses to dietary alterations, we also measured potential

alterations in gonadal mass (testes and ovaries) and in the plasma

Figure 1. Experimental design, diet composition and heatmap of significantly altered gonadal genes. (A) The experimental timeline for
this study. Four-month-old male and female rats were placed on one of 5 dietary regimes (control (ad libitum), 20% caloric restriction (CR), 40% CR,
intermittent fasting (IF), or high fat/high glucose (HFG)). At 10 months of age, rats were euthanized and gonadal tissues were collected. A 17 K mouse
gene array was performed and significant gene and pathway expression changes were quantified. (B) The relative proportions of the major
nutritional groups in the control and high-fat/glucose (HFG) diets. (C) Regulatory heatmap of the significantly up-regulated (red) and down-regulated
(green) genes in gonads collected from male and female rats on the different dietary regimes, compared to gonads collected from ad libitum controls.
doi:10.1371/journal.pone.0004146.g001
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ratios of the two primary sex steroid hormones, testosterone and

estrogen. Measurements for the combined wet mass of the left and

right gonads of all the animals (male and female) in the multiple

study groups showed that, in general, female variation in gonadal

size was negligible compared to that of the males (Figures 2A–B).

To measure the gonadal size variation compared to control, the

mean mass deviation from the male or female control diet mean

mass was calculated. To maintain an independence of analysis

from the rest of the body, we used non-normalized gonadal mass

for this instance. For the males the most extreme dietary regimes

(40% CR and HFG), with respect to input calories, tended to

induce a reduction in total gonadal mass. The 40% CR and the

HFG mean deviations from the control average were

214.8630 mg and 239630 mg respectively (both n = 8). The

greatest mean increase in mass from control was seen with the IF

group (44.3630 mg, n = 8) followed by a smaller increase in mass

compared to control from the 20% CR group (2.75624 mg,

n = 8). The large variation in gonadal size prevented statistical

significance with respect to raw wet mass. The female gonadal

mass variation in comparison to the males was negligible and was

therefore potentially indicative of a specificity of male gonadal

responsivity to environmental food availability. Additionally,

measurement of the testosterone/estrogen (T/E) ratios (pg.ml21/

pg.ml21) showed a similar pattern to the gonadal size alterations in

response to the variations in energy intake, i.e. the IF group

showed the largest increase in mean T/E ratio (Figure 2C). The

40% CR diet induced a modest increase in T/E ratio while the

20% CR and HFG diets induced only minimal increases in T/E

ratio. In contrast to the male findings, only the 40% CR diet

induced a considerable elevation in the T/E ratio in females,

approaching male control levels of T/E ratio (Figure 2D).

Gender-specific alterations in gonadal gene transcription
in response to energy restriction and excess

Significantly altered genes in the gonads of the male and female

rats on the various dietary regimes compared to genes from the

gonads of the ad libitum controls are summarized in the Venn

diagrams (Figure 3, 4, 5, 6). The 20% CR males had 13 significant

gonadal gene alterations, compared to ad libitum male controls. Of

these significantly altered genes, 9 were significantly up-regulated

and 4 were significantly down-regulated. The 20% CR females

had 43 significantly altered gonadal genes compared to control ad

libitum females, approximately 3 times more than the 20% CR

males. Of these 43 significantly altered genes, 33 were up-

regulated and 10 were down-regulated (Figure 3). The 40% CR

males had 59 significantly altered genes compared to male

Figure 2. Effects of dietary regimes upon gonadal structure and plasma steroid levels. Panels A and B depict the deviations in grams from
the mean mass of the control ad libitum animals’ gonadal size of the wet masses of the testes (A) or ovaries (B) from the multiple animals (n = 8) on
the respective dietary regimes. Panels C and D depict the plasma testosterone/estrogen ratios (pg.ml21/pg.ml21) values for males (C) or females (D)
subjected to the respective dietary regimes. Data is represented as mean6S.E. mean, n = 8 and *p,0.05, **p,0.01.
doi:10.1371/journal.pone.0004146.g002
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controls; 47 were up-regulated and 12 were down-regulated. The

40% CR females had 56 significantly altered gonadal genes

compared to controls, and 24 of these genes were up-regulated

and 32 were down-regulated. One gene, Chordc1 (cysteine and

histidine-rich domain-containing zinc-binding protein 1), was

differentially altered between the gonads of the male and female

40% CR rats. This gene was up-regulated in the female gonadal

tissue and down-regulated in the male gonadal tissue (Figure 4).

Chordc1 is a calcium and zinc ion binding protein and is thought

to interact with heat shock protein 90 [4]. The IF males had 135

significantly altered genes compared to the ad libitum male controls.

Of these 135 genes, 82 were up-regulated and 53 were down-

regulated. The IF females had 29 significantly altered gonadal

genes compared to the control females; 12 of these genes were up-

regulated and 17 were down-regulated. Additionally, three genes

were significantly altered in both the male and female gonadal

tissues. The expressed sequence D10Ertd447e was significantly up-

regulated in the gonads of both the IF males and females. The

genes Fga (fibrinogen, alpha polypeptide) and Hspa8 (heat shock

protein 8) were each down-regulated in IF male and female

gonadal tissues compared to ad libitum controls (Figure 5). Males on

the HFG diet had 33 significantly altered genes compared to ad

libitum male controls. There were 18 up-regulated genes and 15

down-regulated genes. HFG females had 52 significantly altered

gonadal genes compared to female controls. Of these genes, 19

were up-regulated and 33 were down-regulated. There were no

commonly altered genes in the gonads of males and females on the

HFG diet (Figure 6).

Calorie-restriction specificity of gonadal gene regulation
Significant gene alterations in the gonads of both genders were

compared across the multiple dietary paradigms using a 4-way

Venn-diagram (Figures S1 & S2). Gonadal gene changes were

analyzed further to determine commonalities between high and

low energy diet groups (Figures 7–8). In a previous study, we found

that the hippocampal genetic response to dietary restriction and

excess was calorie-dependent in females and calorie-independent

in males at both the single gene and functional pathway levels [2].

In the testes, only 29% of the multi-dietary paradigm-regulated

genes were CR-specific, i.e. were not significantly regulated (up or

down) in the male HFG group (Figure 7A). Amongst the multi-diet

regulated genes in the testes, there was a preponderance of genes

involved in energy regulation (Phgdh, Mrps15), post-translational

modification (Nmt1), protein complex regulation and transport

(Csda, Nalp6, Septin 10) and most importantly nucleic acid

synthesis/regulation (Mcm3ap, Lars, Ncl, Nek7). In contrast to the

Figure 3. Gene changes in the gonads of male and female rats maintained on the 20% CR diet compared to the gonads of male and
female rats maintained on a control (ad libitum) diet. Genes that were significantly up-regulated (red) or down-regulated (green) were
clustered into a Venn diagram. There were 9 significantly up-regulated and 4 significantly down-regulated genes in the testes collected from 20% CR
male rats compared to the genes from testes collected from control (ad libitum) male rats. Ovaries collected from 20% CR female rats showed 33
significantly up-regulated (red) and 10 significantly down-regulated (green) genes compared to control (ad libitum) female rats. There were no
common gene alterations between the 20% CR male and female gonadal tissues. Names of the significantly altered genes can be found in Table S1.
doi:10.1371/journal.pone.0004146.g003
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testes, 50% of the multi-dietary paradigm-regulated genes in the

ovaries were CR-specific (Figure 7B). Amongst the significantly

regulated genes there appeared to be clusters related to growth

factor action (Hdgf, Gdf9), mitochondrial function (Immt, Prss25)

and translation (Eif2s1, Taf12).

When multi-diet cross-gender comparisons of co-regulated

genes were performed, we found that this specific gene-set was

entirely CR-specific (Figure 8). Eighty percent of this specific gene

set was co-regulated coherently between males and females, i.e. no

difference in the direction of gene regulation. Seventy percent of

this gene-set was however coherently down-regulated. The EH-

domain-containing protein 1 (EHD1) gene was up-regulated in

males yet down-regulated in females; this protein has been

implicated in the regulation of vesicle transport [5,6] and

cholesterol homeostasis [7]. A similar pattern was noted for the

Chordc1 gene [4]. As mentioned previously, Chordc1 encodes for

a protein involved in forming heat shock protein complexes that

can then interact with ATPases and protein phosphatases to

modulate the activity of Nod1 in its role in innate immune

responses [8]. Amongst the common down-regulated genes, there

was a general predominance of genes normally involved in cell

stress/death (Cybb, Mapk13, Hspa8) or transcriptional regulation

(E2f8, Snrpe).

Gonadal functional gene pathways are differentially
altered in males and females in response to dietary
energy restriction and excess

Significantly altered gonadal genes were grouped into functional

pathway categories, established by the Broad Research Institute

(Massachusetts Institute of Technology: http://www.broad.mit.

edu/gsea/msigdb), to form 522 functional gene pathways. The up-

or down-regulation of these functional gene pathways in the

ovaries and testes of the rats on the various dietary regimes

(compared to ad libitum fed controls) was analyzed and is

summarized in the Venn diagrams in Figures 9, 10, 11, 12

(ribbon graphs showing the cumulative pathway z-scores are

depicted in Figures S3, S4, S5, S6). The 20% CR males had 39

significantly altered pathways compared to control ad libitum males;

32 pathways were up-regulated and only 7 were down-regulated.

Among the up-regulated pathways unique to the 20% CR, there

was a dominance of signaling routes involved in energy

metabolism (Butanoate, FA biosynthesis, KET, malate, malatex,

ketone), immune function/cytokine activity (ANTI_CD44, nfkb,

ctl, notch, lair) and development/differentiation (ST_Diff, cd40,

notch, pkc, shh_lisa). Interestingly, the 20% CR females showed

an opposite response to the 20% CR males, as the majority of their

significantly altered pathways were down-regulated compared to

Figure 4. Gene changes in the gonads of male and female rats maintained on a 40% CR diet compared to the gonads of rats
maintained on a control (ad libitum) diet. Genes that were significantly up-regulated (red) or down-regulated (green) were clustered into a Venn
diagram. There were 47 significantly up-regulated and 12 significantly down-regulated genes in the testes collected from 40% CR male rats compared
to controls. Ovaries collected from 40% CR female rats showed 24 significantly up-regulated (red) and 32 significantly down-regulated (green) genes
compared to the control ad libitum females. There was 1 common gene altered in the gonads of both the male and female rats in this dietary group.
This gene, chordc1, was up regulated in female gonadal tissue and down regulated in male gonadal tissue. Names of the significantly altered genes
can be found in Table S1.
doi:10.1371/journal.pone.0004146.g004
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the ad libitum control females. Of the 42 significantly altered

pathways in the 20% CR ovaries, only 11 were up-regulated and

31 were down-regulated. The down-regulated pathways in the

20% CR females were primarily concerned with stress response

(set, sodd, pparg, hsp27, inflamm), steroidal regulation (steroid,

gcr, PGC), energy regulation (citrate TCA, GLUCOSE_UP,

Krebs-TCA, TCA), development (TRKA, Wnt_Ca2, cftr, ephA4,

chrebp) and cellular structure/adhesion (Rho_GTPase, cell_adh,

cell_adhact, rho). Additionally, there were 8 pathways that were

common between the males and females. There were 6 pathways

that were significantly up-regulated in both the 20% CR ovaries

and testes compared to the controls, and 1 pathway that was

significantly down-regulated in the ovaries and testes. Another

pathway, Sig_Chemotax, was significantly up-regulated in the

20% CR testes and significantly down-regulated in the 20% CR

ovaries compared to the controls (Figure 9).

The 40% CR males showed 39 significantly altered genetic

pathways compared to male controls, and 22 of these pathways

were up-regulated and 17 pathways were down-regulated

(Figure 10). Among the up-regulated pathways unique to the

40% CR males, certain functional activities were heavily

represented, i.e. immune/inflammatory function (CD44_UP,

cd40, inflam, nthi), energy regulation (FA biosynth, GLUCO,

GLUT_DOWN, GLYCOGEN, KET, electrontransport, ets) and

cell development (PROLIF_GENE, cell_prolif, cellcyclearrest,

eif2). The unique down-regulated pathways observed in 40%

CR males included general groups such as cell cycle control (p27,

Tert, CYCLIN, skp2e2f), immune/inflammatory function (classic,

complement, comp) cell structure (cell_motil, edg1) and GPCR

signaling (GPI7T, GPI7TRS, G_alpha_i). The 40% CR females

had 29 significantly altered pathways compared to female controls.

Of these, 17 pathways were up-regulated and 12 pathways were

down-regulated. The unique down-regulated pathways in the 40%

CR females included pathways involved in development

(Wnt_Ca2, hbx), cytokine activity (FAS, IL10) and stress (hsp27,

sod), while the unique up-regulated pathways play a role in energy

metabolism (ETchain, VOXPHOS, malate), receptor activity

(mta3, ach) and protease activity (ps1, Sppa). There were 4

functional gene pathways common between the 40% CR ovaries

and testes. Two of these pathways were up-regulated in both the

male and female gonadal tissues and one pathway was down-

regulated in the ovaries and testes. The fourth pathway, MMP,

Figure 5. Gene changes in the gonads of male and female rats maintained on an IF diet compared to the gonads of rats maintained
on a control (ad libitum) diet. Genes that were significantly up-regulated (red) or down-regulated (green) were clustered into a Venn diagram.
There were 82 significantly up-regulated and 53 significantly down-regulated genes in the testes collected from IF male rats compared to the genes
from testes collected from control (ad libitum) male rats. Ovaries collected from IF female rats showed 12 significantly up-regulated (red) and 17
significantly down-regulated (green) genes compared to controls. There were 3 genes that was significantly altered in both the males and females in
the IF dietary group compared to the control group. The expressed sequence D10Ertd447e was significantly up-regulated in the gonads of IF males
and females, compared to control (ad libitum) males and females. The genes Fga and Hspa8 were each down-regulated in IF male and female gonads
compared to controls. Names of the significantly altered genes can be found in Table S1.
doi:10.1371/journal.pone.0004146.g005
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was up-regulated in the 40% CR testes and down-regulated in the

40% CR ovaries compared to the controls (Figure 10).

The IF males had 27 significantly altered functional pathways

compared to the ad libitum male controls; 19 pathways were down-

regulated and 8 pathways were up-regulated. The pathways

unique to the IF males’ genetic response showed a complex

response with respect to cytokine activity and immune function.

Hence there was an up-regulation of pathways such as nfkb, rela,

tnfr2 and tob1 while there was a down-regulation of FAS. Overall

these alterations may serve to facilitate the potential survival of

gonadal tissue in the males. Additionally, there was a concerted

up-regulation of energy-regulatory pathways.

The IF females showed 46 significant unique pathway

alterations compared to control females (Figure 11). Unlike the

IF males, the majority of the significantly altered pathways were

down-regulated in the IF female gonadal tissue. Of the 46

significantly altered genetic pathways, 31 were down-regulated

and 15 were up-regulated. Among the pathways up-regulated, the

following primary functions were strongly represented: energy

regulation/metabolism (Aminosugar, Purine, vitcb, Starch); cell

cycle control (CYCLIN_EPXR, ptc1); receptor signaling (EGF-

signal, erbb4, GPI7T, GPI7TRS, KRAS); estrogen receptor

functioning (FRASOR_UP). The down-regulated pathways play

a role in stress responses (no1, sod, mitochondria, bcl2family,

tnfr1), steroid activity (AR_MOUSE, TESTO_NET, fxr), energy

metabolism (citrateTCA, Krebs-TCA, TCA, ureacycle), cytokine

activity (IL_13, interleukin_13, hivnef, tnfr1), chemotaxis/cAMP

function (CHEMOTAXIS, dictyostelium, chrebp, cacam, plce,

D4gdi) and satiety (leptin). In addition, there were 10 common

pathways between the male and female gonadal tissues. One

pathway was significantly up-regulated in both the ovaries and the

testes and 7 pathways were significantly down-regulated.

Males on the HFG diet had 29 significantly altered functional

pathways compared to the controls (Figure 12). Of these 29

pathways, 17 were up-regulated and 12 were down-regulated. The

HFG male unique up-regulated pathways showed a strong

presence of certain physiological functions, i.e. energy regula-

tion/metabolism (Bile_acid, Butanoate, FA biosynth, Glyoxylate,

KET, Propanoate, electronstranport, etc, glycolysis), immune

regulation (par1, tob1), cell signaling (akap96, akapCentrosome)

and steroid receptor activity (ANDROGEN, mta3). The unique

down-regulated pathways demonstrated a strong signaling com-

ponent (G_alpha_5, G_alpha_i, glutamate), cell cycle control

(cdk5, CRcellcylce) and steroid receptor signaling (FRASOR_-

DOWN). In stark contrast, the HFG females showed a reverse in

the directionality of pathway activation, i.e. many more pathways

Figure 6. Gene changes in the gonads of male and female rats maintained on the HFG diet compared to the gonads of male and
female rats maintained on a control (ad libitum) diet. Genes that were significantly up-regulated (red) or down-regulated (green) were
clustered into a Venn diagram. There were 18 significantly up-regulated and 15 significantly down-regulated genes in the testes collected from HFG
male rats compared to controls. Ovaries collected from HFG female rats showed 19 significantly up-regulated (red) and 33 significantly down-
regulated (green) genes compared to controls. There were no common genes between male and female rats in this dietary group. Names of the
significantly altered genes can be found in Table S1.
doi:10.1371/journal.pone.0004146.g006
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were down-regulated uniquely compared to the male HFG

animals (Figure 12). The HFG females showed 43 significant

pathway alterations; 16 pathways were up-regulated and 27

pathways were down-regulated. Pathways down-regulated in the

HFG females alone possessed a strong steroidal (BRCA_DOWN,

Steroid) phenotype as well as a considerable number of pathways

linked to transcriptional regulation (TRKA, cacam, HTERT_-

DOWN), cell architecture (cell_adh, cell_adhact), signaling (G13,

Galpha13, Galphaq, RAP_DOWN), energy regulation (Fructose,

Krebs-TCA, Pentose,) and stress responsiveness (caspase, sod,

hivnef, parkin, mitochondria, gcr). Interestingly, the up-regulated

female HFG pathways also demonstrated a strong predominance

of pathways linked to stress responsiveness (pparg, arenrf2, slrp).

Therefore it is possible that even within a single tissue there may

be bi-directional regulation of certain pathways in different regions

of the organ. Other significantly up-regulated pathways present in

the HFG females and not in the males, included those involved in

cell proliferation/nutrient sensation (mtor, tall1), immune activity

(nkt, il1R), energy regulation (ketonebodies, malate, Vitcb) and

subcellular trafficking (TRANSPORT, cbl). There were 3

pathways common between the male and female gonadal tissue.

One pathway was significantly up-regulated in both the HFG

ovaries and HFG testes and 2 pathways were differentially

regulated. These 2 pathways, Fetal_Liver and Akap13, were up-

regulated in the testes and down-regulated in the ovaries

(Figure 12).

Caloric specificity of gonadal functional gene pathways
Significant functional gene pathway changes in the ovaries and

testes were compared across the multiple diet paradigms using a 4-

way Venn-diagram (Figures S7 and S8). A representation of the

cross-diet pathway regulation combinations is depicted in

Figure 13. Interestingly, the percentage of CR-specific multi-diet

conserved pathways was almost identical between the males (36%)

and the females (35%). In contrast to this similarity in CR-

specificity in the multi-diet controlled pathways, the directionality

of regulation was considerably different between the two genders,

i.e. only 23% of male multi-diet pathways were down-regulated

while 68% of female multi-diet pathways were down-regulated.

Within the genders however, the consistency of directional

pathway regulation was almost complete, i.e. only one multi-diet

regulated pathway was non-uniformly regulated in males (Shh) or

females (intrinsic). With respect to the male multi-diet pathways,

there was a clear up-regulation of energy/metabolism regulating

pathways (ets, ketone, butanoate, electron transport, bile acid,

glyoxylate, propanoatem, glycolysis, FA biosynth, KET, valine

metab, etc). In contrast, the directionality of regulation of female

multi-diet pathways linked to energy/metabolism appeared to be

more complex, e.g. there was an up-regulation of some pathways

(Bile acid, malate, vitcb) while a consistent down-regulation of

other energy/metabolism pathways (cysteine, glucose_up, mito-

chondria, citrate-TCA, Krebs-TCA, TCA). Considering the

divergence of gonadal activity between male (consistently active

Figure 7. Caloric specificity of male and female multi-diet regulated genes. Significantly altered genes that were common between one or
more of the diet paradigms are drawn to visualize caloric specificity. (A) Commonly altered genes in the testes of male rats on the various diets
showed 29% caloric restriction (CR) specificity (commonly regulated between the 20% CR, 40%, CR, and/or IF diets only) and 71% non-CR specificity.
(B) Commonly altered genes in the ovaries of female rats on the various diets showed 50% caloric restriction (CR) specificity and 50% non-CR
specificity. Names of the significantly altered genes can be found in Table S1.
doi:10.1371/journal.pone.0004146.g007
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spermatogenesis) and female (cyclicity, controlled conversion

between discrete reproductive states) mammals, this is perhaps

not a surprising result. When the retention of significantly

regulated pathways in common between the transcriptional

gonadal responses was analyzed, there were several interesting

findings (Figure 14). Representation of the significantly regulated

pathways common to more than one dietary regimen between

genders, indicates that there was a large number of physiological

outcomes that were common between the two genders (42).

Almost 48% of these pathways were CR-specific and of these 40%

demonstrated a diversity in the direction of regulation between the

two genders. This specific subset included pathways regulating

energy metabolism (methane, CO2 fixation) and receptor signaling

(GPI7T, GPI7TRS, SIG_CHEMOTAXIS). Among the non CR-

specific cross gender, multi-diet regulated pathways almost 60% of

the pathways demonstrated divergence of regulatory direction.

The signaling pathways that demonstrated the most conservancy

between diet and gender included those involved in energy

regulation (etc, bile acid, glycolysis), immune activity (IL-17) and,

perhaps most interestingly, growth regulation/nutrient sensation

(IGF1-mTOR). The IGF1-mTOR pathway demonstrated a very

coherent level of regulation among the dietary groups of both

genders, i.e. this pathway was significantly up-regulated in the

same dietary groups (20% CR, 40% CR, HFG) in both genders.

The random occurrence of this complex pathway regulation in

males and females is highly unlikely and perhaps underlines a

commonality of connectivity between the mTOR pathway, dietary

energy consumption and gonadal transcription.

Gene set to signaling pathway correlation in males and
females

A simple index of the correlation between the linkage of

individually-regulated genes in a gene set and their potential

physiological function may provide an indication of the genetic

and perhaps evolutionary coherency of an animal’s response to its

environment. All species have likely created ‘genetic programs’

that facilitate a rapid, coherent and specific genetic output in

response to an environmental cue. The early generation of

chemotactic responses, such as that of the slime molds, may be one

of the earliest examples of this [9]. To investigate how individual

gene responses relate to their potential phenotypic outcome, we

created a numerical ratio between the number of statistically

significantly regulated genes and the signaling pathways that these

genes then significantly populate, when classified using an

unbiased parametric gene set analysis method. When the ratio

of significantly regulated genes to significantly populated signaling

pathways was assessed for both genders across all dietary regimes

(Figure 15A), it was clear that the 20% CR, 40% CR and HFG

diets yielded similar gene:pathway ratios. However, for the IF

paradigm, the males demonstrated a considerably greater ratio of

genes:pathways. This increased ratio is indicative of the diet

inducing a high degree of genetic transcriptional regulation, which

eventually would create a relatively coherent physiological output.

It is interesting to note that the 20% CR males, which received the

same average caloric energy input, possessed a gene:pathway ratio

almost ten-fold lower than the IF males. These two male groups

also possessed a similar end-study total body mass. Therefore such

Figure 8. Caloric specificity of male-female multi-diet regulated genes. Significantly altered genes that were common between one or more
of the diet paradigms in the ovaries and the testes were drawn to visualize caloric specificity in cross-gender regulated genes. Names of the
significantly altered genes can be found in Table S1.
doi:10.1371/journal.pone.0004146.g008
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differences in gene coherency do not appear to be due to caloric

input. Compared to the females, there appeared to be a distinction

between the males’ response between 20% CR and IF paradigms,

i.e. in females there were no specific differences in the T/E ratio or

the gene:pathway ratio between female IF and 20% CR groups

(Figures 2, 15). With respect to the genetic regulatory output, this

distinction between male and female responses to IF when

compared to 20% CR (negating any effect of caloric intake or

body mass) was also apparent.

There were 126 significantly regulated genes different between

IF and 20% CR groups in the males whereas there were only 57

significantly regulated genes different between IF and 20% CR

females. When these genes, distinct between IF and 20% CR male

or female groups, were objectively clustered according to their GO

term annotations (performed using WebGestalt: http://bioinfo.

vanderbilt.edu/webgestalt/) there were also more significantly

populated GO term groups in males (23) compared to the females

(8: Table 1). Genetic clustering of these specific gene sets with

KEGG (Kyoto Encycolpedia of Genes and Genomes) signaling

pathway annotation also revealed more significantly populated

pathways for the males (6) compared to the females (4). It seems

therefore that males possess a considerably more robust response

specifically to IF compared to females. The phenotype of the

calorie-independent IF-specific genes in the males contained the

following GO term motifs: steroidal function (cholesterol metabolism);

intracellular vesicle dynamics (intracellular transport, microtubule

cytoskeleton organization, regulation of endocytosis); regulation of protein

catabolism/degradation (proteolysis during cellular protein catabolism,

ubiquitin-dependent protein catabolism, protein ubiquitination, ubiquitin cycle,

small conjugating protein-specific protease activity, cysteine-type endopeptidase

activity); cell signaling activity (signal transduction, amino acid

phosphorylation, ATP binding, Ser/Thr kinase activity, Tyr kinase activity);

transcriptional/translational regulation (RNA polymerase II activity,

nuclear mRNA splicing, transcriptional coactivator activity, regulation of

translation); stress management (response to stress). None of these GO

term groups were present in the analysis of the calorie-

independent IF genes in the corresponding female set (Table 1).

The KEGG signaling pathway analysis also revealed that the male

and female calorie-independent responses to IF were significantly

different (Table 2). There were no common genes (data not shown)

regulated in the male or female IF groups (when compared to 20%

CR groups as a control to ensure calorie independence), no

Figure 9. Pathway changes in the gonads of male and female rats maintained on the 20% CR diet compared to the gonads of male
and female rats maintained on the control (ad libitum) diet. Significantly regulated, functional pathway clusters were generated from the
respective male or female gene sets using PAGE gene set analysis. Pathways that were significantly up-regulated (red) or down-regulated (green)
were clustered into a Venn diagram. Pathways in blue were common to both males and females but were differentially regulated, e.g. the
SIG_CHEMOTAX pathway, was differentially altered in the 20% CR male (M) and female (F) gonads. This pathway was up-regulated in the males and
down regulated in the females in comparison to ad libitum controls. Names of the significantly altered pathways can be found in Table S2.
doi:10.1371/journal.pone.0004146.g009
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common GO term groups and no common KEGG signaling

pathways. Thus the IF males possessed a unique response to the

every other day absence of food.

As we have proposed that there should be a complementarity of

genetic regulation in gonadal transcriptional activity in species that

reproduce through sexual reproduction, we investigated the

females with the most similar physiological profile to the IF males.

Among the female groups, the highest gene:pathway ratio was

observed in the 40% CR group. These 40% CR females had

significantly reduced reproductive function and showed the lowest

end-study body mass [1]. The female 40% CR rats’ poor fertility

status was also confirmed by their high, near male, T/E ratio

(Figure 2). As we have shown, the male group with the highest T/

E and gene:pathway ratios was the male IF group. These findings

may suggest that there could be a relationship between the

transcriptional coherency of the male IF group and their T/E

ratio. As the female group most similar to the male IF group in

these respects was the 40% CR, we decided to further analyze

their relationship using WebGestalt parametric analysis.

In order to compare the gonadal gene changes between the IF

males and the 40% CR females, we used WebGestalt algorithms to

group the significantly altered genes from the two diet paradigms

into KEGG Pathways. There was a considerable degree of overlap

between the two diets (Figure 15B). The 40% CR females had 10

significantly altered KEGG pathways, 5 of which were common

with the IF males. In addition to the 5 shared KEGG pathways,

the IF males had 2 unique KEGG pathways that were significantly

altered (7 total). The overlapping KEGG pathway groups

possessed a strong signaling phenotype as typified by the Jak-

STAT and MAPK signaling pathways. This strong degree of

transcriptional overlap could potentially underlie a gender-specific

connection between the two sets of animals’ differential response of

males to every other day feeding and to extreme caloric restriction

(40% CR) in the females. With respect to gonadal transcriptional

responses it is likely, due to the need for sexual reproduction to be

successful to propagate a species, that coherent ‘genetic programs’

are expressed complementarily in males and females in similar

environments.

Discussion

We investigated the overall gonadal transcriptional responses in

adult male and female rats to different dietary paradigms including

dietary restriction, every other day feeding and caloric excess. We

Figure 10. Pathway changes in the gonads of male and female rats maintained on the 40% CR diet compared to the gonads of male
and female rats maintained on the control (ad libitum) diet. Significantly regulated, functional pathway clusters were generated from the
respective male or female gene sets using PAGE gene set analysis. Pathways that were significantly up-regulated (red) or down-regulated (green)
were clustered into a Venn diagram. Pathways in blue were common to both males (M) and females (F) but were differentially regulated. Names of
the significantly altered pathways can be found in Table S2.
doi:10.1371/journal.pone.0004146.g010
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found that multiple and complex patterns of gene regulation were

induced in both the genders in response to the disruption of their

food supply. With respect to gonadal structure and function and

the nature of the imposed diet, we noted a much greater variation

in total testicular weight in response to the alterations in energy

intake than in total ovarian weight (Figure 2). Complex endocrine

feedback systems, such as the reproductive system, maintain a

tightly-controlled homeostasis within that system. Hormones

within the reproductive system function in concert and their

ultimate physiological function will be determined by their relative

plasma ratios to each other. Testosterone can typically function as

an antagonist of estrogen, opposing many of estrogen’s actions.

Thus determining the ratio of testosterone to estrogen in plasma is

a highly informative method of assessing endocrine homeostasis

and functional output within the reproductive system. It has also

been clinically demonstrated that through the accurate measure-

ment of specific sex steroid hormone ratios, and not through

individual hormone measurements, reliable prognostic data can be

generated that correlates with the incidence of multiple patho-

physiological or disease states such as male breast cancer [10],

hyperthyroidism [11], diabetes [12,13], cirrhosis of the liver [14],

gall stones [14] and bone fractures [15,16]. Therefore due to the

physiological antagonistic activities of testosterone and estrogen,

consideration of the relative levels of these potent hormones in

animal models or patients is likely to yield more physiologically

relevant data.

A detailed overview of the absolute plasma levels of some of the

hormones involved in the major endocrine axes has been provided

previously [1]. With respect to the steroidal hormone status of the

animals, in males the majority of the diets induced considerable

alterations in the circulating T/E ratios, while only the 40% CR

diet induced a significant alteration in the T/E ratio in the

females. This potentially suggests that the IF males had

‘hypermasculinized’, along with the strong masculinization of the

40% CR females. It is important to note that despite the same

effective input calories, the 20% CR and IF males possessed

unique gonadal transcriptome responses to the different dietary

paradigms. This however was not observed in the females. This

suggests that in males there was a specific calorie-independent

response to the alternate day absence of available food energy.

At the level of specific gene regulation, the females tended to

show a greater calorie-specificity in their gene responsiveness in

the gonads, reminiscent to what we have previously shown in the

hippocampus [2]. Males on the other hand did not seem to be as

calorie sensitive in either tissue (Figure 7).

There were several cross-diet genes identified in the female gene

sets. The gene Irf1 (interferon regulatory factor 1) was down-

regulated in the ovaries of 20% CR and 40% CR females

(Figure 7). This gene has been shown to be expressed in the human

uterus during the mid to late secretory phase of the menstrual

cycle, and its expression is regulated by the hormone prolactin

[17]. In the mouse, Irf1 has been shown to be involved in the

Figure 11. Pathway changes in the gonads of male and female rats maintained on the IF diet compared to the gonads of male and
female rats maintained on the control (ad libitum) diet. Significantly regulated, functional pathway clusters were generated from the
respective male or female gene sets using PAGE gene set analysis. Pathways that were significantly up-regulated (red) or down-regulated (green)
were clustered into a Venn diagram. Pathways in blue were common to both males (M) and females (F) but were differentially regulated. Names of
the significantly altered pathways can be found in Table S2.
doi:10.1371/journal.pone.0004146.g011
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remodeling of uterine spinal arteries, which supply blood to the

endometrium of the uterus during the luteal phase of the

menstrual cycle, and the remodeling of these arteries is a

requirement for successful implantation of the embryo during

pregnancy [18]. Hspa8 (heat shock protein 70 kDa) was down-

regulated in the 40% CR and IF ovaries. This gene has been

shown to be sharply increased in the human endometrium after

ovulation and is thought to play a protective role during

implantation [19]. Gdf9 (growth differentiation factor 9) was

increased in the 20% CR and HFG ovaries. This gene is an oocyte

secreted paracrine factor essential for mammalian ovarian

folliculogenesis [20]. Gdf-9 is co-expressed with BMP15 and these

genes work together in the ovary to aid in the differentiation and

development of the granulosa cells. Granulosa cells produce

steroids and growth factors that aid in the development of the

oocyte. Follicle-stimulating hormone (FSH) stimulates granulosa

cells to convert androgens to estradiol, and after ovulation

granulosa cells then produce progesterone [21].

Among the multi-diet regulated genes in the males, several are

of note with respect to gonadal function. Nuclear RNA export

factor 1 (Nxf1) was significantly down-regulated in both the 40%

CR and IF paradigms. Nxf1 is also classified as the TIP-(tyrosine

kinase interacting protein) associated protein (TAP). Nxf1

expression is tightly controlled, as it has been shown to be

crucially involved in the normal development of both male

neurons and germ cells in cases of Fragile X syndrome [22]. The

cold shock gene, Csda, was specifically up-regulated across two

diets that were typified by extremes of energy balance (40% CR

and HFG). These cold-shock proteins have been shown to be

crucial for the protection and development of spermatocytes and

seminiferous tubules [23]. The gene Ncl (nucleolin) was also up-

regulated by two diets (IF, HFG) and has been shown to be highly

indicative of rapidly growing cells, as it is important for pre-

mRNA processing and potential tumor formation [24]. Indicative

of the increased functional activity in the male testes in response to

dietary alteration (IF and HFG), there was a significant up-

regulation of Nek7 (NIMA-related kinase 7). The Nek7 gene has

recently been identified in the testes [25] where it is likely to be a

prime controller of cell cycle progression and mitotic spindle

assembly [26]. To facilitate additional cell growth/function in

response to dietary alterations, it is often necessary to re-model the

structure of an organ or tissue. A common series of proteins

involved in such processes are metalloproteinases. With respect to

gonadal function, Adamts19 (a disintegrin and metalloproteinase

Figure 12. Pathway changes in the gonads of male and female rats maintained on the HFG diet compared to the gonads of male
and female rats maintained on a control (ad libitum) diet. Significantly regulated, functional pathway clusters were generated from the
respective male or female gene sets using PAGE gene set analysis. Pathways that were significantly up-regulated (red) or down-regulated (green)
were clustered into a Venn diagram. Pathways in blue were common to both males (M) and females (F) but were differentially regulated. Names of
the significantly altered pathways can be found in Table S2.
doi:10.1371/journal.pone.0004146.g012
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domain, with thrombospondin type-1 modules), significantly up-

regulated in 20% CR, 40% CR and HFG diets, has been shown to

be expressed in multiple tissues, and in particular the testes

[27,28]. The down-regulation of genes involved in apoptotic

mechanisms would be expected in situations of enhanced cell

growth and development, for example in the male IF and HFG

paradigms, there was a significant down-regulation of Septin 10.

Septins are a highly conserved family of GTP-binding cytoskeletal

proteins implicated in apoptosis, cell cycle regulation and

oncogenesis [29].

Taking into account the alterations in gonadal function and

gene expression, it appears that males respond in a more reactive

manner to the imposition of the various dietary regimes. When

considering genes regulated across multiple dietary paradigms, the

males showed a considerably greater degree of up-regulated genes

compared to the females (Figure 7). This again was demonstrated

when the functional signaling pathways were analyzed (Figure 13).

This is perhaps not surprising when the distinct activities of the

two genders’ gonads are considered. Male spermatogenesis is a

relatively robust activity that is maintained for a long period of

time in a mammal’s lifespan. Females on the other hand, are

typically born with a set number of ova that then progressively

decrease with time. The activity of the ovary is considerably more

complex as it has to be timed to the menstrual cycle. Cyclicity in

females is a sensitive phenomenon and can be dramatically

affected by dietary perturbations. We have previously shown that

female reproductive cycling capacity was considerably affected

during the imposition of some of these dietary regimens [1]. Even

small alterations in input energy caused the females to largely

cease cycling. Many previous studies have demonstrated the

relative robustness of continued spermatogenesis in the face of

dietary alteration in multiple species [30,31]. It is interesting to

note however that in our transcriptional analysis there seemed to

be a stronger up-regulating response in the males compared to the

females, despite the history of male resilience to environmental

dietary alteration. With respect to this observation, perhaps the

most important finding was the unique nature of the males’

response to the every other day feeding regime. When the

relationship between their transcriptional response to IF was

compared to the eventual physiological phenotype this may

induce, we found that this gene:pathway ratio was extremely high

for the male IF group (Figure 15). Comparing this response to the

Figure 13. Caloric specificity of male and female multi-diet regulated pathways. Significantly altered functional pathways that were
common between diet paradigms were drawn to visualize caloric specificity. (A) Commonly altered functional pathways in the testes of male rats on
the various diets showed 36% caloric restriction (CR) specificity (commonly regulated between the 20% CR, 40%, CR, and/or IF diets only) and 64%
non-CR specificity. (B) Similarly, the commonly altered functional pathways in the ovaries showed 35% CR-specificity and 65% non-CR specificity.
Names of the significantly altered pathways can be found in Table S2.
doi:10.1371/journal.pone.0004146.g013
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20% CR males, we are able to conclude that this effect is

independent of the input calories to these two groups [1]. This

calorie-independent response seemed unique to the male IF group,

as the female IF group gene:pathway ratio was considerably lower.

When the genetic output (genes, GO terms and KEGG pathways)

of the male or female IF groups were both compared to their

corresponding 20% CR groups, there was also a large difference in

the male IF response compared to the females (Tables 1, 2). This

may indicate that the males possessed a specific response to the

periodic absence of food. Even the presence of low levels of food

(40% CR) did not induce this high gene:pathway ratio. The male

IF group also showed the highest circulating T/E ratio and the

largest degree of change in testes mass (Figure 2). Leptin and

growth hormone were each significantly decreased in the IF males

as were plasma corticosterone levels, though not statistically

significantly [1]. These hormonal changes caused by the IF diet

are reflective of a tendency towards ‘heightened’ masculinity.

As we have postulated, alterations in the reproductive status of

animals that reproduce sexually are likely to occur in a

complementary manner. In an environment temporarily devoid

of available food, i.e. the IF diet, the male would assume that

females also will experience this environment and would therefore

have a ‘predictable’ lower degree of fertility, as the females possess

a lower capacity to compete for food than the males. Hence for the

species to propagate, the male would need to increase the chance

that an encounter with a female would result in successful

fertilization; and therefore, the male needs a heightened degree of

fertility. In the male IF group the increased testes mass, elevated

circulating T/E ratio and the highest genetic output coherency all

suggest a pre-programmed physiological response specific to

periods of food absence, and not food paucity. If the male

‘predicts’ the presence of semi-starved females (i.e. the male has no

access to food and therefore the poorly-competing female may

have even less), then it is likely that there would be a

complementarity in gonadal genetic regulation between the two

genders. Thus, we would expect a similarity in genetic output

between the IF male and the most malnourished female, i.e. the

40% CR group. Performing this analysis, we noted a significant

degree of identity between the significantly regulated KEGG

signaling pathways between the male IF group and the female

40% CR group (Figure 15). It is also interesting to note that there

was a hormonal link between these two groups, as they both

possessed the highest circulating T/E ratios. Also linking the male

IF group to the 40% CR female group, the 40% CR females

showed the greatest gene:pathway coherency amongst the female

dietary paradigms (Figure 15). Similarly to the IF males, the 40%

CR females had significantly lower plasma leptin levels than the ad

libitum controls [1]. Conversely, though, the 40% CR females had

Figure 14. Caloric specificity of male-female common multi-diet regulated pathways. Significantly altered functional pathways that were
common between diet paradigms and both genders were drawn to visualize caloric specificity. Names of the significantly altered pathways can be
found in Table S2.
doi:10.1371/journal.pone.0004146.g014
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similar growth hormone levels to controls. Corticosterone levels

were significantly increased, reflecting the extreme stress the 40%

CR diet placed on the female rats [1].

Interestingly, the 40% CR females showed a significant down-

regulation in the gene Ccnd2 (cyclin D2), which is involved in the

focal adhesion, JAK-STAT signaling, and cell cycle KEGG

pathways. In the ovary, ccnd2 is expressed in the granulosa cells of

the follicles and has been shown to play an important role in

folliculogenesis. Ccnd2 null mice have been shown to be infertile

due to impaired granulosa cell proliferation in response to follicle

stimulating hormone (FSH) and thus have small follicles with

impaired oocyte release [32,33]. Thus, this reduction in ccnd2

may be reflective of the impaired reproductive cycling ability of

these rats. The 40% CR females showed a down-regulation in two

genes involved in the JAK-STAT signaling pathway, which has

been shown to play an important role in the maintenance of

germline stem cells and follicle development in the drosophila

ovary and testis [34–36]. The 40% CR females also showed a

down-regulation in the vascular endothelial growth factor (VEGF)

signaling pathway, which plays an essential role in angiogenesis

and follicle development within the female reproductive tract [37–

39]. The IF males also showed several interesting gene changes

correlated to the KEGG pathway alterations. There was a

significant increase in the Fgf10 (fibroblast growth factor 10) gene,

which is involved in the MAPK signaling pathway and has shown

to play a role in the growth and development of several

reproductive tissues [40]. Pcna (proliferating cell nuclear antigen),

which is a part of the cell cycle KEGG pathway, was significantly

down-regulated in the IF testes. Pcna is highly expressed in the

sertoli cells of the testes, which function to nurture developing

sperm cells during spermatogenesis [41] and is often used as a

marker for cell proliferation.

Genes with differential expression patterns in the male and

female rats, that were associated with fertility and reproductive

tract morphology and function, were identified and then subjected

to unbiased bioinformatic analysis. Estimation of the potential

functional relevance of these genes was performed using the

Jackson Lab Mouse Genome Database. This resource provides

data correlating specific gene alterations and multiple physiolog-

ical or pathophysiological outcomes (Table 3). In the IF males,

various fertility related genes were up-regulated compared to the

control males, such as Cugbp1 (Cug-binding protein), Gnpat

(Glyceronephosphate o-acyltransferase), Smtn (Smoothelin), Fgf10

(Fibroblast growth factor 10). These genes play important roles in

the maintenance of spermatogenesis and seminiferous tubule

morphology [42–45]. In the 40% CR males, there was an up-

regulation of Csda (Cold-shock domain protein A), Ube3a

(Ubiquitin-protein ligase E3A), and Col4a1 (Collagen type IV).

These genes are involved in maintaining spermatogenesis,

seminiferous tubule structure, and fertility [23,46,47]. The up-

Figure 15. Correlation of genetic output between complementary animal responses to different dietary paradigms. Panel A depicts
the gene:pathway ratios created by each gender in response to the imposed dietary regime. Panel B demonstrates the functional cross-over between
the KEGG functional pathway output of male IF compared to female 40% CR paradigms.
doi:10.1371/journal.pone.0004146.g015
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regulation of these genes in the male IF and 40% CR animals

suggests that these male animals are potentially maintaining or up-

regulating their reproductive ability during periods of food

scarcity. In the 20% CR female animals, there was an up-

regulation in Hsd17b4 (17-beta-hydroxysteroid dehydrogenase

IV), Gdf9 (Growth/differentiation factor 9), and Ccnd2 (Cyclin

Table 1. Webgestalt GO term analysis of gonadal transcriptional response to intermittent fasting compared to 20% caloric
restriction.

MALE FEMALE

GO term R P GO term R P

Signal transduction 6.25 4.08e-2 Amine metabolism 4.69 2.5e-2

Regulation of cell growth 6.25 4.16e-2 Smooth muscle differentiation 200 7.0e-5

Intracellular transport 2.47 3.30e-2 Mitosis 7.69 2.71e-2

Microtubule cytoskeleton organization 9.52 1.83e-2 Regulation of apoptosis 7.41 2.86e-2

Cholesterol metabolism 10.53 1.60e-2 Ribosome biogenesis 12 1.85e-3

Regulation of translation 8 2.59e-2 Chromatin remodeling 25 2.63e-3

Proteolysis during cellular protein catabolism 8.62 2.68e-4 Carbohydrate biosynthesis 20 4.48e-4

Ubiquitin-dependent protein catabolism 10.2 1.28e-4 Vessel development 6.25 4.02e-2

Amino acid phosphorylation 2.79 1.96e-2

Protein ubiquitination 11.76 1.19e-2

Ubiquitin cycle 4.31 5.82e-3

RNA polymerase II activity 5.26 1.96e-2

Nuclear mRNA splicing 8.89 1.02e-3

Regulation of endocytosis 15.38 7.47e-3

Response to stress 2.4 3.74e-2

ATP binding 2.4 3.38e-3

Transcription coactivator activity 6.9 3.39e-2

Cysteine-type endopeptidase activity 5.66 1.57e-2

Small conjugating protein-specific protease activity 11.54 2.31e-3

Acetyltransferase activity 9.09 2.01e-2

Ser/Thr kinase activity 15.38 7.21e-3

Tyrosine kinase activity 3.42 2.96e-2

Microsome activity 6.25 1.25e-2

The genes significantly regulated in response to IF, but not 20% CR, for both genders were subjected to parametric Webgestalt GO term clustering. The enrichment
factor [R] of the GO term groups is calculated by division of the observed (O) number of genes in the particular GO term group found in the experimental gene set by
the expected (E) number of genes found in that set based on their background expression frequency in the Webgestalt genome set (R = O/E). The probability [P] stated
is the probability of the specific degree of gene set enrichment [R] in the GO term group.
doi:10.1371/journal.pone.0004146.t001

Table 2. Webgestalt KEGG pathway analysis of gonadal transcriptional response to intermittent fasting compared to 20% caloric
restriction.

MALE FEMALE

KEGG pathway R P KEGG pathway R P

Proteasome 44.84 9.21e-4 Ribosome 43.73 4.54e-5

Antigen processing and presentation 18.05 5.55e-3 Insulin signaling pathway 18.57 5.24e-3

Leukocyte transendothelial migration 11.72 1.28e-2 mTOR signaling 51.02 7.14e-4

MAPK signaling pathway 7.33 8.08e-3 Hedgehog signaling pathway 46.18 8.7e-4

Wnt signaling pathway 9.09 2.06e-2

Regulation of actin cytoskeleton 6.70 3.6e-2

The genes significantly regulated in response to IF, but not 20% CR, for both genders were subjected to parametric Webgestalt KEGG pathway clustering. The
enrichment factor [R] of the GO term groups is calculated by division of the observed (O) number of genes in the particular KEGG pathway found in the experimental
gene set by the expected (E) number of genes found in that set based on their background expression frequency in the Webgestalt genome set (R = O/E). The
probability [P] stated is the probability of the specific degree of gene set enrichment [R] in the KEGG pathway group.
doi:10.1371/journal.pone.0004146.t002
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D2). These are important factors for maintaining ovarian

morphology, folliculogenesis, and ovulation [48–50]. This suggests

that the 20% CR females are potentially maintaining their

reproductive ability, despite having reduced caloric input

compared to the control females. The 40% CR females on the

other hand, show a decrease in Ccnd2 expression. This could

potentially suggest that ovulatory function is impaired in these

severely calorie-restricted females and that they exhibit reduced

reproductive ability compared to the control female rats.

Taken together, these findings suggest the presence of a pre-

programmed genetic response in males to periodic food absence

that in a sense ‘predicts’ the fecundity of its potential mates and

adjusts reproductive function accordingly. Interestingly, this

phenomenon still takes place in the absence of physical contact

between the two genders. The male therefore, with its robust

reproductive capacity, may serve as a functional ‘rheostat’ for the

species’ reproduction, linking temporal food availability to the

propagation of the species.

Materials and Methods

Animals and diets
Forty seven male and forty seven female Sprague-Dawley rats

were singly housed on a 12 hr light/dark cycle. The following diets

were applied to the rats beginning at 4 months of age: control (ad

libitum); 20% CR, 40% CR; IF (alternate day fasting); and HFG.

Control, CR and IF groups received food pellets that contained

19% protein, 64% carbohydrates, and 17% fat (diet 101845 from

Dyets Inc., Bethlehem, PA); this food had a caloric density of

3.774 cal/g and a glycemic load/kg of 442. The HFG diet (diet

101842 from Dyets Inc.) contained 15% protein, 38% carbohy-

drates, and 47% fat. The caloric density of the HFG diet was

4.645 cal/g and its glycemic load/kg was 363. Weights were

recorded for each rat on a regular basis throughout the study. The

reproductive status was monitored closely for the female rats using

cervical smear analysis. All the female rats were euthanized when

they were estimated to be in the diestrous stage of their

reproductive cycle. All procedures were performed in accordance

with approved institutional protocols and were approved by the

Institutional Animal Care and Use Committee of the National

Institute on Aging.

Tissue, plasma collection and plasma analyses
At the end of the study, the 10-month-old rats were euthanized

using isoflurane anesthesia followed by decapitation. Upon

euthanasia, the gonads were carefully dissected out. Tissues were

flash frozen on dry ice and stored at 280uC until further analyses.

Plasma estradiol and testosterone levels were measured using RIA

by Dr A.F. Parlow, National Hormone and Peptide Program,

Torrance, CA.

RNA extraction
The gonadal tissue was processed using a Bead Beater (Bio-

Spec, Bartlesville, OK) followed by RNA purification using the

RNEasy Mini Kit (Qiagen, Valencia, CA) according to the

manufacturer’s instructions. The RNA was examined for quantity

and quality using an Agilent Bioanalyzer 2100 (Agilent Technol-

ogies, Palo Alto, CA).

Radioactive cDNA probe preparation and microarray
hybridization

cDNA probe preparation and microarray hybridization were

performed as described previously [51]. Briefly, 5 mg total RNA

Table 3. Alterations in fertility-related genes in the male and female rats on the different dietary regimes.

Gene
symbol Gene name Knock-out mouse phenotype

Alteration in
diet group

Up- or down-
regulated

Cugbp1 Cug-binding protein Arrest of spermatogenesis, reduced male and female fertility,
abnormal testicular physiology

Male IF q

Gnpat Glyceronephosphate
o-acyltransferase

Small ovaries, male infertility, abnormal seminiferous tubule
morphology, azoospermia, arrest of male meiosis

Male IF q

Smtn Smoothelin Infertility Male IF q

Fgf10 Fibroblast growth factor 10 Abnormal male reproductive anatomy, abnormal prostate
morphology

Male IF q

Hsd17b4 17-beta-hydroxysteroid
dehydrogenase IV

Alterations in reproductive function, reduced male fertility Female 20% CR q

Gdf9 Growth/differentiation factor 9 Abnormal ovarian morphology, abnormal folliculogenesis,
increased circulating follicle stimulating hormone, increased
circulating luteinizing hormone, female infertility

Female 20% CR q

Female HFG q

Ccnd2 Cyclin D2 Abnormal ovulation, oligozoospermia, female infertility Female 20% CR q

Female 40% CR Q

Csda Cold-shock domain protein A Reduced testis size, seminiferous tubule degeneration,
abnormal spermatogenesis, male infertility

Male 40% CR q

Male HFG q

Ube3a Ubiquitin-protein ligase E3A Reduced male fertility, decreased testis weight, reduced
spermatogenesis, decreased prostate weight, abnormal
ovarian folliculogenesis, reduced female fertility

Male 40% CR q

Col4a1 Collagen type IV Reduced fertility Male 40% CR q

Genes with differential expression in the male and female rats, that were associated with fertility and reproductive tract morphology and function, were functionally
analyzed using the Jackson Labs Mouse Genome Database.
doi:10.1371/journal.pone.0004146.t003
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was reverse-transcribed in a reaction mixture containing 8 ml of

56 first strand RT buffer, 1 ml of 1 mg/ml 12–18 mer poly (dT)

primer, 4 ml of 20 mM dNTPs (-dCTP), 4 ml of 0.1 M DTT, 1 ml

(40 U) of RNaseOUT, 6 ml of 3000 Ci/mmol a-33P-dCTP and

DEPC-water to a final volume of 40 ml. The RT mixture was first

heated at 65uC for 10 min, followed by incubation on ice for

2 min. Two microliters of Superscript II reverse transcriptase (Life

Technologies, CA) was then added followed by incubation at 42uC
for 35 min. One additional microliter of reverse transcriptase was

added, followed by another 35 minute incubation. At the end of

the incubation, 5 ml of 0.5 M EDTA was added to chelate divalent

cations. After addition of 10 ml of 1.0 M NaOH, the samples were

incubated at 65uC for 30 min to hydrolyze the remaining RNA.

Following the addition of 25 ml of 1 M Tris (pH 8.0), the samples

were purified using Bio-Rad 6 purification columns (Hercules,

CA). cDNA microarrays were pre-hybridized in a 4 ml hybrid-

ization buffer containing 3.2 ml Microhyb (Research Genetics,

AL) and 0.8 ml 50% dextran sulfate, 10 ml of 10 mg/ml

denatured human Cot 1 DNA (Life Technologies) and 10 ml of

8 mg/ml denatured poly(dA) (Pharmacia, NJ). After at least 4 h of

pre-hybridization at 55uC, approximately 106 cpm/ml of heat-

denatured cDNA probes were added, followed by 17 h of

incubation at 55uC. Hybridized arrays were washed in 26 SSC

and 0.1% SDS once at room temperature followed by two washes

in 26 SSC and 0.1% SDS at 65uC for 15 min each.

Scanning and quantification
The microarrays were exposed to phosphorimager screens for 3

days. The screens were then scanned in a Molecular Dynamics

STORM PhosphorImager (Sunnyvale, CA) at 50 mm resolution.

Quantification of scanned screens was performed with ArrayPro

software.

Z-scores and z-ratio
Raw hybridization intensity data were log-transformed and

normalized to yield z-scores, which in turn were used to calculate a

z-ratio value for each gene with respect to the control tissues. The

z-ratio was calculated as the difference between the observed gene

z-scores for the experimental and the control comparisons, and

dividing by the standard deviation associated with the distribution

of these differences [52]. Z-ratio values $+2.0 or #22.0 were

chosen as cut-off values, defining increased and decreased

expression, respectively.

Filtering and cluster analysis
DIANE (NIH) software was used to filter the 17,000 genes. We

filtered out genes which did not vary at least 1.25-fold from the log

of the mean of the first filter in at least 60% of the genes expressed

(p,0.01). Genes were clustered and sub-clusters were generated

using DIANE software.

Venn diagram generation
Multiple Venn diagrams were constructed using an online

generator (http://www.pangloss.com/seidel/Protocols/venn.cgi)

to identify and isolate the genes that were either significantly up-

regulated or significantly down-regulated compared to the ad

libitum (control) rats. In addition to being significant at p,0.01, the

changes needed to vary by greater than 25% from the controls

using the median of the log value of the first filter.

Gene pathway analyses
A complete set of 522 cellular pathways was obtained from the

Molecular Signatures Database (MSigDB) created by the Broad

Institute at the Massachusetts Institute of Technology [53]. The

complete set was tested for Geneset enrichment using Parametric

analysis of Gene set enrichment (PAGE, [54]). For each pathway a

z-score was computed as previously described [2]. For each

pathway z-score a p-value was computed using JMP 6.0 software

to test for the significance of the z-score obtained. These tools were

part of the DIANE 1.0 analytical software suite (http://www.grc.

nia.nih.gov/branches/rrb/dna/diane_software.pdf for informa-

tion). Additional parametric analysis to generate gene ontology

(GO) term clusters and KEGG (Kyoto Encyclopedia of Genes and

Genomes: http://www.genome.jp/kegg/) pathway clustering was

performed using WebGesalt algorithms (http://bioinfo.vanderbilt.

edu/webgestalt/).

Functional gene analyses
Multiple genes with differential expression in the male and

female rats, that were associated with fertility and reproductive

tract morphology and function, were analyzed. A functional

analysis was performed using the Jackson Labs Mouse Genome

Database (http://www.informatics.jax.org/phenotypes.shtml).

This Genome Database includes murine data on gene character-

ization, nomenclature, mapping, gene homologies, sequence links,

phenotypes, allelic variants and mutants, and strain data [55].

Supporting Information

Figure S1 Male multi-diet comparison genes. Significantly

altered genes in the testes of the male rats placed on each of the

four experimental diets (20% CR, 40% CR, IF, or HFG) were

clustered into a 4-way Venn diagram. Letters A-O (seen in key)

report the number of common gene alterations between the

various diets. Specific gene names are reported in the columns at

the top of the figure. Red genes were up-regulated and green genes

were down-regulated. Names of the significantly altered genes can

be found in Table S1.

Found at: doi:10.1371/journal.pone.0004146.s001 (0.11 MB TIF)

Figure S2 Female multi-diet comparison genes. Significantly

altered genes in the ovaries of the female rats placed on each of the

four experimental diets (20% CR, 40% CR, IF, or HFG) were

clustered into a 4-way Venn diagram. Letters A-O (seen in key)

report the number of common gene alterations between the

various diets. Specific gene names are reported in the columns at

the top of the figure. Red genes were up-regulated and green genes

were down-regulated. Names of the significantly altered genes can

be found in Table S1.

Found at: doi:10.1371/journal.pone.0004146.s002 (0.11 MB TIF)

Figure S3 Significant gene pathway changes in the gonads of

male and female rats maintained on a 20% CR diet. Significantly

altered genes in the male and female gonads from the different

dietary regimes were clustered into functional gene pathways. In

the testes from male rats on the 20% CR diet, there were 47

significantly altered gene pathways, of which 8 pathways were

significantly down-regulated and 39 pathways were significantly

up-regulated, compared to gene pathways in testes from male

control rats. Interestingly, the ovaries from female rats on the 20%

CR diet showed a very different functional gene pathway pattern

as there were 50 significantly altered pathways, of which 30 were

significantly down-regulated and 20 were significantly up-regulat-

ed, compared to gene pathways in ovaries from control female

rats.

Found at: doi:10.1371/journal.pone.0004146.s003 (0.10 MB TIF)

Figure S4 Significant gene pathway changes in the gonads of

male and female rats maintained on a 40% CR diet. Significantly
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altered genes in the male and female gonads from the different

dietary regimes were clustered into functional gene pathways. In

the testes from male rats on the 40% CR diet, there were 42

significantly altered gene pathways, of which 17 pathways were

significantly down-regulated and 25 pathways were significantly

up-regulated, compared to gene pathways in testes from male

control rats. The ovaries from female rats on the 40% CR diet

showed a similar functional gene pathway pattern. There were 33

significantly altered pathways, of which 14 were significantly

down-regulated and 19 were significantly up-regulated, compared

to gene pathways in ovaries from control female rats.

Found at: doi:10.1371/journal.pone.0004146.s004 (0.10 MB TIF)

Figure S5 Significant gene pathway changes in the gonads of

male and female rats maintained on an IF diet. Significantly

altered genes in the male and female gonads from the different

dietary regimes were clustered into functional gene pathways. In

the testes from male rats on the IF diet, there were 37 significantly

altered gene pathways, of which 13 pathways were significantly

down-regulated and 24 pathways were significantly up-regulated,

compared to gene pathways in testes from male control rats.

Interestingly, the ovaries from female rats on the IF diet showed a

very different functional gene pathway pattern as there were 55

significantly altered pathways, of which 39 were significantly

down-regulated and 16 were significantly up-regulated, compared

to gene pathways in ovaries from control female rats.

Found at: doi:10.1371/journal.pone.0004146.s005 (0.10 MB TIF)

Figure S6 Significant gene pathway changes in the gonads of

male and female rats maintained on a HFG diet. Significantly

altered genes in the male and female gonads from the different

dietary regimes were clustered into functional gene pathways. In the

testes from male rats on the HFG diet, there were 32 significantly

altered gene pathways, of which 12 pathways were significantly

down-regulated and 20 pathways were significantly up-regulated,

compared to gene pathways in testes from male control rats.

Interestingly, the ovaries from female rats on the HFG diet showed a

very different functional gene pathway pattern as there were 47

significantly altered pathways, of which 30 were significantly down-

regulated and 17 were significantly up-regulated, compared to gene

pathways in ovaries from control female rats.

Found at: doi:10.1371/journal.pone.0004146.s006 (0.10 MB TIF)

Figure S7 Male multi-diet comparison pathways. Significantly

altered pathways in the testes of the male rats placed on each of

the four experimental diets (20% CR, 40% CR, IF, or HFG) were

clustered into a 4-way Venn diagram. Letters A-O (seen in key)

report the number of common gene alterations between the

various diets. Specific gene names are reported in the columns at

the top of the figure. Red genes were up-regulated and green genes

were down-regulated. One pathway, shh_lisa, was incoherently

regulated between the 20% CR and 40% CR diets. This pathway

was up-regulated in the gonads of the 20% CR males and down-

regulated in the gonads of the 40% CR males. Names of the

significantly altered pathways can be found in Table S2.

Found at: doi:10.1371/journal.pone.0004146.s007 (0.09 MB TIF)

Figure S8 Female multi-diet comparison pathways. Significantly

altered pathways in the ovaries of the female rats placed on each of

the four experimental diets (20% CR, 40% CR, IF, or HFG) were

clustered into a 4-way Venn diagram. Letters A-O (seen in key)

report the number of common gene alterations between the

various diets. Specific gene names are reported in the columns at

the top of the figure. Red genes were up-regulated and green genes

were down-regulated. One pathway, intrinsic, was incoherently

regulated between the 20% CR and 40% CR diets. This pathway

was up-regulated in the gonads of the 20% CR females and down-

regulated in the gonads of the 40% CR females. Names of the

significantly altered pathways can be found in Table S2.

Found at: doi:10.1371/journal.pone.0004146.s008 (0.10 MB TIF)

Table S1 Gene symbols and gene names.

Found at: doi:10.1371/journal.pone.0004146.s009 (0.37 MB

DOC)

Table S2 PAGE pathway abbreviations: Molecular Signatures

Database (www.broad.mit.edu/gsea/msigdb/genesets.jsp)

Found at: doi:10.1371/journal.pone.0004146.s010 (0.41 MB

DOC)
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47. Pöschl E, Schlötzer-Schrehardt U, Brachvogel B, Saito K, Ninomiya Y, et al.

(2004) Collagen IV is essential for basement membrane stability but dispensable
for initiation of its assembly during early development. Development 131:

1619–1628.
48. Baes M, Huyghe S, Carmeliet P, Declercq PE, Collen D, et al. (2000)

Inactivation of the peroxisomal multifunctional protein-2 in mice impedes the
degradation of not only 2-methyl-branched fatty acids and bile acid

intermediates but also of very long chain fatty acids. J Biol Chem 275:

16329–16336.
49. Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, et al. (1996) Growth

differentiation factor-9 is required during early ovarian folliculogenesis. Nature
383: 531–535.

50. Sicinski P, Donaher JL, Geng Y, Parker SB, Gardner H, et al. (1996) Cyclin D2

is an FSH-responsive gene involved in gonadal cell proliferation and
oncogenesis. Nature 384: 470–474.

51. Whitney LW, Becker KG, Tresser NJ, Caballero-Ramos CI, Munson PJ, et al.
(1999) Analysis of gene expression in multiple sclerosis lesions using cDNA

microarrays. Ann Neurol 46: 425–428.
52. Cheadle C, Cho-Chung YS, Becker KG, Vawter MP (2003) Application of z-

score transformation of Affymetrix data. Appl Bioinformatics 2: 209–217.

53. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. (2005)
Gene set enrichment analysis: a knowledge-based approach for interpreting

genome-wide expression profiles. Proc Natl Acad Sci U S A 102: 15545–15550.
54. Kim SY, Volsky DJ (2005) PAGE: parametric analysis of gene set enrichment.

BMC Bioinformatics 6: 144.

55. Bult CJ, Eppig JT, Kadin JA, Richardson JE, Blake JA, and the members of the
Mouse Genome Database Group (2008) The Mouse Genome Database (MGD):

mouse biology and model systems. Nucleic Acids Res 36(Database issue):
D724–8.

Gonadal Transcriptomes

PLoS ONE | www.plosone.org 21 January 2009 | Volume 4 | Issue 1 | e4146


